MASx50: Assignment 2

Solutions and discussion are written in blue. Some common pitfalls are indicated in teal. A sample mark scheme is given in red, with each mark placed after the statement/deduction for which the mark would be given. As usual, mathematically correct solutions that follow a different method would be marked analogously.

Marks are given for $[\mathrm{A}]$ ccuracy, $[\mathrm{J}]$ ustification, and $[\mathrm{M}]$ ethod.

1. The following text describes the key steps of defining the Lebesgue integral on a measure space (S, Σ, m). It contains three mistakes.

For indicator functions $\mathbb{1}_{A}$ where $A \in \Sigma$, set

$$
\int_{0}^{\infty} \int_{S} \mathbb{1}_{A} d m=m(A)
$$

For simple functions $s=\sum_{i=1}^{n} c_{i} \mathbb{1}_{A_{i}}$, where $c_{i} \in \mathbb{R}$ and $A_{i} \in \Sigma$ for all $i \in\{1, \ldots, n\}$, extend equation (\star by linearity to give

$$
\int_{S} s d m=\sum_{i=1}^{n} c_{i} m\left(A_{i}\right)
$$

For non-negative measurable functions $f: S \rightarrow[0, \infty)$, define

$$
\int_{S} f d m=\sup \left\{\int_{S} s d m: s \text { is a continuous simple function and } 0 \leq s \leq f\right\}
$$

We therefore have that $\int_{S} f d m \in[0, \infty)[0, \infty]$ for non-negative measurable functions f.
, For an arbitrary measurable function $f: S \rightarrow \mathbb{R}$, write $f=f_{+}-f_{-}$, where ${ }^{10} \quad f_{+}=0 \vee f$ and $f_{-}=-(f \wedge 0)$. Then f_{+}and f_{-}are non-negative measurable
${ }_{11}$ functions. If one or both of $\int_{S} f_{+} d m$ and $\int_{S} f_{-} d m$ is not equal to $+\infty$ then
12 we define
${ }^{13} \quad \int_{S} f d m=\int_{S} f_{+} d m-\int_{S} f_{-} d m$.
14 If both $\int_{S} f_{+} d m$ and $\int_{S} f_{-} d m$ are equal to $+\infty$ then $\int_{S} f d m$ is undefined.

Each mistake is on a distinct line. Line numbers are included for convenience and to help you reference the text.
List the line numbers containing mistakes and, for each mistake, give a corrected version.

Solution.

(a) $2,7,8 .[3 \mathrm{~A}]$
(b) As indicated above. [3A]
2. Determine if the following functions are in \mathcal{L}^{1}. Use the monotone convergence theorem to justify your answers.
(a) $f:(1, \infty) \rightarrow \mathbb{R}$ by $f(x)=1 / x^{2}$.
(b) $g:(-1,1) \rightarrow \mathbb{R}$ by $g(x)=1 / x^{3}$, where we set $g(0)=0$.

Solution.

(a) Note that $x^{-2}>0$ for $x \in(1, \infty)$. By Riemann integration, we have

$$
\int_{1}^{n} x^{-2} d x=\left[-x^{-1}\right]_{1}^{n}=-\frac{1}{n}+1 .
$$

[1A] Note that $f_{n}(x)=x^{-2} \mathbb{1}_{(1, n)}(x)$ is a monotone increasing sequence of non-negative functions, with pointwise convergence to $f(x)=x^{-2}$ for $x \in(1, \infty)$. [1J] Hence, by the monotone convergence theorem $[1 \mathrm{M}]$ we have

$$
\int_{1}^{\infty} x^{-2} d x=\lim _{n \rightarrow \infty}\left(-\frac{1}{n}+1\right)=1
$$

