MASx52: Assignment 5

Solutions and discussion are written in blue. Some common pitfalls are indicated in teal. A sample mark scheme is given in red, with each mark placed after the statement/deduction for which the mark would be given. As usual, mathematically correct solutions that follow a different method would be marked analogously.

Marks are given for $[\mathrm{A}]$ ccuracy, $[\mathrm{J}]$ ustification, and $[\mathrm{M}]$ ethod.

1. Consider the SDE

$$
d X_{t}=\left(t+X_{t}\right) d t+2 t d B_{t} .
$$

(a) Write this SDE in integral form, and show that $f(t)=\mathbb{E}\left[X_{t}\right]$ satisfies the differential equation

$$
f^{\prime}(t)=t+f(t)
$$

Show that this equation is satisfied by $f(t)=C e^{t}-t-1$.
(b) Let $Y_{t}=X_{t}^{2}$. Show that

$$
d Y_{t}=2\left(2 t^{2}+t X_{t}+X_{t}^{2}\right) d t+4 t X_{t} d B_{t}
$$

(c) Show that $v(t)=\mathbb{E}\left[X_{t}^{2}\right]$ satisfies the differential equation

$$
v^{\prime}(t)=2\left(2 t^{2}+t f(t)+v(t)\right) .
$$

Solution.

(a) Writing in integral form we have

$$
X_{t}=X_{0}+\int_{0}^{t}\left(u+X_{u}\right) d u+\int_{0}^{t} 2 u d B_{u} .
$$

[1A] Taking expectation, and recalling that Ito integrals are zero mean martingales [1J],

$$
\begin{aligned}
\mathbb{E}\left[X_{t}\right] & =\mathbb{E}\left[X_{0}\right]+\mathbb{E}\left[\int_{0}^{t}\left(u+X_{u}\right) d u\right]+\mathbb{E}\left[\int_{0}^{t} 2 u d B_{u}\right] \\
& =\mathbb{E}\left[X_{0}\right]+\int_{0}^{t} \mathbb{E}\left[u+X_{u}\right] d u+0 \\
& =\mathbb{E}\left[X_{0}\right]+\int_{0}^{t} u+\mathbb{E}\left[X_{u}\right] d u \\
f(t) & =f(0)+\int_{0}^{t} u+f(u) d u .
\end{aligned}
$$

[1A] Differentiating, by the fundamental theorem of calculus, [1M]

$$
f^{\prime}(t)=t+f(t) .
$$

If we set $f(t)=C e^{t}-t-1$ then $f^{\prime}(t)=C e^{t}-1[1 \mathrm{~A}]$, so clearly this is a solution.
(b) Using Ito's formula [1M] we have

$$
\begin{aligned}
d Y_{t} & =\left(0+\left(t+X_{t}\right)\left(2 X_{t}\right)+\frac{1}{2}(2 t)^{2}(2)\right) d t+(2 t)\left(2 X_{t}\right) d B_{t} \\
& =2\left(2 t^{2}+t X_{t}+X_{t}^{2}\right) d t+4 t X_{t} d B_{t}
\end{aligned}
$$

[2A]
(c) Writing in integral form $[1 \mathrm{M}]$ we have

$$
Y_{t}=Y_{0}+2 \int_{0}^{t} 2 u^{2}+u X_{u}+X_{u}^{2} d u+\int_{0}^{t} 4 u X_{u} d B_{u}
$$

Taking expectation, and recalling that Ito integrals are zero mean martingales [1J],

$$
\begin{aligned}
\mathbb{E}\left[Y_{t}\right] & =\mathbb{E}\left[Y_{0}\right]+2 \mathbb{E}\left[\int_{0}^{t} 2 u^{2}+u X_{u}+X_{u}^{2} d u\right]+\mathbb{E}\left[\int_{0}^{t} 4 u X_{u} d B_{u}\right] \\
& =\mathbb{E}\left[Y_{0}\right]+\int_{0}^{t} 2 \mathbb{E}\left[2 u^{2}+u X_{u}+X_{u}^{2}\right] d u+0 \\
& =\mathbb{E}\left[Y_{0}\right]+2 \int_{0}^{t} 2 u^{2}+u \mathbb{E}\left[X_{u}\right]+\mathbb{E}\left[X_{u}^{2}\right] d u \\
& =\mathbb{E}\left[Y_{0}\right]+2 \int_{0}^{t} 2 u^{2}+u f(u)+v(u) d u
\end{aligned}
$$

