MASx50: Assignment 2

- 1. The following text describes the key steps of defining the Lebesgue integral on a measure space (S, Σ, m) . It contains *three* mistakes.
 - ¹ For indicator functions $\mathbb{1}_A$ where $A \in \Sigma$, set

2

$$\int_0^\infty \mathbb{1}_A \, dm = m(A). \tag{(\star)}$$

For simple functions $s = \sum_{i=1}^{n} c_i \mathbb{1}_{A_i}$, where $c_i \in \mathbb{R}$ and $A_i \in \Sigma$ for all $i \in \{1, \ldots, n\}$, extend equation (\star) by linearity to give

$$\int_{S} s \, dm = \sum_{i=1}^{n} c_i m(A_i)$$

⁶ For non-negative measurable functions $f: S \to [0, \infty)$, define

$$\int_{S} f \, dm = \sup \left\{ \int_{S} s \, dm \ : \ s \text{ is a continuous function and } 0 \le s \le f \right\}.$$

⁸ We therefore have that $\int_S f \, dm \in [0,\infty)$ for non-negative measurable functions f.

For an arbitrary measurable function $f : S \to \mathbb{R}$, write $f = f_+ - f_-$, where $f_+ = 0 \lor f$ and $f_- = -(f \land 0)$. Then f_+ and f_- are non-negative measurable functions. If one or both of $\int_S f_+ dm$ and $\int_S f_- dm$ is not equal to $+\infty$ then we define

13
$$\int_S f \, dm = \int_S f_+ \, dm - \int_S f_- \, dm.$$

If both $\int_S f_+ dm$ and $\int_S f_- dm$ are equal to $+\infty$ then $\int_S f dm$ is undefined.

Each mistake is on a distinct line. Line numbers are included for convenience and to help you reference the text.

List the line numbers containing mistakes and, for each mistake, give a corrected version.

- 2. Determine if the following functions are in \mathcal{L}^1 . Use the monotone convergence theorem to justify your answers.
 - (a) $f: (1,\infty) \to \mathbb{R}$ by $f(x) = 1/x^2$.
 - (b) $g: (-1,1) \to \mathbb{R}$ by $g(x) = 1/x^3$, where we set g(0) = 0.
- 3. Let (S, Σ, m) be a measure space, and suppose that m is a probability measure.
 - (a) Let $f: S \to \mathbb{R}$ be a non-negative simple function. Show that f^2 is also a non-negative simple function.

(b) Let $f: S \to \mathbb{R}$ be a simple function. Write $f = \sum_{i=1}^{n} c_i \mathbb{1}_{A_i}$ where the A_i are pairwise disjoint and measurable and $c_i \ge 0$. Show that

$$\left(\int_{S} f \, dm\right)^2 \le \int_{S} f^2 \, dm. \tag{(\star)}$$

Hint: You may use Titu's lemma, which states that for $u_i \ge 0$ and $v_i > 0$,

$$\frac{\left(\sum_{i=1}^{n} u_{i}\right)^{2}}{\sum_{i=1}^{n} v_{i}} \leq \sum_{i=1}^{n} \frac{u_{i}^{2}}{v_{i}}.$$

- (c) In this question you should give *two* different proofs that equation (\star) holds when f is any non-negative measurable function. You may use your results from part (b) in both proofs.
 - i. Give a proof using the monotone convergence theorem.
 - ii. Give a proof based on the definition of the Lebesgue integral for non-negative measurable functions.
- (d) Does (\star) remain true if m is not necessarily a probability measure?