Thus $f(x)=x^{-2}$ is in \mathcal{L}^{1} on $(1, \infty)$. [1A]
(b) The function g is discontinuous at $x=0$ (sketch it!), with $g(x)<0$ for $x<0$ and $g(x)>0$ for $x>0$. Hence $g_{+}(x)=\mathbb{1}_{(0,1)} x^{-3}$ and $g_{-}(x)=-\mathbb{1}_{(0,1)} x^{-3}$.
We will show that $\int_{0}^{1} g_{+}(x) d x=\infty$, which means that $g \notin \mathcal{L}^{1}$ on $(0,1)$. [1M]
By Riemann integration, we have

$$
\int_{1 / n}^{1} x^{-3} d x=\left[\frac{x^{-2}}{-2}\right]_{1 / n}^{1}=\frac{1}{-2}-\frac{(1 / n)^{-2}}{-2}=\frac{n^{2}}{2}-\frac{1}{2}
$$

[1A] We have that $g_{n}(x)=x^{-3} \mathbb{1}_{x \in(1 / n, 1)}$ is a monotone increasing sequence of nonnegative functions, with pointwise convergence to $g(x)=x^{-3}$ for $x \in(0,1)$. [1J] Hence, by the monotone convergence theorem, $\int_{0}^{1} g_{+}(x) d x=\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{2}-\frac{1}{2}\right)=\infty$. [1A $]$
Pitfall: In order to apply Riemann integration we need to have a continuous function on a closed bounded interval. For this reason in (a) we need to avoid the limit $x=+\infty$ (because that would give an unbounded interval of x) when calculating \boxplus. In (b) we need to avoid $x=0$ because $g(x) \rightarrow \infty$ as $x \searrow 0$ and $g(x) \rightarrow-\infty$ as $x \nearrow 0$.
If we try to ignore this restriction then we can run into trouble. For example in (b) we might end up writing $\int_{-1}^{1} x^{-3} d x=\left[\frac{x^{-2}}{-2}\right]_{-1}^{1}=\frac{1}{-2}-\frac{1}{-2}=0$, which isn't true. According to the definition of the Lebesgue integral $\int_{-1}^{1} x^{-3} d x$ is undefined, because both $\int_{-1}^{1} g_{+}(x) d x$ and $\int_{-1}^{1} g_{-}(x) d x$ are infinite; the equation $\int_{-1}^{1} g(x) d x=\int_{-1}^{1} g_{+}(x) d x-\int_{-1}^{1} g_{-}(x) d x=\infty-\infty$ is nonsense.
3. Let (S, Σ, m) be a measure space, and suppose that m is a probability measure.
(a) Let $f: S \rightarrow \mathbb{R}$ be a non-negative simple function. Show that f^{2} is also a nonnegative simple function.
(b) Let $f: S \rightarrow \mathbb{R}$ be a simple function. Write $f=\sum_{i=1}^{n} c_{i} \mathbb{1}_{A_{i}}$ where the A_{i} are pairwise disjoint and measurable and $c_{i} \geq 0$. Show that

$$
\left(\int_{S} f d m\right)^{2} \leq \int_{S} f^{2} d m
$$

Hint: You may use Titu's lemma, which states that for $u_{i} \geq 0$ and $v_{i}>0$,

$$
\frac{\left(\sum_{i=1}^{n} u_{i}\right)^{2}}{\sum_{i=1}^{n} v_{i}} \leq \sum_{i=1}^{n} \frac{u_{i}^{2}}{v_{i}} .
$$

(c) In this question you should give two different proofs that equation (\star holds when f is any non-negative measurable function. You may use your results from part (b) in both proofs.
i. Give a proof using the monotone convergence theorem.
ii. Give a proof based on the definition of the Lebesgue integral for non-negative measurable functions.
(d) Does (\star) remain true if m is not necessarily a probability measure?

Solution.

(a) We have

$$
f^{2}=\sum_{i=1}^{n} \sum_{j=1}^{m} c_{i} c_{j} \mathbb{1}_{A_{i}} \mathbb{1}_{A_{j}}=\sum_{i=1}^{n} c_{i}^{2} \mathbb{1}_{A_{i}}
$$

where the second inequality follows by disjointness - all the cross terms (when $i \neq j$) are zero. [1A] We have thus expressed f^{2} as a simple function, and since c_{i}^{2} are nonnegative, f^{2} is also non-negative. [1J]
(b) We have

$$
\begin{aligned}
\left(\int f d m\right)^{2} & =\left(\sum_{i=1}^{n} c_{i} m\left(A_{i}\right)\right)^{2} \\
\int f^{2} d m & =\sum_{i=1}^{n} c_{i}^{2} m\left(A_{i}\right)
\end{aligned}
$$

