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Chapter 10

The transition to continuous time

Up until now, we have always indexed time by the integers, n = 1, 2, 3, . . .. For the remainder of
the course, we will move into continuous time, meaning that our time will be indexed as t ∈ [0,∞).
We need to update some of our terminology to match.

As before, we work over some probability space (Ω,F ,P).

Definition 10.0.1 A stochastic process (in continuous time) is a family of random variables
(Xt)

∞
t=0. We think of t ∈ [0,∞) as time.

As in discrete time, we will usual write (Xt) = (Xt)
∞
t=0. We will also sometimes write simply X

instead of (Xt).

Definition 10.0.2 We say that a stochastic process (Xt) is continuous (or, equivalently, has
continuous paths) if, for almost all ω ∈ Ω, the function t 7→ Xt(ω) is continuous.

In words, we should think of a continuous stochastic process as a random continuous function.
For example, if A,B and C are i.i.d. N(0, 1) random variables, Xt = At2 +Bt+C for t ∈ [0,∞)

is a random continuous (quadratic) function. In this course, we will usually be more interested in
situations where, in some sense, randomness appears and causes the stochastic process to change
value as time passes. To do so, we need to think about filtrations.

Definition 10.0.3 We say that a family (Ft) of σ-fields is a (continuous time) filtration if Fu ⊆ Ft

whenever u ≤ t.
A stochastic process (Xt) is adapted to the filtration (Ft) if Mt ∈ mFt for all t ≥ 0.

In continuous time, our standard setup is that we will work over a filtered space (Ω,F , (Ft),P)
where (Ω,F ,P) is a probability space and (Ft) is a filtration. If we are given a stochastic process
(Xt), implicitly over some probability space, the generated (or natural) filtration of the stochastic
process is Ft = σ(Xu) ; u ≤ t).

Lastly, we upgrade our definition of a martingale into continuous time.

Definition 10.0.4 A (continuous time) stochastic process (Mt) is a martingale if

1. (Mt) is adapted,

2. Mt ∈ L1 for all t,

3. E[Mt|Fu] = Mu for all 0 ≤ u ≤ t.

4



©Nic Freeman, University of Sheffield, 2024.

We say that (Mt) is a submartingale if, instead of 3, we have E[Mt|Fu] ≥ Mu almost surely. We
say that (Mt) is a supermartingale if, instead of 3, we have E[Mt|Fu] ≤ Mu almost surely.

There are continuous time equivalents of the results (e.g. the martingale convergence theorem)
that we proved for discrete time martingales, but they are outside of the scope of this course.

Organization

Whilst studying these notes you will also start thinking about revision for the summer exam.
Some advice on how to structure your revision for this course is included in Appendix D. We’ll
discuss this in lectures at a suitable point during the semester.

Those of you taking MAS61023 have a chapter of independent reading in Chapter 19, marked
with a (∆). This material relies only on the previous semester and is already already accessible
to you. You can study this chapter whenever you like, during semester two. Section 13.3 is also
independent reading for you, but you’ll have to wait until we reach up to that point within the
semester two lectures to study it.

You can find general information on the organization of this course in Section 0.1, within part
one of these lecture notes.
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Chapter 11

Brownian motion

In this chapter we study the most important example of a stochastic process: Brownian motion.
In essence, Brownian motion is the continuous time equivalent of the symmetric random walk
that we studied in Section 4.1.

11.1 The limit of random walks

The discovery of Brownian motion has a distinguished place in the history of both science and
mathematics. As with most great discoveries in the scientific world, many people discovered parts
of what later became known as Brownian motion, using varying degrees of mathematical and
experimental precision, at around the same time.

Brownian motion is named after the botanist Robert Brown who, in 1827, through a micro-
scope, saw erratic movements being made by tiny pollen organelles floating on water. The cause
of these movements was explained later by Albert Einstein and the physicist Jean Perrin: the
movements were caused by (the cumulative effect of) many individual water molecules hitting the
tiny organelles. This realization provided the ‘modern science’ of the time with a key piece of
evidence for the existence of atoms1. Around the same time, the american mathematician Norbert
Wiener, building on earlier work of Louis Bachelier, developed a mathematical model for stock
prices and independently discovered Brownian motion.

Today, Brownian motion is at the heart of many important models of the physical world. We
will see some examples in future sections of the course; for now our first task is to construct the
process.

Brown, Einstein and Perrin studied pollen movements on the surface of still water, meaning
they observed movements in two (spatial) dimensions R2. Bachelier, by contrast, saw stocks
prices moving up and down - in one dimension R. In both cases the underlying principle is one
of ‘completely random’ movement. We will restrict to the one dimensional case in this course.

Recall the symmetric random walk from Section 4.1. We will look at six pictures of (sam-
ples of) it, where in each picture the random walk has run for a successively longer time (T =

10, 50, 250, 1250, 6250, 31250). We fit each such picture into the same size box – we can think of
this as zooming out, so in each inch of space on the paper we see more and more, smaller and
smaller, jumps of the random walk. The results are intriguing:

1At the time, scientists were not confident of the existence of atoms; there were other competing theories that had not
yet been disproved.
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As we zoom out further and further, the pictures are starting to look very similar in character.
The last three are all ‘jagged’ in a conspicuously similar way. If you look carefully, you can see
that each picture contains precisely the first fifth (in terms of time passed) of the next picture.
From the axis on pictures, we might guess that, if we have T units of time on the x-axis, we need

7
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about
√
T units of space on the y-axis. This is not surprising: a short calculation (which we omit)

shows that E[|XT |] ≈
√
T as T → ∞.

The fact that our pictures start to look very similar in character, as T gets larger, is highly
suggestive: it suggests that as we keep scaling out we will see convergence to a limit. The limit,
like the random walk, will be random; it will be a continuous time stochastic process.

In Chapter 6 we studied limits for random variables. This theory can be extended, into
looking at limits of whole stochastic processes, because a stochastic process (Zt)

∞
t=0 is just the

set of random variables {Zt ; t ∈ [0,∞)}. We won’t study modes of convergence for stochastic
processes in this course, but hopefully the idea is clear. Various tools from analysis, that are
outside the scope of our course, can be used to prove that a limit exists in this case – the limit is
called Brownian motion, and it is the focus of this chapter.

Remark 11.1.1 You can reproduce the pictures yourself, using R, with the code for e.g. the first
one:

> T=10
> set.seed(1)
> x=c(0,2*rbinom(T-1,1,0.5)-1)
> y=cumsum(x)
> par(mar=rep(2,4))
> plot(y,type="l")

8
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11.2 Brownian motion

To work with Brownian motion mathematically, we need more than the pictures from the previous
section. What we need is a theorem that (1) tells us that Brownian motion exists and (2) gives
us some properties to work with. We begin our mathematical treatment of Brownian motion as
follows, with a definition that it also an existence theorem:

Theorem 11.2.1 There is a stochastic process (Bt) such that:

1. The paths of (Bt) are continuous.

2. For any 0 ≤ u ≤ t, the random variable Bt −Bu is independent of σ(Bv ; v ≤ u).

3. For any 0 ≤ u ≤ t, the random variable Bt −Bu has distribution N(0, t− u).

Further, any stochastic process which satisfies these three conditions has the same distribution as
(Bt).

