MASx52: Assignment 3

1. Consider the binomial model with $r=\frac{1}{11}, d=0.9, u=1.2, s=100$ and time steps $t=0,1,2$.
(a) Draw a recombining tree of the stock price process, for time $t=0,1,2$.
(b) Find the value, at time $t=0$, of a European call option that gives its holder the option to purchase one unit of stock at time $t=2$ for a strike price $K=90$. Write down the hedging strategy that replicates the value of this contract, at all nodes of your tree.

You may annotate your tree from (a) to answer (b).
2. Let $S_{n}=\sum_{i=1}^{n} X_{i}$, be a random walk, in which $\left(X_{i}\right)_{i \in \mathbb{N}}$ is a sequence of i.i.d. random variables with common distribution $\mathbb{P}\left[X_{i}=\frac{1}{i^{2}}\right]=\mathbb{P}\left[X_{i}=-\frac{1}{i^{2}}\right]=\frac{1}{2}$.
(a) Show that $\mathbb{E}\left[\left|S_{n}\right|\right] \leq \sum_{i=1}^{n} \frac{1}{i^{2}}$, and that $\left(S_{n}\right)$ is uniformly bounded in L^{1}.
(b) Show there exists a random variable S_{∞} such that $S_{n} \xrightarrow{\text { a.s. }} S_{\infty}$ as $n \rightarrow \infty$.
(c) Determine whether $\left(S_{n}\right)$ is bounded in L^{2}, and briefly state what else (if anything) can be deduced about S_{∞} as a consequence.

