MASx52: Assignment 2

Solutions and discussion are written in blue. Some common pitfalls are indicated in teal. A sample mark scheme is given in red, with each mark placed after the statement/deduction for which the mark would be given. As usual, mathematically correct solutions that follow a different method would be marked analogously.

Marks are given for $[\mathrm{A}]$ ccuracy, $[\mathrm{J}]$ ustification, and $[\mathrm{M}]$ ethod.

1. Let $\left(X_{n}\right)$ be a sequence of i.i.d. random variables, each with a uniform distribution on the interval $[-1,1]$. Define

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

where $S_{0}=0$. Let $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
(a) Show that S_{n} is a martingale, with respect to the filtration \mathcal{F}_{n}.
(b) Find $\mathbb{E}\left[S_{3}^{2} \mid \mathcal{F}_{2}\right]$ in terms of X_{2} and X_{1}, and hence show that

$$
\mathbb{E}\left[S_{3}^{2} \mid \mathcal{F}_{2}\right]=S_{2}^{2}+\frac{1}{3}
$$

(c) Write down a deterministic function $f: \mathbb{N} \rightarrow \mathbb{R}$ such that

$$
M_{n}=S_{n}^{2}-f(n)
$$

is a martingale (justification is not required - make a guess!).

Solution.

(a) Since $X_{i} \in \sigma\left(X_{i}\right)$ we have $X_{i} \in \mathcal{F}_{n}$ for all $i \leq n$. Hence, since sums of \mathcal{F}_{n} measurable functions are measurable, we have also that $S_{n} \in \mathcal{F}_{n}[1 \mathrm{JJ}]$.
Since $\left|X_{i}\right| \leq 1$ for all i, we have

$$
\left|S_{n}\right| \leq\left|X_{1}\right|+\left|X_{2}\right|+\ldots+\left|X_{n}\right| \leq n .
$$

Thus S_{n} is a bounded random variable and hence $S_{n} \in L^{1}$. [1J] Lastly,

$$
\begin{aligned}
\mathbb{E}\left[S_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[X_{n+1}+S_{n} \mid \mathcal{F}_{n}\right] \\
& =\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[S_{n} \mid \mathcal{F}_{n}\right] \\
& =\mathbb{E}\left[X_{n+1}\right]+S_{n} \\
& =S_{n} .
\end{aligned}
$$

[1A] Here, we use the linearity of conditional expectation to deduce the second line, followed by using that X_{n+1} is independent of $\mathcal{F}_{n}[1 \mathrm{~J}]$ and $S_{n} \in \mathcal{F}_{n}$ to deduce the third line $[1 J]$. The final line follows because $\mathbb{E}\left[X_{i}\right]=0$ for all i. Hence S_{n} is a martingale. Pitfall: You should justify your use of the rules of conditional expectation.
(b) We have

$$
S_{n}^{3}=\left(S_{2}+X_{3}\right)^{2}=S_{2}^{2}+2 S_{2} X_{3}+X_{3}^{2}
$$

Hence,

$$
\begin{aligned}
\mathbb{E}\left[S_{3}^{2} \mid \mathcal{F}_{2}\right] & =\mathbb{E}\left[S_{2}^{2} \mid \mathcal{F}_{n}\right]+2 \mathbb{E}\left[S_{2} X_{3} \mid \mathcal{F}_{2}\right]+\mathbb{E}\left[X_{3}^{2} \mid \mathcal{F}_{2}\right] \\
& =S_{2}^{2}+S_{2} \mathbb{E}\left[X_{3} \mid \mathcal{F}_{2}\right]+\mathbb{E}\left[X_{3}^{2}\right] \\
& =S_{2}^{2}+S_{2} \mathbb{E}\left[X_{3}\right]+\frac{1}{3} \\
& =S_{2}^{2}+\frac{1}{3}
\end{aligned}
$$

[2A]. Here, in the first line we use linearity of conditional expectation. To deduce the second and third lines we use that X_{3} is independent of $\mathcal{F}_{2}[1 \mathrm{~J}]$, and that $S_{2} \in m \mathcal{F}_{2}$ to 'take out what is known'[1J]. We then use that

$$
\mathbb{E}\left[X_{3}^{2}\right]=\int_{-1}^{1} x^{2} \frac{1}{2} d x=\frac{1}{3}
$$

to deduce the final lines [1J].
Pitfall: Note that X_{n} has the continuous uniform distribution on the interval $[-1,1]$.
(c) In view of (b), we take $f(n)=\frac{n}{3}$, so that $M_{n}=S_{n}-\frac{n}{3}[2 \mathrm{~A}]$.