Definition 11.2.2 If B0 = 0 we say that (Bt) is a standard Brownian motion.

From now on we fix some notation, which we will use for the remainder of the course:

We write (Bt) for a standard Brownian motion, and Ft = σ(Bu ; u ≤ t) for its
generated filtration. We work over the filtered space (Ω,F , (Ft),P).

Let us record a few simple facts about standard Brownian motion that we will use repeatedly
in later chapters. Putting u = 0 into the second property and noting that B0 = 0, we obtain that
the distribution of Brownian motion at time t is Bt ∼ N(0, t). Hence, also,

E[Bt] = 0

for all t. In exercise 11.4 you are are asked to show that if Z ∼ N(0, t) then E[Z2] = t. Hence

E[B2
t ] = var(Bt) = t (11.1)

for all t. It is also useful to know that Bn
t ∈ L1 for all n ∈ N. See exercise 11.4 for a proof of this

fact.
Along the same lines, another formula that we will use repeatedly (and that you should re-

member) is that if Z ∼ N(µ, σ2) then

E[eZ ] = eµ+
1

2
σ2

. (11.2)

This formula turns out to be surprisingly useful in situations involving Brownian motion. It is
proved as part of Exercise 11.5.

9
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Here are a couple of samples of (standard) Brownian motion. They look very similar in
character to the pictures from Section 11.1, when T was large. The key point is that, now,
instead of large T , time and space have been rescaled so as we only watch 1 unit of time.

You might like to note the similarity of these pictures to the jagged nature of Figure 1.1 (which
was a plot of the stock price of Lloyds Banking Group), which we reproduce here for convenience:
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In fact, we won’t use Brownian motion for our stock price model; we’ll use a slight modifi-
cation known as ‘geometric’ Brownian motion. For now, we need to collect together some more
information about Brownian motion, and develop our modelling tools further, but we’ll return to
the question of stock price models in Section 13.2 and Chapter 15.
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11.3 Brownian motion and the heat equation (?)

Brownian motion lies at the heart of many modern models of the physical world. Before we study
Brownian motion in its own right, let us give one example of a model with close connection to
Brownian motion, namely heat diffusion. Note that this section is marked with a (?), meaning
that it is off syllabus.

Consider a long thin metal rod. If, initially, some parts of the rod are hot and some are cold,
then as time passes heat will diffuse through the rod: the differences in temperature slowly average
out. Suppose that the temperature of the metal in the rod at position x at time t is given by
u(t, x), where t ∈ [0,∞) represents time and x ∈ R represents space. Suppose that, at time 0,
the temperature at the point x is f(x) = u(0, x).

Then (as you may have seen from e.g. MAS222), it is well known that the heat equation

∂u

∂t
=

1

2

∂2u

∂x2
(11.3)

with the initial condition
u(0, x) = f(x) (11.4)

describes how the temperature u(t, x) changes with time, from an initial temperature of f(x) at
site x. This equation has a close connection to Brownian motion, which we now explore.

Remark 11.3.1 (?) In the world of PDEs, the factor 1
2 in (11.3) is not normally included, but

in probability we tend to include it. The difference is just that time runs twice as fast (i.e. we
substituted 2t in place of t), which isn’t very important.

If we start Brownian motion from x ∈ R, then Bt ∼ x + N(0, t) ∼ N(x, t), so we can write
down its probability density function

φt,x(y) =
1√
2πt

exp
(
−(y − x)2

2t

)
.

Lemma 11.3.2 φt,x(y) satisfies the heat equation (11.3).

Proof: Note that if any function u(t, x) satisfies the heat equation, so does u(t, x− y) for any
value of y. So, we can assume y = 0 and need to show that

φt,x(0) =
1√
2πt

exp
(
−x2

2t

)
satisfies (11.3). This is an exercise in partial differentiation. Using the chain and product rules:

∂φ

∂t
=

−1
2√
2πt3

exp
(
−x2

2t

)
+

1√
2πt

−x2(−1)

2t2
exp

(
−x2

2t

)
=

1√
2π

(
x2

2t5/2
− 1

2t3/2

)
exp

(
−x2

2t

)
and

∂φ

∂x
=

1√
2πt

−2x

2t
exp

(
−x2

2t

)

12
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=
−x√
2πt3

exp
(
−x2

2t

)
so that

∂2φ

∂x2
=

−1√
2πt3

exp
(
−x2

2t

)
+

−x√
2πt3

−2x

2t
exp

(
−x2

2t

)
=

1√
2π

(
x2

t5/2
− 1

t3/2

)
exp

(
−x2

2t

)
.

Hence, ∂φ
∂t = 1

2
∂2φ
∂x2 . �

We can use Lemma 11.3.2 to give a physical explanation of the connection between Brownian
motion and heat diffusion. We define

w(t, x) = Ex[f(Bt)] (11.5)

That is, to get w(t, x), we start a particle at location x, let it perform Brownian motion for time
t, and then take the expected value of f(Bt).

Lemma 11.3.3 w(t, x) satisfies the heat equation (11.3) and the initial condition (11.4).

Before we give the proof, let us discuss the physical interpretation of this result. Within our
metal rod, the metal atoms have fixed positions. But atoms that are next to each other transfer
heat between each other, in random directions. If we could pick on an individual ‘piece’ of heat
and watch it move, it would move like a Brownian motion. Since there are lots of little pieces
of heat moving around, and they are very small, when we measure temperature we only see the
average effect of all the little pieces, corresponding to E[. . .].

We should think of the Brownian motion in (11.5) as running in reverse time, so as it tracks
(backwards in time) the path through space that a typical piece of heat has followed. Then, after
running for time t, it looks at the initial condition to find out how much heat there was initially
that its eventual location.
Proof: We have B0 = x, so

w(0, x) = Ex[f(B0)] = Ex[f(x)] = f(x).

Hence the initial condition (11.4) is satisfied. We still need to check (11.3). To do so we will allow
ourselves to swap

∫
s and partial derivatives2. We have

w(t, x) = Ex[f(Bt)]

=

∫ ∞

−∞
f(y)φt,x(y) dy

so, by Lemma 11.3.2,

∂w

∂t
=

∂

∂t

∫ ∞

−∞
f(y)φt,x(y) dy

=

∫ ∞

−∞
f(y)

∂

∂t
φt,x(y) dy

2As far as this course is concerned, there is no need for you to justify interchanging
∫

and derivatives. In reality, though,
it can (occasionally) fail and there are conditions to check. See MAS350/61022 for details.
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=

∫ ∞

−∞
f(y)

1

2

∂2

∂x2
φt,x(y) dy

=
1

2

∂2

∂x2

∫ ∞

−∞
f(y)φt,x(y) dy

=
1

2

∂2w

∂x2

as required. �

There are many similar ways to connect various stochastic processes to PDEs. This kind of
connection can be very useful, because it allows us to transfer knowledge about stochastic process
to (and from) knowledge about PDEs. We’ll see a more sophisticated example in Section 14.1.
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11.4 Properties of Brownian motion

We now examine some of the more detailed properties of Brownian motion. Recall that Bt denotes
a standard Brownian motion.

