
MAS352 Probability & Analysis Reminder Notes

1 Probability

1.1 Sample spaces and random variables

Probability is about carrying out experiments where the outcome of the experiment cannot be fully known

in advance. The simplest example is tossing a (fair) coin – we can be confident that the coin is equally

likely to land showing heads or tails, but we can’t tell in advance which one will show. If we repeat the

experiment, we might get a different outcome.

To represent this mathematically, we need two key ingredients. We need:

� A sample space Ω, which is a set that contains every possible result of the experiment.

For example, if we roll a (six sided) dice, we might take Ω = {1, 2, 3, 4, 5, 6}, with one number for

each possible outcome of the dice roll.

� A probability measure P, which is able to tell us how likely each of the different outcomes inside

Ω is.

In our coin toss, we’d probably take Ω = {H,T}, where we use H to represent heads and T to

represent tails. Then, P[H] = P[T ] = 1
2 is the probability of getting a head, which is equal to the

probability of getting a tail, which is 1
2 .

It is convenient to use random variables, which we think of as objects that take a different value,

dependent on the outcome of our experiment. For example, in our dice roll we might be interested in the

random variable

X =

0 if the result of the dice roll is less than or equal to 4

1 if the result of the dice roll is equal to 5 or 6.

In most cases, it is convenient to let the sample space Ω slip into the background and to just define

which random variables we are interested in. So in practice we usually work with random variables, which

take random values, which we write with capital letters X,Y etc., and P which tells us how likely our

random variables are to take their various possible values.

1.2 Independence

Sometimes random variables affect each other. For example, in our dice roll, suppose that we defined a

random variable Y to be equal to 1 if the dice was a 6, and equal to 0 otherwise. Then, if we know the

value of Y we can take a good guess at the value of X.

Sometimes, however, random variables don’t affect each other. If we roll the same (fair) dice twice,

we don’t expect the first roll and the second roll to affect each other. To express this distinction mathe-

matically we use independence. The random variables X and Y are independent if

P[X = x, Y = y] = P[X = x]P[Y = y]

for all values x, y taken by X and Y . This equation says that knowing the value of X doesn’t tell us

anything about the value of Y , and vice versa.
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1.3 Examples of random variables

There are some random variables that are especially useful. These tend to appear in many different

situations and have names. We recall some of these special random variables here.

Often random variables, like in our example of a dice, take values from within the integers Z =

{. . . ,−2,−1, 0, 1, 2, 3, . . .} or the natural numbers N = {1, 2, 3, . . .}. We call these random variables

discrete random variables. Here is one important example (there are many others!):

� Geometric random variables, which have a parameter p ∈ [0, 1]. They take random values in N.

We say that X is a Geom(p) random variable if, for all n ∈ N,

P[X = n] = (1− p)n−1p.

The idea is that we are carrying out an experiment that either succeeds (with probability p) or

fails (with probability 1− p. A geometric random variable counts the number of times we have to

repeat an experiment until we get a success.

If we want to calculate probabilities associated to discrete random variables, we can just add up the

probabilities of taking individual values. For example, if X is a Geom(p) random variable,

P[X ≤ 2] = P[X = 1] + P[X = 2] = p+ (1− p)p = 2p− p2.

It’s important to remember that random variables don’t have to be random. For example, the

‘random’ variable X might always take the value 0 i.e. P[X = 0] = 1. These are called deterministic

random variables.

Another type of random variables are ones that take values across all (or part) of the real numbers R.
These are known as continuous random variables. A continuous random variable Y is usually defined

using a probability density function (or p.d.f.) fY : R → R, and to calculate probabilities with Y

we would use the formula

P[y1 ≤ Y ≤ y2] =

∫ y2

y1

fY (y) dy.

We can’t just ‘add up the values’ because there are uncountably many values in the interval [y1, y2].

Instead, we integrate.

Let’s look at two important examples of continuous random variables:

� Exponential random variables, which have a parameter λ ∈ (0,∞). We say that Y is an Exp(λ)

random variable if it has the p.d.f.

fY (y) =

λe−λy if y > 0,

0 otherwise.

� Normal random variables, which have two parameters µ ∈ R and σ ∈ (0,∞). We say that Y is a

N(µ, σ2) variable if it has the p.d.f.

fY (y) =
1√
2πσ2

exp

(
− (y − µ)2

2σ2

)
.

So, calculating probability for continuous random variables comes down to calculating integrals. In some

cases (such as normal random variables) this can’t always be done ‘by hand’ and numerical approximations

have to be used.

If is common to use the symbol ∼ to define a random variable, for example we might write Y ∼
N(µ, σ2) or X ∼ Geom(p).
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2 Expectation and variance

Random variables can have very complicated ranges of values and probabilities, so it’s useful to be able

to summarize them. The two most important features of a random variable are its mean and variance.

We need to define mean and variance separately for our discrete and continuous case. In the discrete

case, the mean is

E[X] =
∑
x

xP[X = x] (2.1)

where the
∑

is over the values that X takes. As an exercise, you might like to check (or remind

yourself from your old notes) that the mean of a Geom(p) random variable, which from (2.1) is equal to∑∞
n=1 n(1− p)n−1p, is 1

p . The variance is

var(X) = E
[
(X − E[X])2

]
, (2.2)

which makes sense because Z = (X − E[X])2 is itself a random variable, so we can use (2.1) to calculate

var(X) = E[Z]. The interpretation of mean and variance is that the value of X are centered around the

mean value E[X], and var(X) measure how close the values of X tend to be to E[X].

