MAS352/61023 - Formula Sheet - Part One

Where not explicitly specified, the notation used matches that within the typed lecture notes.

Modes of convergence

- $X_{n} \xrightarrow{d} X \Leftrightarrow \lim _{n \rightarrow \infty} \mathbb{P}\left[X_{n} \leq x\right]=\mathbb{P}[X \leq x]$ whenever $\mathbb{P}[X \leq x]$ is continuous at $x \in \mathbb{R}$.
- $X_{n} \xrightarrow{\mathbb{P}} X \Leftrightarrow \lim _{n \rightarrow \infty} \mathbb{P}\left[\left|X_{n}-X\right|>a\right]=0$ for every $a>0$.
- $X_{n} \xrightarrow{\text { a.s. }} X \Leftrightarrow \mathbb{P}\left[X_{n} \rightarrow X\right.$ as $\left.n \rightarrow \infty\right]=1$.
- $X_{n} \xrightarrow{L^{p}} X \Leftrightarrow \mathbb{E}\left[\left|X_{n}-X\right|^{p}\right] \rightarrow 0$ as $n \rightarrow \infty$.

The binomial model and the one-period model
The binomial model is parametrized by the deterministic constants r (discrete interest rate), p_{u} and p_{d} (probabilities of stock price increase/decrease), u and d (factors of stock price increase/decrease), and s (initial stock price).

The value of x in cash, held at time t, will become $x(1+r)$ at time $t+1$.
The value of a unit of stock S_{t}, at time t, satisfies $S_{t+1}=Z_{t} S_{t}$, where $\mathbb{P}\left[Z_{t}=u\right]=p_{u}$ and $\mathbb{P}\left[Z_{t}=d\right]=p_{d}$, with initial value $S_{0}=s$.
When $d<1+r<u$, the risk-neutral probabilities are given by

$$
q_{u}=\frac{(1+r)-d}{u-d}, \quad q_{d}=\frac{u-(1+r)}{u-d} .
$$

The binomial model has discrete time $t=0,1,2, \ldots, T$. The case $T=1$ is known as the one-period model.

Stirling's Approximation

It holds that $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$.

Conditions for the optional stopping theorem (MAS61023 only)

The optional stopping theorem, for a martingale M_{n} and a stopping time T, holds if any one of the following conditions is fulfilled:
(a) T is bounded.
(b) $\mathbb{P}[T<\infty]=1$ and there exists $c \in \mathbb{R}$ such that $\left|M_{n}\right| \leq c$ for all n.
(c) $\mathbb{E}[T]<\infty$ and there exists $c \in \mathbb{R}$ such that $\left|M_{n}-M_{n-1}\right| \leq c$ for all n.

MAS352/61023 - Formula Sheet - Part Two

Where not explicitly specified, the notation used matches that within the typed lecture notes.

The normal distribution
$Z \sim N\left(\mu, \sigma^{2}\right)$ has probability density function $f_{Z}(z)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(z-\mu)^{2}}{2 \sigma^{2}}}$.
Moments: $\quad \mathbb{E}[Z]=\mu, \quad \mathbb{E}\left[Z^{2}\right]=\sigma^{2}+\mu^{2}, \quad \mathbb{E}\left[e^{Z}\right]=e^{\mu+\frac{1}{2} \sigma^{2}}$.

Ito's formula

For an Ito process X_{t} with stochastic differential $d X_{t}=F_{t} d t+G_{t} d B_{t}$, and a suitably differentiable function $f(t, x)$, it holds that

$$
d Z_{t}=\left\{\frac{\partial f}{\partial t}\left(t, X_{t}\right)+F_{t} \frac{\partial f}{\partial x}\left(t, X_{t}\right)+\frac{1}{2} G_{t}^{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t, X_{t}\right)\right\} d t+G_{t} \frac{\partial f}{\partial x}\left(t, X_{t}\right) d B_{t}
$$

where $Z_{t}=f\left(t, X_{t}\right)$.

Geometric Brownian motion

For deterministic constants $\alpha, \sigma \in \mathbb{R}$, and $u \in[t, T]$ the solution to the stochastic differential equation $d X_{u}=\alpha X_{u} d t+\sigma X_{u} d B_{u}$ satisfies

$$
X_{T}=X_{t} e^{\left(\alpha-\frac{1}{2} \sigma^{2}\right)(T-t)+\sigma\left(B_{T}-B_{t}\right)}
$$

The Feynman-Kac formula
Suppose that $F(t, x)$, for $t \in[0, T]$ and $x \in \mathbb{R}$, satisfies

$$
\begin{aligned}
\frac{\partial F}{\partial t}(t, x)+\alpha(t, x) \frac{\partial F}{\partial x}(t, x)+\frac{1}{2} \beta(t, x)^{2} \frac{\partial^{2} F}{\partial x^{2}}(t, x) & -r F(t, x)=0 \\
F(T, x) & =\Phi(x)
\end{aligned}
$$

If X_{u} satisfies $d X_{u}=\alpha\left(u, X_{u}\right) d t+\beta\left(u, X_{u}\right) d B_{u}$, then

$$
F(t, x)=e^{-r(T-t)} \mathbb{E}_{t, x}\left[\Phi\left(X_{T}\right)\right]
$$

The Black-Scholes model

The Black-Scholes model is parametrized by the deterministic constants r (continuous interest rate), μ (stock price drift) and σ (stock price volatility).
The value of a unit of cash C_{t} satisfies $d C_{t}=r C_{t} d t$, with initial value $C_{0}=1$.
The value of a unit of stock S_{t} satisfies $d S_{t}=\mu S_{t} d t+\sigma S_{t} d B_{t}$, with initial value $S_{0}>0$.
At time $t \in[0, T]$, the price $F\left(t, S_{t}\right)$ of a contingent claim $\Phi\left(S_{T}\right)$ (satisfying $\mathbb{E}^{\mathbb{Q}}\left[\Phi\left(S_{T}\right)\right]<\infty$) with exercise date $T>0$ satisfies the Black-Scholes PDE:

$$
\begin{aligned}
\frac{\partial F}{\partial t}(t, s)+r s \frac{\partial F}{\partial s}(t, s)+\frac{1}{2} s^{2} \sigma^{2} \frac{\partial^{2} F}{\partial s^{2}}(t, s)-r F(t, s) & =0 \\
F(T, s) & =\Phi(s)
\end{aligned}
$$

The unique solution F satisfies

$$
F\left(t, S_{t}\right)=e^{-r(T-t)} \mathbb{E}^{\mathbb{Q}}\left[\Phi\left(S_{T}\right) \mid \mathcal{F}_{t}\right]
$$

for all $t \in[0, T]$. Here, the 'risk-neutral world' \mathbb{Q} is the probability measure under which S_{t} satisfies

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d B_{t}
$$

The Gai-Kapadia model of debt contagion (MAS61023 only)

A financial network consists of banks and loans, represented respectively as the vertices V and (directed) edges E of a graph G. An edge from vertex X to vertex Y represents a loan owed by bank X to bank Y.
Each loan has two possible states: healthy, or defaulted. Each bank has two possible states: healthy, or failed. Initially, all banks are assumed to be healthy, and all loans between all banks are assumed to be healthy.
Given a sequence of contagion probabilities $\eta_{j} \in[0,1]$, we define a model of debt contagion by assuming that:
(\dagger) For any bank X, with in-degree j if, at any point, X is healthy and one of the loans owed to X becomes defaulted, then with probability η_{j} the bank X fails, independently of all else. All loans owed by bank X then become defaulted.

Starting from some set of newly defaulted loans, the assumption (\dagger) is applied iteratively until no more loans default.