Symmetry

The normal distribution Z ∼ N(0, σ2) is symmetric about 0, in the sense that −Z also has the
distribution N(0, σ2). This symmetry about 0 is also present in Brownian motion.

Lemma 11.4.1 The stochastic process Wt = −Bt is a standard Brownian motion.

Proof: We must check that Wt = −Bt satisfies the three defining properties of Brownian
motion. By the first property, Bt is almost surely continuous, hence −Bt is also almost surely
continuous. Also, for 0 ≤ u ≤ t we have

Wt −Wu = −(Bt −Bu).

Since, by the second property, Bt −Bu is independent of Fu, so is Wt −Wu, and we have

σ(Wv ; v ≤ u) = σ(−Wv ; v ≤ u) = σ(Bv ; v ≤ u) = Fu.

Thus Wt −Wu is independent of σ(Wv ; v ≤ u).
Lastly, if Z ∼ N(0, t) then, using the symmetry of normal random variables, −Z ∼ N(0, t),

so we have
Wt −Wu = −(Bt −Bu) ∼ N(0, t− u)

by the third property. Hence, all three properties also hold for (Wt), so Wt is a Brownian motion.
Since W0 = −B0 = 0, we have that (Wt) is a standard Brownian motion. �

Lemma 11.4.1 is often referred to as an example of a ‘self-symmetry’ of Brownian motion,
meaning a transformation of a Brownian motion that results in another Brownian motion. It
turns out that Brownian motion has many self-symmetries, and they are very important to the
theory of Brownian motion.

Non-differentiability

As we’ve seen in Section 11.1, the paths of Brownian motion look very jagged and erratic. We
can express this idea formally: the sample paths of Brownian motion are not differentiable!

Lemma 11.4.2 Let t ∈ [0,∞). Almost surely, the function t 7→ Bt is not differentiable at t.

Proof: Using the second property of Brownian motion, and the scaling properties of normal
random variables,

Bt+h −Bt

h
∼ Bh

h
∼ X√

h
.

where X ∼ N(0, 1). Note that X is positive half the time and negative half the time (and
P[X = 0] = 0). Hence, as h → 0, we obtain that

X√
h

a.s.→ X∞ =

{
∞ with probability 1/2,

−∞ with probability 1/2.
(11.6)

15
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Form Lemma 6.1.2, almost sure convergence implies convergence in distribution, so this limit also
holds in distribution. Since Bt+h−Bt

h has the same distribution as X√
h
, we obtain that Bt+h−Bt

h

converges in distribution to X∞.

Consider the event E = {Bt is differentiable at t}. When the event E occurs, Bt+h−Bt

h con-
verges to a finite quantity as h → 0. However, we saw above that Bt+h−Bt

h had the limit X∞, with
P[X∞ ∈ {∞,−∞}] = 1, so the probability that this limit is a finite quantity is zero. Therefore,
P[E] = 0. �

Pure mathematicians discovered functions that were nowhere differentiable at around the start
of the 20th century. At first, they were widely thought to be mathematical curiosities, with little
or no importance in the ‘real’ world. A few decades later, the discovery that Brownian motion
played a key role in physics, biology and mathematical finance had reversed this viewpoint.

Relationship to martingales

It turns out that there are many martingales associated to Brownian motion. Here’s two, with
two more to come in exercise 11.6, and others in later sections of the course.

Lemma 11.4.3 Brownian motion is a martingale.

Proof: It is enough to look at the case (Bt) of standard Brownian motion, since adding and
subtracting a deterministic constant does not change if a process is a martingale.

Since Bt ∼ N(0, t) we have var(Bt) < ∞, which implies that Bt ∈ L1. Since the filtration
(Ft) is the generated filtration of Bt, is immediate that Bt is adapted. Lastly, for any 0 ≤ u ≤ t

we have

E[Bt | Fu] = E[Bt −Bu | Fu] + E[Bu | Fu]

= E[Bt −Bu] +Bu

= Bu.

Here, we use the properties of Brownian motion: Bt − Bs is independent of Fu and E[Bt] =

E[Bu] = 0. �

Lemma 11.4.4 B2
t − t is a martingale

Proof: Since Bt ∼ N(0, t) we have var(Bt) < ∞, which implies B2
t ∈ L1. Hence also B2

t − t ∈
L1. Since B2

t − t is a deterministic function of Bt, we have that B2
t − t is adapted to the generated

filtration of Bt. Lastly, for 0 ≤ u ≤ t,

E[B2
t − t | Fu] = E[(Bt −Bu)

2 + 2BtBu −B2
u | Fu]− t

= E[(Bt −Bu)
2 | Fu] + 2BuE[Bt | Fu]−B2

u − t

= E[(Bt −Bu)
2] + 2B2

u −B2
u − t

= (t− u) +B2
u − t

= B2
u − u

as required. Here we use that Bt −Bu is independent of Fu, along with both (11.1) and Lemma
11.4.3. �
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11.5 Exercises on Chapter 11

In all the following questions, Bt denotes standard Brownian motion.

On Brownian motion

11.1 Consider the process Ct = µt + σBt, for t ≥ 0, where µ ∈ R and σ > 0 are deterministic
constants.

(a) Find the mean and variance of Ct.
(b) Let 0 ≤ u ≤ t. What is the distribution of Ct − Cu?
(c) Is Ct a random continuous function?
(d) Is Ct a Brownian motion?

11.2 Let 0 ≤ u ≤ t. Use the properties of Brownian motion to show that cov(Bt, Bu) = u.

11.3 Let u ≥ 0 and t ≥ 0. Show that E[Bt | Fu] = Bmin(u,t).

11.4 (a) Show that E[Bn
t ] = t(n− 1)E[Bn−2

t ] for all n ≥ 2. (Hint: Integrate by parts!)
(b) Deduce that E[B2

t ] = t and var(B2
t ) = 2t2.

(c) Write down E[Bn
t ] for any n ∈ N.

(d) Show that Bn
t ∈ L1 for all n ∈ N.

11.5 Let Z ∼ N(µ, σ2). Show that E[eZ ] = exp(µ+ 1
2σ

2). (Hint: Complete the square!)

11.6 Show that the following processes are martingales.

(a) Xt = exp
(
σBt − 1

2σ
2t
)

where σ > 0 is a deterministic constant.
(b) Yt = B3

t − 3tBt.

11.7 Fix t > 0 and for each n ∈ N let (tk)
n
k=0 be such that 0 = t0 < t1 < . . . < tn = t and

maxk |tk+1 − tk| → 0 as n → ∞. (For example: tk = kt
n ).

(a) Show that
n−1∑
k=0

tk+1 − tk = t and
n−1∑
k=0

Btk+1
−Btk = Bt.

(b) Show that
n−1∑
k=0

(tk+1 − tk)
2 → 0 as n → ∞.

(c) Set Sn =
n−1∑
k=0

(Btk+1
−Btk)

2. Show that E[Sn] = t and that var(Sn) → 0 as n → ∞.

Challenge Questions

11.8 (a) Let y ≥ 1. Show that

P[Bt ≥ y] ≤
√

t

2π
e−

y2

2t .

