MASx52: Assignment 4

Solutions and discussion are written in blue. Some common pitfalls are indicated in teal. A sample mark scheme is given in red, with each mark placed after the statement/deduction for which the mark would be given. As usual, mathematically correct solutions that follow a different method would be marked analogously.

Marks are given for $[\mathrm{A}]$ ccuracy, $[\mathrm{J}]$ ustification, and $[\mathrm{M}]$ ethod.

1. Let B_{t} be a standard Brownian motion.
(a) Write down the distribution of B_{t}, and write down $\mathbb{E}\left[B_{t}\right]$ and $\mathbb{E}\left[B_{t}^{2}\right]$.
(b) Let $0 \leq u \leq t$. Show that $\mathbb{E}\left[\left(B_{t}-B_{u}\right)^{2} \mid \mathcal{F}_{u}\right]=t-u$.

Solution.

(a) $B_{t} \sim N(0, t),[1 \mathrm{~A}]$ and $\mathbb{E}\left[B_{t}\right]=0,[1 \mathrm{~A}] \mathbb{E}\left[B_{t}^{2}\right]=t$. [1A $]$
(b) We have

$$
\begin{aligned}
\mathbb{E}\left[\left(B_{t}-B_{u}\right)^{2} \mid \mathcal{F}_{u}\right] & =\mathbb{E}\left[\left(B_{t}-B_{u}\right)^{2}\right] \\
& =t-u .
\end{aligned}
$$

[1A] In the first line we use that, by the properties of Brownian motion, $B_{t}-B_{u}$ is independent of \mathcal{F}_{u}. [1J] Then, we use that $B_{t}-B_{u} \sim N(0, t-u)$, which is the same distribution as $B_{t-u}[1 \mathrm{~J}]$, followed by the third formula in part (a) with $t-u$ in place of t.
2. Write down the following stochastic differential equations in integral form, over the time interval $[0, t]$.
(a) $d X_{t}=2\left(X_{t}+1\right) d t+2 B_{t} d B_{t}$.
(b) $d Y_{t}=3 Y_{t} d t$.

Write down a differential equation satisfied by Y_{t}, and find its solution with the initial condition $Y_{0}=1$.
Suppose that $X_{0}=1$. Show that $f(t)=\mathbb{E}\left[X_{t}\right]$ satisfies $f^{\prime}(t)=2 f(t)+2$ and hence find $f(t)$.

Solution.
(a) We have

$$
X_{t}=X_{0}+\int_{0}^{t} 2\left(X_{u}+1\right) d u+\int_{0}^{t} 2 B_{u} d B_{u}
$$

[2A]
(b) We have

$$
Y_{t}=Y_{0}+\int_{0}^{t} 3 Y_{u} d u
$$

[1A]

Differentiating (b), by the fundamental theorem of calculus we have

$$
\frac{d Y_{t}}{d t}=3 Y_{t}
$$

[1M] with solution $Y_{t}=A e^{3 t}$. Since $Y_{0}=1$ we have $A=1$. [1A]
In (a), taking expectations we have

$$
\begin{aligned}
\mathbb{E}\left[X_{t}\right]-\mathbb{E}\left[X_{0}\right] & =\int_{0}^{t} 2 \mathbb{E}\left[X_{u}\right]+2 d u+0 \\
f(t)-f(0) & =\int_{0}^{t} 2 f(u)+2 d u
\end{aligned}
$$

because Ito integrals are zero mean martingales. [1] Differentiating this equation, by the fundamental theorem of calculus we have

$$
f^{\prime}(t)=2 f(t)+2
$$

which has solution $f(t)=C e^{2 t}-1$. [1A $]$
Putting in $t=0$ gives $f(0)=1=C-1$, so we obtain $f(t)=2 e^{2 t}-1$. [1A]
3. Use Ito's formula to calculate the stochastic differential of $d Z_{t}$ where
(a) $Z_{t}=t B_{t}$
(b) $Z_{t}=1+t^{2} X_{t}$ where $d X_{t}=\mu d t+\sigma B_{t} d B_{t}$ and μ, σ are deterministic constants.
(c) $Z_{t}=e^{-2 t} S_{t}$ where $d S_{t}=2 S_{t} d t+5 S_{t} d B_{t}$.

