
MASx50: Assignment 2

Solutions and discussion are written in blue. Some common pitfalls are indicated in teal. A
sample mark scheme is given in red, with each mark placed after the statement/deduction
for which the mark would be given. As usual, mathematically correct solutions that follow
a different method would be marked analogously.

Marks are given for [A]ccuracy, [J]ustification, and [M]ethod.

1. The following text describes the key steps of defining the Lebesgue integral on a mea-
sure space (S,Σ,m). It contains three mistakes.

For indicator functions 1A where A ∈ Σ, set1

�
�
�

∫ ∞

0

∫
S

1A dm = m(A). (?)2

For simple functions s =
∑n

i=1 ci1Ai
, where ci ∈ R and Ai ∈ Σ for all3

i ∈ {1, . . . , n}, extend equation (?) by linearity to give4 ∫
S

s dm =
n∑

i=1

cim(Ai).5

For non-negative measurable functions f : S → [0,∞), define6 ∫
S

f dm = sup

{∫
S

s dm : s is a continuous simple function and 0 ≤ s ≤ f

}
.7

We therefore have that
∫
S
f dm ∈����[0,∞) [0,∞] for non-negative measurable

functions f .8

For an arbitrary measurable function f : S → R, write f = f+ − f−, where9

f+ = 0∨f and f− = −(f ∧0). Then f+ and f− are non-negative measurable10

functions. If one or both of
∫
S
f+ dm and

∫
S
f− dm is not equal to +∞ then11

we define12 ∫
S

f dm =

∫
S

f+ dm−
∫
S

f− dm.13

If both
∫
S
f+ dm and

∫
S
f− dm are equal to +∞ then

∫
S
f dm is undefined.14

Each mistake is on a distinct line. Line numbers are included for convenience and to
help you reference the text.
List the line numbers containing mistakes and, for each mistake, give a corrected
version.

Solution.

(a) 2, 7, 8. [3A]
(b) As indicated above. [3A]
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2. Determine if the following functions are in L1. Use the monotone convergence theorem
to justify your answers.

(a) f : (1,∞) → R by f(x) = 1/x2.
(b) g : (−1, 1) → R by g(x) = 1/x3, where we set g(0) = 0.

Solution.

(a) Note that x−2 > 0 for x ∈ (1,∞). By Riemann integration, we have∫ n

1
x−2 dx =

[
−x−1

]n
1
= − 1

n
+ 1. (†)

[1A] Note that fn(x) = x−2
1(1,n)(x) is a monotone increasing sequence of non-negative

functions, with pointwise convergence to f(x) = x−2 for x ∈ (1,∞). [1J] Hence, by the
monotone convergence theorem [1M] we have∫ ∞

1
x−2 dx = lim

n→∞

(
− 1

n
+ 1

)
= 1.

Thus f(x) = x−2 is in L1 on (1,∞). [1A]
(b) The function g is discontinuous at x = 0 (sketch it!), with g(x) < 0 for x < 0 and

g(x) > 0 for x > 0. Hence g+(x) = 1(0,1)x
−3 and g−(x) = −1(0,1)x−3.

We will show that
∫ 1
0 g+(x) dx = ∞, which means that g /∈ L1 on (0, 1). [1M]

By Riemann integration, we have∫ 1

1/n
x−3 dx =

[
x−2

−2

]1
1/n

=
1

−2
− (1/n)−2

−2
=

n2

2
− 1

2
.

[1A] We have that gn(x) = x−3
1x∈(1/n,1) is a monotone increasing sequence of non-

negative functions, with pointwise convergence to g(x) = x−3 for x ∈ (0, 1). [1J] Hence,
by the monotone convergence theorem,

∫ 1
0 g+(x) dx = limn→∞

(
n2

2 − 1
2

)
= ∞. [1A]

Pitfall: In order to apply Riemann integration we need to have a continuous function on a
closed bounded interval. For this reason in (a) we need to avoid the limit x = +∞ (because
that would give an unbounded interval of x) when calculating (†). In (b) we need to avoid
x = 0 because g(x) → ∞ as x ↘ 0 and g(x) → −∞ as x ↗ 0.

If we try to ignore this restriction then we can run into trouble. For example in (b) we might
end up writing

∫ 1
−1 x

−3 dx = [x
−2

−2 ]
1
−1 = 1

−2 − 1
−2 = 0, which isn’t true. According to the

definition of the Lebesgue integral
∫ 1
−1 x

−3 dx is undefined, because both
∫ 1
−1 g+(x) dx and∫ 1

−1 g−(x) dx are infinite; the equation
∫ 1
−1 g(x) dx =

∫ 1
−1 g+(x) dx −

∫ 1
−1 g−(x) dx = ∞−∞

is nonsense.
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3. Let (S,Σ,m) be a measure space, and suppose that m is a probability measure.