Let α > 1
2 . Deduce that P[Bt ≥ tα] → 0 as t → ∞. What about α = 1

2?
(b) Let y ≥ 0. Show that

P[Bt ≥ y] ≤ t√
2π

1

y
e−

y2

2t .

Deduce that Bt → 0 in probability as t ↘ 0.

17
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Chapter 12

Stochastic integration

In this section we introduce stochastic integrals, through the framework of Ito integration. The
mathematical framework for stochastic integration was developed in the 1950s, by the Japenese
mathematician Kiyoshi Ito (sometimes written Itô). It has grown into becoming one of the most
effective modelling tools of the present day.

In Lemma 11.4.2 we showed that Brownian motion was not differentiable. This is awkward,
because mathematical modelling often relies on calculus, which (in its classical form) relies heav-
ily on working with derivatives. However, the difficulty can be overcome by forgetting about
differentiation and making integration the central theme.

12.1 Introduction to Ito calculus

In classical calculus, of the sort you are already used to using, we typically deal with objects of
the form ∫ b

a
f(t) dt (12.1)

where f is a suitably well behaved function. For simplicity, let’s take f to be continuous. From
an intuitive point of view, we often regard (12.1) as representing the ‘area under the curve’ f
between a and b. This is justified by the fact that we have∫ b

a
f(t) dt = lim

δ→0

n∑
i=1

f(ti−1)[ti − ti−1] (12.2)

where (ti)
n
i=0 is such that a = t0 < t1 < . . . < tn = b and δ = maxi |tt − tt−1|. Note that sending

δ → 0 means that the ti change position and get closer together, and consequently n → ∞; this
is a mild abuse of notation that is commonly used.

Note that if f is a random continuous function then (12.1) still makes sense: now,
∫ b
a f(t) dt is

just the area under a random curve; itself a random quantity. This is one way to involve random
variables in calculus. There is another:

In Ito calculus we are interested in integrals that are written∫ b

a
f(t) dBt

where Bt is a Brownian motion. Let us begin by discussing what this new type of integral
represents; it is not the area under a curve.
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In (12.2), the dt on the left side corresponds to the ti− ti−1 on the right. By analogy to (12.2),
our new dBt term corresponds to Bti −Bti−1

, giving∫ b

a
f(t) dBt = lim

δ→0

n∑
i=1

f(ti−1)[Bti −Bti−1
]. (12.3)

Graphically, this means that we measure the widths of the bars using increments of Brownian
motion, instead of side-length. For now, let us not worry about which mode of convergence will
be used for the limit, or how to choose the tis.

In order to understand why this is a useful idea, from the point of view of stochastic modelling,
we need to think about σ-fields and filtrations. In particular, let us take f(t) to be a stochastic
process, and let us assume that f(t) is adapted, with respect to the filtration Ft = σ(Bs ; s ≤ t).
Now, consider the term

f(ti−1)[Bti −Bti−1
].

This formula represents a generic model of taking a decision that then has a random effect. The
value of f(ti−1) is chosen, based only on information known at time ti−1, then during ti−1 7→ ti
the world evolves randomly around us, and the effect of our decision combined with this random
evolution is represented by f(ti−1)[Bti −Bti−1

].
The sum,

n∑
i=1

f(ti−1)[Bti −Bti−1
] (12.4)

corresponds to the cumulative result of multiple decision making steps, at times t0 7→ t1 7→ t2 7→
. . . 7→ tn. At each time ti−1 a decision is taken for the value of f(ti), based only on previously
available information, then the world changes randomly during ti−1 7→ ti, and at time ti we receive
and add the random effect of our decision: f(ti−1)[Bti −Bti−1

].

Remark 12.1.1 We’ve seen this idea before, in Section 7.2 when we modelled roulette using the
martingale transform. If we set ti = i, Cn = f(tn) and Mn = Btn = Bn, then Mn is a discrete
time martingale (take Fn = σ(Bi ; i ≤ n)), and (12.4) is precisely the martingale transform
(C ◦M)n =

∑n
i=1Ci−1(Mi −Mi−1).

The final stage of this intuition is to understand the limit in (12.3). Now we take decisions at
times

a = t0 7→ t1 7→ t2 . . . 7→ tn = b

as δ = maxi |ti − ti−1| → 0. The corresponds to taking a continuous stream of decisions during
the time interval [a, b], each based on previously available information, each of which has an
(infinitesimally) small effect. The stochastic integral,∫ b

a
f(t) dBt

corresponds to the cumulative effect of all these decisions.
Of course, the situation we are most interested in, within this course, is that of managing

a portfolio. In continuous time we can continually take decisions to buy and sell based on the
information that is currently available to us. Our f(ti) will be a process relating to the stocks
that we hold, and the Brownian motion Bt will provide the randomness that moves stock prices
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up and down. Developing the details of this modelling effort, and the pricing results that come
out of it, will take up the rest of the course.

Remark 12.1.2 In this section it was helpful to write the integrand as f(t). Since the integrand
is a a stochastic process, we will often (but by no means always) stick to our convention of denoting
stochastic processes with capital letters, such as Ft, giving

∫ b
a Ft dBt.

Remark 12.1.3 As an alternative approach to defining the meaning of Ito integrals it might be
tempting to try and write ∫ b

a
Ft dBt =

∫ b

a
Ft

dBt

dt
dt

and use this idea to relate stochastic integrals to classical integrals. Unfortunately, the right hand
side of the above expression does not make sense - we have shown in Lemma 11.4.2 that Bt is not
differentiable, so dBt

dt does not exist.
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12.2 Ito integrals

In Section 12.1 we discussed the ideas behind Ito integrals. We did not discuss one key (theoretical)
question: if and when the limit in (12.3) actually exists?

Let us recall our usual notation. We work over a filtered space (Ω,F , (Ft),P), where the
filtration Ft is the generated filtration of a Brownian motion Bt. We use the letters t, u and
sometimes also v, as our time variables.

We say that a stochastic process Ft is locally square integrable if∫ t

0
E
[
F 2
u

]
du < ∞. (12.5)

for all t ∈ [0,∞). We define H2 to be the set of locally square integrable continuous stochastic
processes F = (Ft)

∞
t=0 that are adapted to (Ft).

It turns out that the condition F ∈ H2 is the correct condition under which to take the limits
discussed in Section 12.1. The following theorem formally states that Ito integrals exist, and gives
some of their first properties.

Theorem 12.2.1 For any F ∈ H2, and any t ∈ [0,∞) the Ito integral∫ t

0
Fu dBu

exists, and is a continuous martingale with mean and variance given by

E
[∫ t

0
Fu dBu

]
= 0,

E

[(∫ t

0
Fu dBu

)2
]
=

∫ t

0
E[F 2

u ] du.