[1A] Differentiating, by the fundamental theorem of calculus, [1M]

$$
v^{\prime}(t)=2\left(2 t^{2}+t f(t)+v(t)\right) .
$$

2. Let $T>0$. Use the Feynman-Kac formula to find an explicit solution $F(x, t)$ to the partial differential equation

$$
\frac{\partial F}{\partial t}(t, x)+\frac{1}{2} \frac{\partial F}{\partial x}(t, x)+\frac{1}{2} x^{2} \frac{\partial^{2} F}{\partial x^{2}}(x, t)=0
$$

subject to the boundary condition $F(T, x)=x-\frac{T}{2}$.
Solution. From the Feynman-Kac formula, with $\alpha(t, x)=\frac{1}{2}$ and $\beta(t, x)=x$ we have that

$$
F(t, x)=\mathbb{E}_{t, x}\left[X_{T}-\frac{T}{2}\right]
$$

where $d X_{t}=\frac{1}{2} d t+X_{t} d B_{t}$. [1A] Thus, in integral form, [1M]

$$
\begin{aligned}
X_{T} & =X_{t}+\int_{t}^{T} \frac{1}{2} d s+\int_{t}^{T} X_{s} d B_{s} \\
& =X_{t}+\frac{T-t}{2}+\int_{t}^{T} X_{s} d B_{s}
\end{aligned}
$$

which gives

$$
\begin{aligned}
F(t, x) & =\mathbb{E}_{t, x}\left[X_{t}+\frac{T-t}{2}+\int_{t}^{T} X_{s} d B_{s}-\frac{T}{2}\right] \\
& =\mathbb{E}\left[x-\frac{t}{2}+\int_{t}^{T} X_{s} d B_{s}\right] \\
& =x-\frac{t}{2}
\end{aligned}
$$

[2A] Here we use that Ito integrals are zero mean martingales. [1J]
3. (a) Let $\alpha \in \mathbb{R}, \sigma>0$ and S_{t} be an Ito process satisfying $d S_{t}=\alpha S_{t} d t+\sigma S_{t} d B_{t}$. Let $Y_{t}=S_{t}^{3}$. Show that Y_{t} satisfies the SDE

$$
d Y_{t}=\left(3 \alpha+3 \sigma^{2}\right) Y_{t} d t+3 \sigma Y_{t} d B_{t}
$$

Deduce that Y_{t} is a geometric Brownian motion, and write down its drift and volatility.
(b) Within the Black-Scholes model, show that the price $F\left(t, S_{t}\right)$ at time $t \in[0, T]$ of the contingent claim $\Phi\left(S_{T}\right)=S_{T}^{3}$ is given by

$$
F\left(t, S_{t}\right)=S_{t}^{3} e^{2 r(T-t)+3 \sigma^{2}(T-t)}
$$

(c) Suppose that our portfolio at time 0 consists of a single contract with contingent claim $\Phi\left(S_{T}\right)=S_{T}^{3}$.
i. Calculate the amount of stock that we would need to buy/sell in order to make our portfolio delta neutral at time 0 .
ii. If we did buy/sell this amount of stock at time 0 , how long would our new portfolio stay delta-neutral for?

Solution.

(a) By Ito's formula, [1A]

$$
\begin{aligned}
d Y_{t} & =\left((0)+\alpha S_{t}\left(3 S_{t}^{2}\right)+\frac{1}{2} \sigma^{2} S_{t}^{2}\left(6 S_{t}\right)\right) d t+\sigma S_{t}\left(3 S_{t}^{2}\right) d B_{t} \\
& =\left(3 \alpha+3 \sigma^{2}\right) Y_{t} d t+3 \sigma Y_{t} d B_{t}
\end{aligned}
$$

[2A] So, Y_{t} is a geometric Brownian motion with drift $3 \alpha+3 \sigma^{2}$ and volatility 3σ. [1A]
(b) Using the explicit formula for geometric Brownian motion (see the formula sheet) with drift $3 \alpha+3 \sigma^{2}$ and volatility 3σ, we have that

$$
\begin{aligned}
Y_{T} & =Y_{t} \exp \left(\left(3 \alpha+3 \sigma^{2}-\frac{9}{2} \sigma^{2}\right)(T-t)+3 \sigma\left(B_{T}-B_{t}\right)\right) \\
& =Y_{t} \exp \left(\left(3 \alpha-\frac{3}{2} \sigma^{2}\right)(T-t)+3 \sigma\left(B_{T}-B_{t}\right)\right) .
\end{aligned}
$$

