MASx52: Assignment 4

Solutions and discussion are written in blue. Some common pitfalls are indicated in teal. A sample mark scheme is given in red, with each mark placed after the statement/deduction for which the mark would be given. As usual, mathematically correct solutions that follow a different method would be marked analogously.

Marks are given for [A] ccuracy, [J] ustification, and [M] ethod.

- 1. Let B_t be a standard Brownian motion.
 - (a) Write down the distribution of B_t , and write down $\mathbb{E}[B_t]$ and $\mathbb{E}[B_t^2]$.
 - (b) Let $0 \le u \le t$. Show that $\mathbb{E}[(B_t B_u)^2 | \mathcal{F}_u] = t u$.

Solution.

- (a) $B_t \sim N(0, t)$, [1A] and $\mathbb{E}[B_t] = 0$, [1A] $\mathbb{E}[B_t^2] = t$. [1A]
- (b) We have

$$\mathbb{E}[(B_t - B_u)^2 \mid \mathcal{F}_u] = \mathbb{E}[(B_t - B_u)^2]$$

= t - u.

[1A] In the first line we use that, by the properties of Brownian motion, $B_t - B_u$ is independent of \mathcal{F}_u . [1J] Then, we use that $B_t - B_u \sim N(0, t - u)$, which is the same distribution as B_{t-u} [1J], followed by the third formula in part (a) with t - u in place of t.

- 2. Write down the following stochastic differential equations in integral form, over the time interval [0, t].
 - (a) $dX_t = 2(X_t + 1) dt + 2B_t dB_t$.
 - (b) $dY_t = 3Y_t dt$.

Write down a differential equation satisfied by Y_t , and find its solution with the initial condition $Y_0 = 1$.

Suppose that $X_0 = 1$. Show that $f(t) = \mathbb{E}[X_t]$ satisfies f'(t) = 2f(t) + 2 and hence find f(t).

Solution.

(a) We have

$$X_t = X_0 + \int_0^t 2(X_u + 1) \, du + \int_0^t 2B_u \, dB_u.$$

[2A]

(b) We have

$$Y_t = Y_0 + \int_0^t 3Y_u \, du.$$

[1A]

Differentiating (b), by the fundamental theorem of calculus we have

$$\frac{dY_t}{dt} = 3Y_t$$

[1M] with solution $Y_t = Ae^{3t}$. Since $Y_0 = 1$ we have A = 1. [1A] In (a), taking expectations we have

$$\mathbb{E}[X_t] - \mathbb{E}[X_0] = \int_0^t 2\mathbb{E}[X_u] + 2\,du + 0$$
$$f(t) - f(0) = \int_0^t 2f(u) + 2\,du$$

because Ito integrals are zero mean martingales. [1] Differentiating this equation, by the fundamental theorem of calculus we have

$$f'(t) = 2f(t) + 2$$

which has solution $f(t) = Ce^{2t} - 1$. [1A] Putting in t = 0 gives f(0) = 1 = C - 1, so we obtain $f(t) = 2e^{2t} - 1$. [1A]

- 3. Use Ito's formula to calculate the stochastic differential of dZ_t where
 - (a) $Z_t = tB_t$
 - (b) $Z_t = 1 + t^2 X_t$ where $dX_t = \mu dt + \sigma B_t dB_t$ and μ, σ are deterministic constants.
 - (c) $Z_t = e^{-2t} S_t$ where $dS_t = 2S_t dt + 5S_t dB_t$.

In which cases is Z_t is a martingale?

Solution. We have

$$dZ_t = \left\{ (B_t) + (0)(t) + \frac{1}{2}(1)^2(1) \right\} dt + (t)(1) dB_t$$

= $B_t dt + t dB_t.$

[2A] (b)

$$dZ_t = \left\{ 2tX_t + (\mu)(t^2) + \frac{1}{2}(\sigma B_t)^2(0) \right\} dt + (\sigma B_t)(t^2) dB_t$$

= $(2tX_t + \mu t^2) dt + \sigma t^2 B_t dB_t.$

[2A]

$$dZ_t = \left\{ (-2e^{-2t}S_t) + (2S_t)(e^{-2t}) + \frac{1}{2}(5S_t)^2(0) \right\} dt + (5S_t)(e^{-2t}) dB_t$$

= $5e^{-2t}S_t dB_t.$

[2A]

Case (c) is a martingale because here dZ_t has only a $(...) dB_t$ term, and therefore $Z_t = Z_0 + \int_0^t \dots dB_t$ is a martingale because Ito integrals are martingales. [1J]

- 4. Let S_t be a geometric Brownian motion, with drift $\mu \in \mathbb{R}$, volatility $\sigma > 0$, and (deterministic) initial condition S_0 .
 - (a) Find $\mathbb{E}[S_t]$ and deduce that S_t is not a Brownian motion when $\mu \neq 0$.
 - (b) Is S_t a Brownian motion when $\mu = 0$?

Solution.

(a) The formula for geometric Brownian motion is

$$S_t = S_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma B_t\right).$$

So, taking expectations, [1M] using the formula for $\mathbb{E}[e^Z]$ where Z is normally distributed, and using that S_0 is deterministic,

$$\mathbb{E}[S_t] = S_0 e^{(\mu - \frac{\sigma^2}{2})t} \mathbb{E}[e^{\sigma B_t}]$$
$$= S_0 e^{(\mu - \frac{\sigma^2}{2})t} e^{\frac{\sigma^2 t}{2}}$$
$$= S_0 e^{\mu t}$$

[1A] A Brownian motion B_t has $\mathbb{E}[B_t] = \mathbb{E}[B_0]$, but for $\mu \neq 0$ we have shown that $\mathbb{E}[S_t]$ is non-constant, which means that S_t cannot be a Brownian motion. [1J]

(b) It remains to consider the case $\mu = 0$. In this case, $S_t = S_0 e^{\sigma B_t - \frac{\sigma^2}{2}t}$. We recall that, for a Brownian motion, $B_t^2 - t$ is a martingale, [1J] and for S_t we have $S_t^2 - t = S_0^2 e^{2\sigma B_t - \sigma^2 t} - t$. This gives us

$$\mathbb{E}[S_t^2 - t] = S_0^2 \mathbb{E}[e^{2\sigma B_t}] e^{-\sigma^2 t} - t$$
$$= S_0^2 e^{\frac{4\sigma^2}{2}} e^{-\sigma^2 t} - t$$
$$= S_0^2 e^{\sigma^2 t} - t$$

[1A] which is clearly non-constant. Hence $S_t^2 - t$ is not a martingale, so S_t is not a Brownian motion. [1J]

[Note: There are *lots* of other ways to solve this question!]

Total marks: 27