So far we have only looked at integrals over [0, t]. We can extend the definition to
∫ b
a , simply

by repeating the whole procedure above with limits [a, b] instead of [0, t]. It is easily seen that
this gives the usual consistency property∫ c

a
Ft dBt =

∫ b

a
Ft dBt +

∫ c

b
Ft dBt (12.6)

for a ≤ b ≤ c. We won’t include a proof of this in our course.
Like classical integrals, Ito integrals are linear. For α, β ∈ R we have∫ b

a
αFt + βGt dBt = α

∫ b

a
Ft dBt + β

∫ b

a
Gt dBt. (12.7)

Again, we won’t include a proof of this formula in our course.
In future, we’ll use the linearity and consistency properties without comment. However, as

we’ll explore in the next two sections, there are many ways in which the Ito integral does not
behave like the classical integral.
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Comparing Ito integration to classical integration

Let us first note one similarity. It is true that∫ t

0
0 dBu = 0.

This matches classical integrals, where we have
∫ t
0 0 du = 0. We can see this from (12.3), by

setting f ≡ 0, and noting that the limit of 0 is 0.
Here’s a first difference: fix some t > 0 and let us look at

∫ t
0 1 dBu. If we set f ≡ 1 in (12.3),

then we obtain
∑n

i=1 f(ti−1)[Bti −Bti−1
] = Bt −B0 = Bt, and hence∫ t

0
1 dBu = Bt. (12.8)

Of course, in classical calculus we have
∫ t
0 1 du = t. This is our first example of an important

principle: Ito integration behaves differently to classical integration. To illustrate further, in
Section 13.1 we will put together a set of tools for calculating Ito integrals, and in Example 13.1.2
we will see that ∫ t

0
Bu dBu =

B2
t

2
− t

2
.

This corresponds to taking f(t) = Bt in (12.3). Of course, in classical calculus we have
∫ t
0 u du =

u2

2 , which is very different.
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12.3 Existence of Ito integrals (?)

This section is off-syllabus, and as such is marked with (?). It will not be covered in lectures.
The argument that proves Theorem 12.2.1, through justifying the limit taken in (12.3), is

based heavily on martingales, metric spaces and Hilbert spaces. It comes in two steps, the first of
which involves a class of stochastic processes F known as simple processes – see Definition 12.3.1
below. The second step uses limits extends the definition for simple processes onto a much larger
class. We’ll look at these two steps in turn.

We’ll use the notation ∧ and ∨ from Chapter 8. That is, we write min(s, t) = s ∧ t and
max(s, t) = s ∨ t.

Definition 12.3.1 We say that a stochastic process Fu is a simple process if there exists deter-
ministic points in time 0 = t0 < t1 < . . . < tm such that:

1. Fu remains constant during each interval u ∈ [tt−1, ti), and Fu = 0 for u ≥ tm.

2. For each i, Fti is bounded and Fti ∈ Fti .

For a simple process F , with (ti) as in Definition 12.3.1 we define

IF (t) =

n∑
i=1

Fti−1
[Bti∧t −Bti−1∧t]. (12.9)

Note that this is essentially the right hand side of (12.3) but without the limit. The point of the
∧t is that we are aiming to define an integral over [0, t]; the ∧t makes sure that IF (t) only picks
up increments from the Brownian motion during [0, t].

We can already see the connection to martingales (which builds on Remark 12.1.1):

Lemma 12.3.2 Suppose that Ft is a simple process. Then IF (t) is an Ft martingale.

Proof: Since a (finite) sum of martingales is a also martingale, it is enough to fix i and show
that Mt = Fti−1

[Bti∧t −Bti−1∧t] is a martingale. The argument is rather messy, because we have
to handle the ∧t everywhere.

Let us look first at L1. Fti is bounded we have some deterministic A ∈ R such that |Fti | ≤ A

(almost surely). Hence, E
[∣∣Fti−1

[Bti∧t −Bti−1∧t]
∣∣] ≤ AE[|Bti∧t − Bti−1∧t|] < ∞. Here, we use

that Bti∧t −Bti−1∧t ∼ N(0, ti ∧ t− ti−1 ∧ t), which is in L1. Hence, Mt ∈ L1.
Next, adaptedness, for which we consider two cases.

• If t ≥ ti−1 then Fti−1
∈ Ft. Since ti ∧ t ≤ t, we have Bti∧t ∈ mFt and, similarly, Bti−1∧t ∈

mFt, hence also Mt ∈ mFt.

• If t < ti−1 then ti ∧ t = ti−1 ∧ t = t, meaning that Bti∧t −Bti−1∧t = 0. So M
(i)
ti = 0, which

is deterministic and therefore also in mFt.

Therefore, (Mt) is adapted to (Ft).
Lastly, let 0 ≤ u ≤ t. Again, we consider two cases.

• If u ≥ ti−1 then Fti−1
∈ Fu and we have

E
[
Fti−1

[Bti∧t −Bti−1∧t] | Fu

]
= Fti−1

(
E [Bti∧t | Fu]− E

[
Bti−1∧t | Fu

])
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= Fti−1
[Bti∧t∧u −Bti−1∧t∧u]

= Fti−1
[Bti∧u −Bti−1∧u].

Here, in the first line we take out what is known, and we use the martingale property of
Brownian motion to deduce the second line. The third line then follows because u ≤ t.

• If u < ti−1 then Bti∧u −Bti−1∧u = 0. Also, by the tower rule

E
[
Fti−1

[Bti∧t −Bti−1∧t] | Fu

]
= E

[
E
[
Fti−1

[Bti∧t −Bti−1∧t] | Fti−1

]
| Fu

]
= E

[
Fti−1

(
E
[
Bti∧t | Fti−1

]
− E

[
Bti−1∧t | Fti−1

])
| Fu

]
= E

[
Fti−1

(
Bti∧t∧ti−1

−Bti−1∧t∧ti−1

)
| Fu

]
= E

[
Fti−1

(
Bti−1

−Bti−1

)
| Fu

]
= 0.

In both cases, we have shown that E[Mt | Fu] = Mu. �

Lemma 12.3.3 Suppose that Ft is a simple process. Then, for any 0 ≤ t ≤ ∞,

E
[
IF (t)

2
]
=

∫ t

0
E
[
F 2
u

]
du. (12.10)

Proof: See exercise 12.10. The proof similar in style to that of Lemma 12.3.2. �

Essentially, Theorem 12.2.1 says that Ito integrals exist for F ∈ H2 and that Lemmas 12.3.2
and 12.3.3 are true, not just for simple processes, but for Ito integrals in general. This observation
brings us to second step of the construction of Ito integrals, although we won’t be able to cover
all of the details here. It comes in two sub-steps:

1. Fix t < ∞ and begin with a process F ∈ H2. Approximate F by a sequence of simple
processes F (k) such that ∫ t

0
E
[(

Fu − F (k)
u

)2]
du → 0 (12.11)

as k → ∞. It can be proved that this is always possible.

2. For each k, IFm
(t) is defined by (12.9). We define∫ t

0
Fu dBu = lim

k→∞
IF (k)(t). (12.12)

Using (12.11), it can be shown that this limit exists, with convergence in L2, and moreover
its value (on the left hand side) is independent of the choice of approximating sequence F (k)

(on the right hand side).