To make this guess: use (b) to guess that $\mathbb{E}\left[S_{n}^{2}\right]$ drifts upwards by $\frac{1}{3}$ on each time step, so $\mathbb{E}\left[S_{n}^{2}-\frac{n}{3}\right]$ stays constant. On each step of time, we need to compensate by $\frac{-1}{3}$.
To see that M_{n} really is a martingale: Since $S_{n} \in \mathcal{F}_{n}$ we have $M_{n} \in \mathcal{F}_{n}$, and $\left|M_{n}\right| \leq\left|S_{n}^{2}\right|+\frac{2 n}{3} \leq n^{2}+\frac{n}{3}$ so $M_{n} \in L^{1}$. A similar calculation to (b) then shows that $\mathbb{E}\left[S_{n+1}^{2} \mid \mathcal{F}_{n}\right]=S_{n}^{2}+\frac{1}{3}$, hence $\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n}$.
2. Consider the one-period market with $r=\frac{1}{10}, s=2, d=\frac{1}{2}$ and $u=3$, in our usual notation. A contract specifies that

The holder of the contract will sell 2 units of stock, and be paid K units of cash, at time 1.
(a) Explain briefly why the contingent claim of this contract is

$$
\Phi\left(S_{1}\right)=K-2 S_{1}
$$

(b) Find a replicating portfolio h for this contingent claim.
(c) Write down the value V_{0}^{h} of h at time 0 .
(d) Find the numerical values of risk-neutral probabilities

$$
q_{u}=\frac{(1+r)-d}{u-d} \quad \text { and } \quad q_{d}=\frac{u-(1+r)}{u-d}
$$

Hence, check that $\frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}\left[\Phi\left(S_{1}\right)\right]$ and V_{0}^{h} have the same values.
(e) For which K does the contract have value zero at time 0 ?

Solution.

(a) The holder will be paid K units of cash, resulting in a gain of K, and give away 2 units of stock, each of which is worth S_{1}, resulting in a loss of $2 S_{1}$. [1A] Hence

$$
\Phi\left(S_{1}\right)=K-2 S_{1} .
$$

Pitfall: This is not a European put option. The holder of this contract must pay K units of cash and be given 2 stock.
(b) The possible values taken by S_{1} are $s u=6$ and $s d=1$. A replicating portfolio $h=(x, y)$ must satisfy $V_{1}^{h}=\Phi\left(S_{1}\right),[1 \mathrm{M}]$ meaning that

$$
\begin{aligned}
\left(1+\frac{1}{10}\right) x+6 y & =K-12 \\
\left(1+\frac{1}{10}\right) x+y & =K-2
\end{aligned}
$$

[1A] We now solve these equations. Taking one away from the other, we obtain $5 y=$ -10 , hence $y=-2$ which gives $x=\frac{K}{11 / 10}=\frac{10 K}{11}$. [1A]
(c) The value of our replicating portfolio h at time 0 is

$$
V_{0}^{h}=x+s y=\frac{10 K}{11}-4 .
$$

[1A]
(d) The risk-neutral probabilities are

$$
\begin{aligned}
& q_{u}=\frac{11 / 10-1 / 2}{3-1 / 2}=\frac{3 / 5}{5 / 2}=\frac{6}{25}, \\
& q_{d}=\frac{3-11 / 10}{3-1 / 2}=\frac{19 / 10}{5 / 2}=\frac{19}{25} .
\end{aligned}
$$

[1A] This gives us

$$
\begin{aligned}
\frac{1}{1+r} \mathbb{E}^{\mathbb{Q}}\left[\Phi\left(S_{1}\right)\right] & =\frac{1}{11 / 10}\left(\frac{6}{25}(K-12)+\frac{19}{25}(K-2)\right) \\
& =\frac{10}{11}\left(K-\frac{110}{25}\right) \\
& =\frac{10 K}{11}-4,
\end{aligned}
$$

[1A] which is equal to the value of V_{0}^{h} that we found in (c).
(e) The contract is worth zero at time 0 if $\frac{10}{11} K-4=0$, that is if $K=\frac{22}{5}$. [1A]

Total marks: 20