[2A] The required inequality follows from the above and Titu's lemma, taking $v_{i}=$ $m\left(A_{i}\right)$ and $u_{i}=c_{i} m\left(A_{i}\right)$. [1A] Note that, because m is a probability measure, $\sum_{i} m\left(A_{i}\right)=$ 1 and we may assume $m\left(A_{i}\right)>0$ (because any A_{i} with zero measure will have no effect on the value of the integral).
Follow-up challenge exercise: See if you can derive Titu's lemma from the CauchySchwarz inequality.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be non-negative and measurable.

First proof (using the monotone convergence theorem): From lectures (see the section on simple functions) there exists a sequence $\left(s_{n}\right)$ of non-negative simple functions such that $0 \leq s_{n} \leq s_{n+1} \leq f$ such that $s_{n} \rightarrow f$ pointwise. [1M] Thus, by the monotone convergence theorem, as $n \rightarrow \infty$,

$$
\int s_{n} d m \rightarrow \int f d m
$$

[1M] By part (a), $\left(s_{n}^{2}\right)$ is also a sequence of simple functions. [1J] We have $0 \leq s_{n}^{2} \leq$ $s_{n+1}^{2} \leq f^{2}$, also $s_{n}^{2} \rightarrow f^{2}$ pointwise. So by another application of the monotone convergence theorem we have

$$
\int s_{n}^{2} d m \rightarrow \int f^{2} d m
$$

[1M] From part (b) we have

$$
\left(\int s_{n} d m\right)^{2} \leq \int s_{n}^{2} d m
$$

for all n. Since limits preserve weak inequalities, $[1 \mathrm{~J}]$ we have that

$$
\left(\int f d m\right)^{2} \leq \int f^{2} d m
$$

as required.
Second proof (using the definition of the integral): Recall that the definition of the Lebesgue integral, for non-negative measurable functions, is

$$
\int f d m=\sup \left\{\int s d m: s \text { is simple and } 0 \leq s \leq f\right\}
$$

Hence

$$
\begin{aligned}
\left(\int f d m\right)^{2} & =\left(\sup \left\{\int s d m: s \text { is simple and } 0 \leq s \leq f\right\}\right)^{2} \\
& =\sup \left\{\left(\int s d m\right)^{2}: s \text { is simple and } 0 \leq s \leq f\right\} \\
& \leq \sup \left\{\int s^{2} d m: s \text { is simple and } 0 \leq s \leq f\right\} \\
& =\sup \left\{\int r d m: r \text { is simple and } 0 \leq r \leq f^{2}\right\} \\
& =\int f^{2} d m
\end{aligned}
$$

[1M] Here, the second line follows because $\int s d m \geq 0$, so the square can pass inside of the sup. [1J] The third line then follows by part (b). [J] Let us now justify the fourth line. We have shown in (a) that if s is a non-negative simple function then so is $r=s^{2}$, and clearly if $s \leq f$ then $s^{2} \leq f^{2}$ (i.e. pointwise). [1J] Also, if r is a non-negative simple function such that $0 \leq r \leq f^{2}$, then if we define $s=\sqrt{r}$, we can show (in similar style to part (a)) that s is a non-negative simple function such that $0 \leq s \leq f$. Here, if $r=\sum_{i} c_{i} \mathbb{1}_{A_{i}}$ we would have $s=\sum_{i} \sqrt{c_{i}} \mathbb{1}_{A_{i}}$. So, the two sups in the third and fourth lines are equal using the correspondence $r=s^{2}$. [1J]
(d) In general $\left\lvert\, \begin{aligned} & \text { fails when } \\ & m \text { is not a probability measure - almost any example you }\end{aligned}\right.$ check will show that it fails.
For example, take $f(x)=x$ and let m be Lebesgue measure on $[0,2]$. Then $\int_{0}^{2} x d x=2$ and $\int_{0}^{2} x^{2} d x=\frac{8}{3}$, but $2^{2}>\frac{8}{3}$. [2A]

Total marks: 30