We end with a brief summary of the mathematics that lies behind (12.11) and (12.12). We
have shown that the map F 7→ IF takes a simple process, which is an example of a locally
square integrable adapted stochastic process, and gives back a martingale that is in L2. If we
add appropriate restrictions on the left and right continuity of F , it can be shown that the map
F 7→ IF becomes a linear operator between two Hilbert spaces. Further, (12.10) turns out to
be precisely the statement that F 7→ IF is an isometry (usually referred to as the Ito isometry).
The set of simple stochastic processes is a dense subset of the space of square integrable adapted
stochastic processes, which allows us to use a powerful theorem about isometries between Hilbert
spaces (known as the completion theorem) to take the limit in (12.12).
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12.4 Ito processes

We are now ready to define precisely the types of stochastic process that we will be interested in
for most of the remainder of this course.

Definition 12.4.1 A stochastic process X is known as an Ito process if X0 is F0 measurable and
X can be written in the form

Xt = X0 +

∫ t

0
Fu du+

∫ t

0
Gu dBu (12.13)

Here, G ∈ H2 and F is a continuous adapted process.

The first integral is a classical integral: the area under the random curve Ft. The second integral
is an Ito integral. All Ito processes are continuous, adapted stochastic processes.

Note that, to fully specify Xt, we also need to know both Fu, Gu, and the initial value X0.
Since this means we’ll be dealing with integrals of the form

∫ t
0 Fu du, it is helpful for us to know

a fact from integration theory:

Lemma 12.4.2 For a continuous stochastic process F , if one (which ⇒ both) of the two sides is
finite, then we have E

[∫ t
0 Fu du

]
=
∫ t
0 E[Fu] du.

In words, we can swap
∫

du and Es as long as we aren’t dealing with ∞ (warning: it doesn’t
work for Ito integrals, see exercise 12.8!). We won’t include a proof in this course, but you can
find one which works for both

∫
s and

∑
s in MAS61022.

We can calculate the expectation of Xt using Lemma 12.4.2.

E[Xt] = E[X0] + E
[∫ t

0
Fu du

]
+ E

[∫ t

0
Gu dBu

]
.

= E[X0] +

∫ t

0
E [Fu] du.

Here, Lemma 12.4.2 allows us to swap
∫

and E for the du integral. The term E[
∫ t
0 Gu dBu] is zero

because Theorem 12.2.1 told us that
∫ t
0 Gu dBu was martingale with zero mean.

Example 12.4.3 Let Xt be the Ito process satisfying

Xt = 1 +

∫ t

0
2B2

u du+

∫ t

0
3u dBu.

Then

E[Xt] = E[1] + E
[∫ t

0
2B2

u du

]
+ E

[∫ t

0
3u dBu

]
= 1 + 2

∫ t

0
E[B2

u] du

= 1 + 2

∫ t

0
u du

= 1 + t2.

Example 12.4.4 Brownian motion is an Ito process. It satisfies Bt = B0 +
∫ t
0 0 du+

∫ t
0 1 dBu.
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A useful fact about Ito processes is that we can ‘equate coefficients’ in much the same way as
we equate the coefficients of terms in polynomials. To be precise, we have

Lemma 12.4.5 Suppose that

Xt = X0 +

∫ t

0
FX
u du+

∫ t

0
GX

u dBu

Yt = Y0 +

∫ t

0
F Y
u du+

∫ t

0
GY

u dBu

are Ito processes and that P[for all t,Xt = Yt] = 1. Then,

P[for all t, FX
t = F Y

t and GX = GY
t ] = 1.

Proof of this lemma is outside of the scope of our course. However, the result will be very
important to us, since it is key to the argument that will allow to hedge financial derivatives in
continuous time.
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12.5 Exercises on Chapter 12

In all the following questions, Bt denotes a Brownian motion and Ft denotes its generated filtra-
tion.

On Ito integration

12.1 Using (12.8), find
∫ t
v 1 dBu, where 0 ≤ v ≤ t.

12.2 Show that the process eBt is in H2. (Hint: Use (11.2).)

12.3 (a) Let Z ∼ N(0, 1). Show that the expectation of e
Z2

2 is infinite.
(b) Give an example of a continuous, adapted, stochastic process that is not in H2.

12.4 Let Xt be an Ito process satisfying

Xt = 2 +

∫ t

0
t+B2

u du+

∫ t

0
B2

u dBu.

Find E[Xt].

12.5 Which of the following stochastic processes are Ito processes?

(a) Xt = 0,
(b) Yt = t2 +Bt,
(c) The symmetric random walk from Section 4.1.

12.6 Let Vt be the stochastic process given by

Vt = e−ktv + σe−kt

∫ t

0
eku dBu

where k, σ, v > 0 are deterministic constants. Find the mean and variance of Vt.

12.7 Suppose that µ > 0 is a deterministic constant and that σt ∈ H2. Let Xt be given by

Xt =

∫ t

0
µdu+

∫ t

0
σu dBu.

Show that Xt is a submartingale.

12.8 (a) Give an example of a stochastic process Ft such that
∫ t
0 E[Fs] ds = E[

∫ t
0 Fs dBs].

(b) Give an example of a stochastic process Ft such that
∫ t
0 E[Fs] ds 6= E[

∫ t
0 Fs dBs].

Challenge Questions

12.9 (a) Let X and Y be random variables in L2. Show that

2|E[XY ]| ≤ E[X2] + E[Y 2]

(b) Show that H2 is a real vector space.

12.10 (?) Prove Lemma 12.3.3.
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Chapter 13

Stochastic differential equations

The situation we have arrived at is that we know Ito integrals exist but, as yet, we are unable to
calculate them or do much calculation with them. We will address this issue in Section 13.1 but
first, in order to make our calculations run smoothly, we need to introduce some new notation.

We now understand how to make sense of equations of the form

Xt = X0 +

∫ t

0
Fu du+

∫ t

0
Gu dBt (13.1)

where Bt is Brownian motion. Note that we allow cases in which the stochastic processes Fu, Gu

depend on Xu (for example, we could have Fu = X2
t ), but that Xt is an unknown stochastic

process. Equations of this type are known as stochastic differential equations, or SDEs for short
– an unfortunate name because they have no differentiation involved! They are also sometimes
known as stochastic integral equations, but for historical reasons the term SDE has become the
most commonly used.

‘Solving’ the equation (13.1) essentially means finding Xt in terms of Bt. If Ft and Gt depend
only on t and Bt, then (13.1) is just an explicit formula, which automatically that tells us that
there is a solution to (13.1). However, if Ft and/or Gt depend on Xt (e.g. Ft = 2Xt) then (13.1)
is not an explicit formula and there is no guarantee that a solution for Xt exists.

Remark 13.0.1 (?) The theory of existence and uniqueness of solutions to SDEs relies on analysis
in more delicate ways than we have time to discuss in this course. We use the term ‘solution’ for
what is usually referred to in the theory of SDEs as a ‘strong solution’.

In general SDEs, like their classical counterparts ODEs, often do not have explicit solutions,
and frequently have no solutions. Happily, though, in all the cases we need to consider, we will
be able to write down explicit solutions.