[1A] Note that in the risk neutral world \mathbb{Q} we have $\alpha=r$. [1J] Therefore, using the risk neutral valuation formula (see the question, or the formula sheet), the arbitrage free price of the contingent claim $Y_{T}=\Phi\left(S_{T}\right)=S_{T}^{3}$ at time t is

$$
\begin{aligned}
e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}\left[Y_{T} \mid \mathcal{F}_{t}\right] & =e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}\left[\left.S_{t}^{3} \exp \left(\left(3 \alpha-\frac{3}{2} \sigma^{2}\right)(T-t)+3 \sigma\left(B_{T}-B_{t}\right)\right) \right\rvert\, \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)} S_{t}^{3} e^{\left(3 r-\frac{3}{2} \sigma^{2}\right)(T-t)} \mathbb{E}^{\mathbb{Q}}\left[e^{3 \sigma\left(B_{T}-B_{t}\right)} \mid \mathcal{F}_{t}\right] \\
& =e^{-r(T-t)} S_{t}^{3} e^{\left(3 r-\frac{3}{2} \sigma^{2}\right)(T-t)} \mathbb{E}^{\mathbb{Q}}\left[e^{3 \sigma\left(B_{T}-B_{t}\right)}\right] \\
& =e^{-r(T-t)} S_{t}^{3} e^{\left(3 r-\frac{3}{2} \sigma^{2}\right)(T-t)} e^{\frac{9}{2} \sigma^{2}(T-t)} \\
& =S_{t}^{3} e^{2 r(T-t)+3 \sigma^{2}(T-t)} .
\end{aligned}
$$

[2A] Here, we use that S_{t} is \mathcal{F}_{t} measurable. [1J] We then use the properties of Brownian motion to tell us that $3 \sigma\left(B_{T}-B_{t}\right)$ is independent of $\mathcal{F}_{t}[1 \mathrm{~J}]$ with distribution $N\left(0,(3 \sigma)^{2}(T-t)\right)$, followed by the formula sheet to explicitly evaluate $\mathbb{E}^{\mathbb{Q}}\left[e^{3 \sigma\left(B_{T}-B_{t}\right)}\right]$. [1J]
(c) i. The value of our portfolio at time t is given by $F\left(t, S_{t}\right)$, where F is as in part (b). If we add an amount α of stock into our portfolio then its new value will be $V\left(t, S_{t}\right)=F\left(t, S_{t}\right)+\alpha S_{t}$. [1M] To achieve delta neutrality, we want to choose α such that

$$
0=\frac{\partial V}{\partial s}\left(0, S_{0}\right)=3 S_{0}^{2} e^{2 r T+3 \sigma^{2} T}+\alpha
$$

[1J] Hence $\alpha=-3 S_{0}^{2} e^{2 r T+3 \sigma^{2} T}$. [1A]
ii. Our new portfolio has value $V\left(t, S_{t}\right)=F\left(t, S_{t}\right)-3 S_{0}^{2} e^{2 r T+3 \sigma^{2} T} S_{t}$, and hence

$$
\begin{aligned}
\frac{\partial V}{\partial s}\left(t, S_{t}\right) & =3 S_{t}^{2} e^{2 r(T-t)+3 \sigma^{2}(T-t)}-3 S_{0}^{2} e^{2 r T+3 \sigma^{2} T} \\
& =3 e^{2 r T+3 \sigma^{2} T}\left(S_{t}^{2} e^{-2 r t-3 \sigma^{2} t}-3 S_{0}\right)
\end{aligned}
$$

[2A] Therefore, $\frac{\partial V}{\partial s}$ is zero only when either $3 e^{2 r T+3 \sigma^{2} T}=0$, which does not occur, or when $S_{t}=\sqrt{3 S_{0}} e^{\left(r+\frac{3}{2} \sigma^{2}\right) t}$ which has probability zero because S_{t} has a continuous distribution. [1J] Hence, at any time after $t=0$ our new portfolio is (almost surely) not delta neutral. [1J]

Total marks: 35