In which cases is Z_{t} is a martingale?
Solution. We have
(a)

$$
\begin{aligned}
d Z_{t} & =\left\{\left(B_{t}\right)+(0)(t)+\frac{1}{2}(1)^{2}(1)\right\} d t+(t)(1) d B_{t} \\
& =B_{t} d t+t d B_{t} .
\end{aligned}
$$

[2A]
(b)

$$
\begin{aligned}
d Z_{t} & =\left\{2 t X_{t}+(\mu)\left(t^{2}\right)+\frac{1}{2}\left(\sigma B_{t}\right)^{2}(0)\right\} d t+\left(\sigma B_{t}\right)\left(t^{2}\right) d B_{t} \\
& =\left(2 t X_{t}+\mu t^{2}\right) d t+\sigma t^{2} B_{t} d B_{t}
\end{aligned}
$$

[2A]
(c)

$$
\begin{aligned}
d Z_{t} & =\left\{\left(-2 e^{-2 t} S_{t}\right)+\left(2 S_{t}\right)\left(e^{-2 t}\right)+\frac{1}{2}\left(5 S_{t}\right)^{2}(0)\right\} d t+\left(5 S_{t}\right)\left(e^{-2 t}\right) d B_{t} \\
& =5 e^{-2 t} S_{t} d B_{t}
\end{aligned}
$$

[2A]
Case (c) is a martingale because here $d Z_{t}$ has only a (...)d B_{t} term, and therefore $Z_{t}=$ $Z_{0}+\int_{0}^{t} \ldots d B_{t}$ is a martingale because Ito integrals are martingales. [1J]
4. Let S_{t} be a geometric Brownian motion, with drift $\mu \in \mathbb{R}$, volatility $\sigma>0$, and (deterministic) initial condition S_{0}.
(a) Find $\mathbb{E}\left[S_{t}\right]$ and deduce that S_{t} is not a Brownian motion when $\mu \neq 0$.
(b) Is S_{t} a Brownian motion when $\mu=0$?

Solution.

(a) The formula for geometric Brownian motion is

$$
S_{t}=S_{0} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma B_{t}\right) .
$$

So, taking expectations, $[1 \mathrm{M}]$ using the formula for $\mathbb{E}\left[e^{Z}\right]$ where Z is normally distributed, and using that S_{0} is deterministic,

$$
\begin{aligned}
\mathbb{E}\left[S_{t}\right] & =S_{0} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t} \mathbb{E}\left[e^{\sigma B_{t}}\right] \\
& =S_{0} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t} e^{\frac{\sigma^{2} t}{2}} \\
& =S_{0} e^{\mu t}
\end{aligned}
$$

$[1 \mathrm{~A}]$ A Brownian motion B_{t} has $\mathbb{E}\left[B_{t}\right]=\mathbb{E}\left[B_{0}\right]$, but for $\mu \neq 0$ we have shown that $\mathbb{E}\left[S_{t}\right]$ is non-constant, which means that S_{t} cannot be a Brownian motion. [1J]
(b) It remains to consider the case $\mu=0$. In this case, $S_{t}=S_{0} e^{\sigma B_{t}-\frac{\sigma^{2}}{2} t}$. We recall that, for a Brownian motion, $B_{t}^{2}-t$ is a martingale, [1J] and for S_{t} we have $S_{t}^{2}-t=S_{0}^{2} e^{2 \sigma B_{t}-\sigma^{2} t}-t$. This gives us

$$
\begin{aligned}
\mathbb{E}\left[S_{t}^{2}-t\right] & =S_{0}^{2} \mathbb{E}\left[e^{2 \sigma B_{t}}\right] e^{-\sigma^{2} t}-t \\
& =S_{0}^{2} e^{\frac{4 \sigma^{2}}{2}} e^{-\sigma^{2} t}-t \\
& =S_{0}^{2} e^{\sigma^{2} t}-t
\end{aligned}
$$

[1A] which is clearly non-constant. Hence $S_{t}^{2}-t$ is not a martingale, so S_{t} is not a Brownian motion. [1J]
[Note: There are lots of other ways to solve this question!]