You will hopefully remember (if not, check it in your old notes!) that

var(X) = E[X2]− E[X]. (2.3)

In the continuous case, if Y has p.d.f. fY (y) then by definition

E[Y ] =

∫ ∞

−∞
yfY (y) dy. (2.4)

The variance is again defined using the formula (2.2) (with Y in place of X) and the formula (2.3) holds

in this case too.

Again, you might like to check or remind yourself that if Y ∼ Exp(λ) then E[Y ] = var(Y ) = 1
λ and

that if Y ∼ N(µ, σ2) then E[Y ] = µ and var(Y ) = σ2.

2.1 Random variables without a mean

Calculating E[X] using (2.1) and (2.4) asks us to evaluate a sum or an integral. This is not always

possible; series do not always converge and integrals do not always exist. This causes the (at first glance,

surprising) existence of random variables that do not have a mean value, or whose mean value is equal

to ±∞.

A simple example is the continuous random variable with p.d.f.

fY (y) =

 1
y2 if y > 1,

0 otherwise.

Then, E[Y ] =
∫∞
1

yy−2 dy =
∫∞
1

y−1 dy = [log y]∞1 = ∞. We would say that Y has infinite mean.

Similarly, some random random have finite variance and others do not. For a fixed k ∈ N, some

have finite E[Xk] and others do not. Generally, random variables with finite expectation (and variance)

are easier to work with than those which don’t. But in many situations we can’t avoid using random

variables with infinite mean and/or variance.
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2.2 Conditioning

An important technique is conditioning random variables on whether or not particular events happen.

One way to do this is by using indicator functions, which may be new to you. If E is some event then

the indicator function of E is the random variable

1E =

1 if E occurs

0 if E does not occur.

Note that this means that E[1E ] = P[E].

If we have some random variable X, we can then write

X = 1EX + 1EcX.

The term 1EX is equal to X is E happens, and otherwise zero. Similarly the term 1EcX is equal to X

is E doesn’t happen, and otherwise zero.

This technique is useful when we want a particular event to happen. An example of this is Markov’s

inequality:

Lemma 2.1 Let X be a random variable and suppose X ≥ 0. Let a > 0. Then

P[X ≥ a] ≤ 1

a
E[X]. (2.5)

The idea here is that a is (typically) large and we want to control the chance of X being larger than a.

So we want the ‘bad’ event E = {X ≥ a} to happen. We condition: X = 1X<aX + 1X≥aX and then

E[X] = E[1X<aX + 1X≥aX]

= E [1X<aX] + E [1X≥aX]

≥ E [1X≥aX]

≥ E [1X≥aa]

= aP[X ≥ a].

Here we use that E [1X<aX] ≥ 0, and that if 1X≥aX is not equal to zero then X ≥ a. Dividing through

by a gives (2.5).
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3 Analysis

3.1 sup and inf

You should be familiar with using inf A (the greatest lower bound of A) and supA (the lowest upper

bound of A).

Intuitively, you can think of sup as a version of max that doesn’t fail to work if you give it something

like [0, 1) – it can see that [0, 1) is open ended at the top and so has no ‘proper’ maximum, but that 1 is

the ‘next best thing’ to having a maximum value. You can think of inf in the same way, as an improved

version of min that could handle e.g. (−2, 1] and give inf(−2, 1] = −2.

3.2 Convergence

You should be familiar with the formal ‘ϵ,N ’ definition of convergence for real numbers. The intuition is

that if an and a are real numbers, then an → a means: as n increases, the value of an becomes close to

the value of a.

A new idea that you might like to think about is how to apply this idea to random variables. Real

numbers are very simple objects – they are a single value. A random variable is a more complicated

object since it takes multiple values with different probabilities. But it makes sense intuitively that two

random variables can be approximately equal, so it ‘should’ be possible to think of a sensible meaning

for Xn → X.

We’ll study it in the course, but let us give a quick example to show that convergence of random

variables need a bit of thought.

We might hope that (1) if ‘Xn converged to X’ that, for any a that is small and positive, the quantity

P[|Xn −X| > a]

tended to zero as n → ∞. Equally, we might hope that (2) E[Xn] → E[X].

Let Xn be a random variable such that P[Xn = n2] = 1
n and P[Xn = 0] = 1 − 1

n . Now, if we define

also the deterministic random variable X = 0, using (2.5) we have

P[|Xn −X| > a] = P[Xn = n] =
1

n

which does become small as n → ∞, because 1
n → 0.

However, E[Xn] = n2 · 1
n = n → ∞ as n → ∞, but E[X] = 0. So, in this case (1) happened and (2)

didn’t. With a little work (you might like to try it!) its possible to think of a sequence Yn of random

variables such that (2) works and (1) doesn’t (with X = 0).

We’ll look at how to define Xn → X as part of the course, but the moral for now is: convergence of

random variables needs more thought that convergence of real numbers.
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