(a) Let f : S → R be a non-negative simple function. Show that f 2 is also a non-
negative simple function.

(b) Let f : S → R be a simple function. Write f =
∑n

i=1 ci1Ai
where the Ai are

pairwise disjoint and measurable and ci ≥ 0. Show that(∫
S

f dm

)2

≤
∫
S

f 2 dm. (?)

Hint: You may use Titu’s lemma, which states that for ui ≥ 0 and vi > 0,

(
∑n

i=1 ui)
2∑n

i=1 vi
≤

n∑
i=1

u2
i

vi
.

(c) In this question you should give two different proofs that equation (?) holds when
f is any non-negative measurable function. You may use your results from part
(b) in both proofs.

i. Give a proof using the monotone convergence theorem.
ii. Give a proof based on the definition of the Lebesgue integral for non-negative

measurable functions.
(d) Does (?) remain true if m is not necessarily a probability measure?

Solution.

(a) We have

f2 =
n∑

i=1

m∑
j=1

cicj1Ai1Aj =
n∑

i=1

c2i1Ai

where the second inequality follows by disjointness – all the cross terms (when i 6= j)
are zero. [1A] We have thus expressed f2 as a simple function, and since c2i are non-
negative, f2 is also non-negative. [1J]

(b) We have

(∫
f dm

)2

=

(
n∑

i=1

cim(Ai)

)2

,

∫
f2 dm =

n∑
i=1

c2im(Ai).

[2A] The required inequality follows from the above and Titu’s lemma, taking vi =
m(Ai) and ui = cim(Ai). [1A] Note that, because m is a probability measure,

∑
im(Ai) =

1 and we may assume m(Ai) > 0 (because any Ai with zero measure will have no effect
on the value of the integral).
Follow-up challenge exercise: See if you can derive Titu’s lemma from the Cauchy-
Schwarz inequality.

3



(c) Let f : R → R be non-negative and measurable.
First proof (using the monotone convergence theorem): From lectures (see
the section on simple functions) there exists a sequence (sn) of non-negative simple
functions such that 0 ≤ sn ≤ sn+1 ≤ f such that sn → f pointwise. [1M] Thus, by the
monotone convergence theorem, as n → ∞,∫

sn dm →
∫

f dm.

[1M] By part (a), (s2n) is also a sequence of simple functions. [1J] We have 0 ≤ s2n ≤
s2n+1 ≤ f2, also s2n → f2 pointwise. So by another application of the monotone conver-
gence theorem we have ∫

s2n dm →
∫

f2 dm.

[1M] From part (b) we have (∫
sn dm

)2

≤
∫

s2n dm

for all n. Since limits preserve weak inequalities, [1J] we have that(∫
f dm

)2

≤
∫

f2 dm

as required.
Second proof (using the definition of the integral): Recall that the definition of
the Lebesgue integral, for non-negative measurable functions, is∫

f dm = sup

{∫
s dm : s is simple and 0 ≤ s ≤ f

}
.

Hence (∫
f dm

)2

=

(
sup

{∫
s dm : s is simple and 0 ≤ s ≤ f

})2

= sup

{(∫
s dm

)2

: s is simple and 0 ≤ s ≤ f

}

≤ sup

{∫
s2 dm : s is simple and 0 ≤ s ≤ f

}
= sup

{∫
r dm : r is simple and 0 ≤ r ≤ f2

}
=

∫
f2 dm

[1M] Here, the second line follows because
∫
s dm ≥ 0, so the square can pass inside of

the sup. [1J] The third line then follows by part (b). [J] Let us now justify the fourth
line. We have shown in (a) that if s is a non-negative simple function then so is r = s2,
and clearly if s ≤ f then s2 ≤ f2 (i.e. pointwise). [1J] Also, if r is a non-negative simple
function such that 0 ≤ r ≤ f2, then if we define s =

√
r, we can show (in similar style

to part (a)) that s is a non-negative simple function such that 0 ≤ s ≤ f . Here, if
r =

∑
i ci1Ai we would have s =

∑
i

√
ci1Ai . So, the two sups in the third and fourth

lines are equal using the correspondence r = s2. [1J]
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(d) In general (?) fails when m is not a probability measure – almost any example you
check will show that it fails.
For example, take f(x) = x and let m be Lebesgue measure on [0, 2]. Then

∫ 2
0 x dx = 2

and
∫ 2
0 x2 dx = 8

3 , but 22 > 8
3 . [2A]

Total marks: 30
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