MASx50: Assignment 3

1. Let $f_{n}, f:[0,1] \rightarrow \mathbb{R}$. In each of the following cases, explain whether the Monotone and/or Dominated Convergence Theorems can be used to prove that $\int_{0}^{1} f_{n}(x) d x \rightarrow \int_{0}^{1} f(x) d x$.
(a) $f_{n}(x)=\cos \left(\frac{x}{n}\right)+\sin \left(\frac{x}{n}\right)$ and $f(x)=1$.
(b) $f_{n}(x)=\mathbb{1}_{\left[\frac{1}{n}, 1\right]}(x) x^{-1}$ and $f(x)=\mathbb{1}_{(0,1]} x^{-1}$.
(c) $f_{n}(x)=\mathbb{1}_{\left[0, \frac{1}{n}\right]}(x) n$ and $f(x)=0$.
2. Let (S, Σ, m) be a measure space. Let $f: S \rightarrow \mathbb{R}$ be measurable and let $c>0$. Consider the following two facts, which were stated (and proved) within the lecture notes:
(a) $\left|\int_{S} f d m\right| \leq \int_{S}|f| d m$,
(b) $m(\{x \in S:|f(x)| \geq c\}) \leq \frac{1}{c} \int_{S}|f| d m$.

You do not need to prove these facts here.
Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X: \Omega \rightarrow \mathbb{R}$ be a random variable. Let \mathbb{E} denote expectation with respect to \mathbb{P}. Use this notation to write down probabilistic versions of statements (a) and (b).
3. Consider the probability space $([0,1], \mathcal{B}([0,1]), \lambda)$ where λ denotes the restriction of Lebesgue measure to the Borel σ-field $\mathcal{B}([0,1])$ on $[0,1]$.
Let $X_{n}(\omega)= \begin{cases}1 & \text { if } \omega=0 \\ \omega n^{3 / 2} & \text { if } \omega \in\left(0, \frac{1}{n}\right] \\ 0 & \text { if } \omega \in\left(\frac{1}{n}, 1\right] .\end{cases}$
Determine in which modes of convergence we have $X_{n} \rightarrow 0$.
4. (a) Let $\left(U_{n}\right)_{n \in \mathbb{N}}$ be a sequence of independent, identically distributed uniform random variables on $(0,1)$. Prove that, $\mathbb{P}\left[U_{n}<1 / n\right.$ i.o. $]=1$ and $\mathbb{P}\left[U_{n}<1 / n^{2}\right.$ i.o. $]=0$.
(b) Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be the sequence of results obtained from infinitely many rolls of a fair six sided dice. Prove that the (consecutive) pattern 123456 will occur infinitely often.

