MASx52: Assignment 2

Solutions and discussion are written in blue. Some common pitfalls are indicated in teal. A sample mark scheme is given in red, with each mark placed after the statement/deduction for which the mark would be given. As usual, mathematically correct solutions that follow a different method would be marked analogously.

Marks are given for [A] ccuracy, [J] ustification, and [M] ethod.

1. Let (X_n) be a sequence of i.i.d. random variables, each with a uniform distribution on the interval [-1, 1]. Define

$$S_n = \sum_{i=1}^n X_i,$$

where $S_0 = 0$. Let $\mathcal{F}_n = \sigma(X_1, X_2, \dots, X_n)$.

- (a) Show that S_n is a martingale, with respect to the filtration \mathcal{F}_n .
- (b) Find $\mathbb{E}[S_3^2 | \mathcal{F}_2]$ in terms of X_2 and X_1 , and hence show that

$$\mathbb{E}[S_3^2 \mid \mathcal{F}_2] = S_2^2 + \frac{1}{3}.$$

(c) Write down a deterministic function $f: \mathbb{N} \to \mathbb{R}$ such that

$$M_n = S_n^2 - f(n)$$

is a martingale (justification is not required – make a guess!).

Solution.

(a) Since X_i ∈ σ(X_i) we have X_i ∈ F_n for all i ≤ n. Hence, since sums of F_n measurable functions are measurable, we have also that S_n ∈ F_n [1J].
Since |X_i| ≤ 1 for all i, we have

$$|S_n| \le |X_1| + |X_2| + \ldots + |X_n| \le n.$$

Thus S_n is a bounded random variable and hence $S_n \in L^1$. [1J] Lastly,

$$\mathbb{E}[S_{n+1} \mid \mathcal{F}_n] = \mathbb{E}[X_{n+1} + S_n \mid \mathcal{F}_n]$$

= $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] + \mathbb{E}[S_n \mid \mathcal{F}_n]$
= $\mathbb{E}[X_{n+1}] + S_n$
= S_n .

[1A] Here, we use the linearity of conditional expectation to deduce the second line, followed by using that X_{n+1} is independent of \mathcal{F}_n [1J] and $S_n \in \mathcal{F}_n$ to deduce the third line [1J]. The final line follows because $\mathbb{E}[X_i] = 0$ for all *i*. Hence S_n is a martingale. *Pitfall:* You should justify your use of the rules of conditional expectation. (b) We have

$$S_n^3 = (S_2 + X_3)^2 = S_2^2 + 2S_2X_3 + X_3^2$$

Hence,

$$\mathbb{E}[S_3^2 \mid \mathcal{F}_2] = \mathbb{E}[S_2^2 \mid \mathcal{F}_n] + 2\mathbb{E}[S_2X_3 \mid \mathcal{F}_2] + \mathbb{E}[X_3^2 \mid \mathcal{F}_2]$$

= $S_2^2 + S_2\mathbb{E}[X_3 \mid \mathcal{F}_2] + \mathbb{E}[X_3^2]$
= $S_2^2 + S_2\mathbb{E}[X_3] + \frac{1}{3}$
= $S_2^2 + \frac{1}{3}$.

[2A]. Here, in the first line we use linearity of conditional expectation. To deduce the second and third lines we use that X_3 is independent of \mathcal{F}_2 [1J], and that $S_2 \in m\mathcal{F}_2$ to 'take out what is known'[1J]. We then use that

$$\mathbb{E}[X_3^2] = \int_{-1}^1 x^2 \frac{1}{2} \, dx = \frac{1}{3}$$

to deduce the final lines [1J].

Pitfall: Note that X_n has the *continuous* uniform distribution on the interval [-1, 1].

- (c) In view of (b), we take $f(n) = \frac{n}{3}$, so that $M_n = S_n \frac{n}{3}$ [2A]. To make this guess: use (b) to guess that $\mathbb{E}[S_n^2]$ drifts upwards by $\frac{1}{3}$ on each time step, so $\mathbb{E}[S_n^2 - \frac{n}{3}]$ stays constant. On each step of time, we need to compensate by $\frac{-1}{3}$. To see that M_n really is a martingale: Since $S_n \in \mathcal{F}_n$ we have $M_n \in \mathcal{F}_n$, and $|M_n| \leq |S_n^2| + \frac{2n}{3} \leq n^2 + \frac{n}{3}$ so $M_n \in L^1$. A similar calculation to (b) then shows that $\mathbb{E}[S_{n+1}^2 \mid \mathcal{F}_n] = S_n^2 + \frac{1}{3}$, hence $\mathbb{E}[M_{n+1} \mid \mathcal{F}_n] = M_n$.
- 2. Consider the one-period market with $r = \frac{1}{10}$, s = 2, $d = \frac{1}{2}$ and u = 3, in our usual notation. A contract specifies that

The holder of the contract will sell 2 units of stock, and be paid K units of cash, at time 1.

(a) Explain briefly why the contingent claim of this contract is

$$\Phi(S_1) = K - 2S_1.$$

- (b) Find a replicating portfolio h for this contingent claim.
- (c) Write down the value V_0^h of h at time 0.
- (d) Find the numerical values of risk-neutral probabilities

$$q_u = \frac{(1+r) - d}{u - d}$$
 and $q_d = \frac{u - (1+r)}{u - d}$.

Hence, check that $\frac{1}{1+r}\mathbb{E}^{\mathbb{Q}}[\Phi(S_1)]$ and V_0^h have the same values.

(e) For which K does the contract have value zero at time 0?

Solution.

(a) The holder will be paid K units of cash, resulting in a gain of K, and give away 2 units of stock, each of which is worth S_1 , resulting in a loss of $2S_1$. [1A] Hence

$$\Phi(S_1) = K - 2S_1.$$

Pitfall: This is not a European put option. The holder of this contract must pay K units of cash and be given 2 stock.

(b) The possible values taken by S_1 are su = 6 and sd = 1. A replicating portfolio h = (x, y) must satisfy $V_1^h = \Phi(S_1)$, [1M] meaning that

$$(1 + \frac{1}{10})x + 6y = K - 12$$
$$(1 + \frac{1}{10})x + y = K - 2$$

[1A] We now solve these equations. Taking one away from the other, we obtain 5y = -10, hence y = -2 which gives $x = \frac{K}{11/10} = \frac{10K}{11}$. [1A]

(c) The value of our replicating portfolio h at time 0 is

$$V_0^h = x + sy = \frac{10K}{11} - 4.$$

[1A]

(d) The risk-neutral probabilities are

$$q_u = \frac{11/10 - 1/2}{3 - 1/2} = \frac{3/5}{5/2} = \frac{6}{25},$$
$$q_d = \frac{3 - 11/10}{3 - 1/2} = \frac{19/10}{5/2} = \frac{19}{25}.$$

[1A] This gives us

$$\frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}[\Phi(S_1)] = \frac{1}{11/10} \left(\frac{6}{25} (K-12) + \frac{19}{25} (K-2) \right)$$
$$= \frac{10}{11} \left(K - \frac{110}{25} \right)$$
$$= \frac{10K}{11} - 4,$$

[1A] which is equal to the value of V_0^h that we found in (c).

(e) The contract is worth zero at time 0 if $\frac{10}{11}K - 4 = 0$, that is if $K = \frac{22}{5}$. [1A]

Total marks: 20