Writing
∫

s everywhere is cumbersome, so it is common to ‘drop the
∫

s’ and write (13.1) as

dXt = Ft dt+Gt dBt (13.2)

This equation has exactly the same meaning as (13.1), it is just written in different notation (to
be clear: we are not differentiating anything). The notation dXt, dBt used in (13.2) is known as
the notation of stochastic differentials, and we’ll use it from now on.

When we convert from stochastic differential form (13.2) to integral form (13.1) we can choose
which limits to put onto the integrals. In (13.1) we choose [0, t], but if v ≤ t then we can also
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choose [v, t], giving

Xt = Xv +

∫ t

v
Fu du+

∫ t

v
Gu dBu.

(Rigorously, we can do this because (13.1) holds with v in place of t, which we can then subtract
from (13.2) (with t as written) to obtain limits [v, t].)

We can rewrite our definition of an Ito process in our new notation.

Definition 13.0.2 A stochastic process Xt is an Ito process if it satisfies

dXt = Ft dt+Gt dBt

for some G ∈ H2 and a continuous adapted stochastic process F .

We need one more piece of notation. Given an Ito process Xt, as in Definition 13.0.2, and a
stochastic process Ht, we will often write

dZt = Ht dXt (13.3)

which (as a definition) we interpret to mean that

dZt = Ht(Ft dt+Gt dBt)

= HtFt dt+HtGt dBt.

In integral form this represents

Zt = Z0 +

∫ t

0
HuFu du+

∫ t

0
HuGu dBu.

Of course, it is much neater to write (13.3).

Remark 13.0.3 (?) There is a limiting procedure that can extend the Ito integral, for a suitable
class of stochastic processes Z, to define

∫ t
0 Hu dZu directly: in similar style to (12.12) but with

increments of Zt in place of increments of Bt. This approach relies on some difficult analysis, and
we won’t discuss it in this course.
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13.1 Ito’s formula

We have commented that, whilst we do know that Ito integrals exist, we are not yet able to do any
serious calculations with them. In fact, the situation is similar to that of conditional expectation:
direct calculation is usually difficult and, instead, we prefer to work with Ito integrals via a set of
useful properties. If you think about it, this is also the situation in classical calculus – you rely
on the chain and product rules, integration by parts, etc.

From 12.8, we already know that there are differences between Ito calculus and classical cal-
culus. In fact, there is bad news: none of the usual rules1 used of classical calculus hold in Ito
calculus.

There is also good news: Ito calculus does have its own version of the chain rule, which is known
as Ito’s formula. Perhaps surprisingly, this alone turns out to be enough for most purposes2.

As in Definition 12.4.1, let X be an Ito process satisfying

dXt = Ft dt+Gt dBt (13.4)

where G ∈ H2 and F is a continuous adapted process.

Lemma 13.1.1 (Ito’s formula) Suppose that, for t ∈ R and x ∈ R, f(t, x) is a deterministic
function that is differentiable in t and twice differentiable in x. Then Zt = f(t,Xt) is an Ito
process and

dZt =

{
∂f

∂t
(t,Xt) + Ft

∂f

∂x
(t,Xt) +

1

2
G2

t

∂2f

∂x2
(t,Xt)

}
dt+Gt

∂f

∂x
(t,Xt) dBt.

As in classical calculus, it is common to suppress the arguments (t,Xt) of f and its derivatives.
This results in simply

dZt =

{
∂f

∂t
+ Ft

∂f

∂x
+

1

2
G2

t

∂2f

∂x2

}
dt+Gt

∂f

∂x
dBt. (13.5)

which is the notation we’ll usually use. It is sometimes helpful to simplify the expression even
further, using (13.3) and (13.4), to dZt = {∂f

∂t +
1
2G

2
t
∂2f
∂x2 } dt+ ∂f

∂x dXt.

Before we say a few words about the proof, let us practice using Ito’s formula. We will need
it repeatedly throughout the whole of remainder of the course.

Example 13.1.2 Let us apply Ito’s formula to calculate dZt where Zt = B2
t . We have Zt =

f(t, Bt) where f(t, x) = x2, which gives ∂f
∂t = 0, ∂f

∂x = 2x and ∂2f
∂x2 = 2. We’ll also use that Bt is

an Ito process satisfying dBt = 0 dt+ 1 dBt. From Ito’s formula,

dZt =

(
0 + (0)(2Bt) +

1

2
(12)(2)

)
dt+ (1)(2Bt) dBt

= 1 dt+ 2Bt dBt.

In integral form this reads

Zt = Z0 +

∫ t

0
1 du+

∫ t

0
2Bu dBu.

1Meaning: the chain rule, product rule, quotient rule, integration by parts, inverse function rule, substitution rule,
implicit differentiation rule, . . .

2Actually, Ito calculus has a product rule too, but we won’t need it.
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Rearranging, we obtain that ∫ t

0
Bu dBu =

B2
t

2
− t

2
. (13.6)

This shows that Ito calculus behaves very differently to classical calculus (of course,
∫ t
0 u du = u2

2 ).

Example 13.1.3 Suppose that X satisfies dXt = µdt + σ dBt, where µ ∈ R and σ > 0 are
deterministic constants. Let Zt = Xte

t. We want to find dZt.
We have Zt = f(t,Xt) where f(t, x) = xet, and Ft = µ, Gt = σ so by Ito’s formula,

dZt =

(
Xte

t + (µ)(et) +
1

2
(σ2)(0)

)
dt+ (σ)(et) dBt

= (Xt + µ) et dt+ σet dBt.

Example 13.1.4 Suppose that we want to calculate E[B4
t ].

We define Zt = B4
t and use Ito’s formula to find dZt. We have Zt = f(t, Bt) where f(t, x) = x4.

Note that Brownian motion Bt is an Ito process, with dBt = 0 dt+ 1 dBt. So,

dZt =

(
0 + (0)(4B3

t ) +
1

2
(12)(12B2

t )

)
dt+ (1)(4B3

t ) dBt

= 6B2
t dt+ 4B3

t dBt.

Hence, in integral form,

Zt = Z0 +

∫ t

0
6B2

u du+

∫ t

0
4B3

u dBu.

Taking expectations, and noting that Z0 = B4
0 = 0,

E[Zt] = E
[∫ t

0
6B2

u du]

]
+ E

[∫ t

0
4B3

u dBu

]
=

∫ t

0
E
[
6B2

u

]
du+ 0

=

∫ t

0
6u du

=
6t2

2

= 3t2.

Here, we used Lemma 12.4.2 to swap
∫

and E for the du integral, and to deduce the second line
we recall from Theorem 12.2.1 that Ito integrals

∫ t
0 . . . dBt are martingales with mean zero.

The result we have obtained matches that from exercise 11.4, but with much less work!
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Sketch proof of Ito’s formula (?)

The proof of Ito’s formula is very technical, and even some advanced textbooks on stochastic
calculus omit a full proof. We are now getting used to the principle that (in continuous time)
proofs of most important results about stochastic processes make heavy use of analysis; in this
case, Taylor’s theorem. We’ll attempt to give just an indication of where (13.5) comes from.

Fix an interval [0, t] and take tk such that

0 = t0 < t1 < t2 < . . . < tn = t.

We plan eventually to take a limit as n → ∞, where the minimal distance between two neigh-
bouring tk goes to zero. Note that this in similar style to the limit used in the construction of Ito
integrals. We’ll use the notation (just in this section)

∆t = tk+1 − tk

∆B = Btk+1
−Btk

∆X = Xtk+1
−Xtk .

We begin by writing

f(t,Xt)− f(0, X0) =

n−1∑
k=0

f(tk+1, Xtk+1
)− f(tk, Xtk).

Then, we apply the two dimensional version of Taylor’s Theorem to f on the time interval [tk, tk+1]

to give us

f(tk+1, Xtk+1
)− f(tk, Xtk) =

∂f

∂t
∆t+

∂f

∂x
∆X +

1

2

∂2f

∂x2
(∆X)2 +

∂2f

∂x2
∆X∆t+

1

2

∂2f

∂x2
(∆t)2

+ [higher order terms] (13.7)

We suppress the argument (tk, Xtk) of all partial derivatives of f . In the ‘higher order terms’ we
have terms containing (∆X)3,∆t(∆X)2 and so on. Using the SDE (13.4) we have

∆X = Xtk+1
−Xtk =

∫ tk+1

tk

Fu du+

∫ tk+1

tk

Gu dBu

≈ Ftk∆t+Gtk∆B.

Summing (13.7) over
∑

k :=
∑n−1

k=0 and using this approximation, we have

f(t,Xt)− f(0, X0) = I1 + I2 + I3 + J1 + J2 + J3 + [higher order terms]

where
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I1 =
∑
k

∂f

∂t
∆t →

∫ t

0

∂f

∂x
du

I2 =
∑
k

∂f

∂x
Ftk∆t →

∫ t

0

∂f

∂x
Fu du

I3 =
∑
k

∂f

∂x
Gtk∆B →

∫ t

0

∂f

∂x
Gu dBu

J1 =
1

2

∑
k

∂2f

∂x2
G2

tk(∆B)2 → 1

2

∫ t

0

∂2f

∂x2
G2

u du

J2 =
∑
k

∂2f

∂x2
FtkGtk(∆B)(∆t) → 0

J3 =
∑
k

∂2f

∂x2
F 2
tk(∆t)2 → 0

As we let n → ∞, and the tk become closer together, ∆t → 0 and the convergence shown takes
place. In the case of I1 and I2 this is essentially by definition of the (classical) integral. For I3, it is
by the definition of the Ito integral, as in (12.3). For J1, J2 and J3 the picture is more complicated;
convergence in this case follows by an extension of exercise 11.7. Essentially, exercise 11.7 tells
us that terms of order ∆t matter and that (∆B)2 ≈ ∆t, resulting in

J1 ≈
1

2

∑
k

∂2f

∂x2
G2

tk∆t → 1

2

∫ t

0

∂2f

∂x2
G2

u du.

However, (∆t)2 and (∆t)(∆B) ≈ (∆t)3/2 are both much smaller than ∆t, with the result that
the terms J2 and J3 vanish as ∆t → 0. The higher order terms in (13.7) also vanish. Providing
rigorous arguments to take all these limits is the bulk of the work involved in a full proof of Ito’s
formula.

After the limit has been taken, Ito’s formula is obtained by collecting the non-zero terms
I1, I2, I3, J1 together and writing the result in the notation of stochastic differentials.
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13.2 Geometric Brownian motion

In this section we focus on a particular SDE, namely

dXt = αXt dt+ σXt dBt (13.8)

where α ∈ R and σ ≥ 0 are deterministic constants. The parameter α is known as the drift, and
σ is known as the volatility. Equation (13.8) will be important to us because it will be our next
step in establishing better models for stock prices (to be continued, in Section 15.1).

The solution to equation (13.8), which we will shortly show exists, is known as geometric
Brownian motion.

The key step to solving (13.8) is to work with the logarithm of X. With this aim in mind, we
assume (for now) that there is a solution X that is strictly positive, and consider the process

Zt = logXt.

Of course our assumption may not be true - but if such a solution does exist we hope to (do some
calculations and with Z and) find an explicit formula for it, at which point we can go back and
check we really do have a solution.

Remark 13.2.1 Taking logarithms is a natural idea to try. To see this, consider the special case
σ = 0, where we find ourselves back in the world of differential equations: x(t) =

∫ t
0 αx(u) du.

The fundamental theorem of calculus gives dx
dt = αx. We can solve this equation by considering

z = logx, obtaining
dz

dt
=

dz

dx

dx

dt
=

1

x
αx = α

Thus z(t) = αt+ C and x(t) = ez(t) = C ′eαt.

Using Ito’s formula, with Zt = logXt (i.e. f(t, x) = logx) we obtain

dZt =

(
0 + αXt

1

Xt
+

1

2
(σXt)

2−1

X2
t

)
dt+ σXt

1

Xt
dBt

=

(
α− 1

2
σ2

)
dt+ σ dBt.

In integral form this gives us

Zt = Z0 +

∫ t

0
α− 1

2
σ2 du+

∫ t

0
σ dBu

= Z0 +

(
α− 1

2
σ2

)
t+ σBt.

Since Zt = logXt, raising both sides to the power e gives us

Xt = X0 exp
(
(α− 1

2σ
2)t+ σBt

)
. (13.9)

As we said, this was all based on the assumption that a (strictly positive) solution exists. But,
now we have found the formula (13.9), we can go back and check that it does really give us a
solution. This part is left for you, see exercise 13.12.

For future use, applying (13.9) at times t and T , we obtain that

XT = Xt exp
(
(α− 1

2σ
2)(T − t) + σ(BT −Bt)

)
. (13.10)
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13.3 The Ornstein–Uhlenbeck process (∆)

The Ornstein-Uhlenbeck3 process is another example of an Ito process that can be described using
a particular SDE. It is often known as the OU process, for short. In this case the equation is

dXt = θ(µ−Xt) dt+ σdBt. (13.11)

The parameters here are µ ∈ R, θ > 0 and σ > 0.
We’ll start our analysis of the OU process by calculating E[Xt], in similar style to Exercises

13.7-13.9. Writing equation (13.11) in integral form, we have Xt−X0 =
∫ t
0 (µ−Xs) ds+

∫ t
0 σdBs.

Taking expectations and noting that Ito integrals are zero mean martingales, we have

E[Xt]− E[X0] = E
[∫ t

0
(µ−Xs) ds

]
+ E

[∫ t

0
σ dBs

]
=

∫ t

0
(µ− E[Xs]) ds+ 0.

Writing f(t) = E[Xt] and using the fundamental theorem of calculus, we obtain that f ′(t) =

µ− f(s). The (unique) solution of this ordinary differential equation is f(t) = µ+ (f(0)−µ)e−t.
Noting that e−t → 0 as t → ∞, we obtain that E[Xt] → µ as t → ∞.

The most important feature of the OU process is a property known as mean reversion. This
language is best understood if we take X0 = µ, in which case from our analysis above we have
E[Xt] = µ for all t. Let us examine (13.11) closely in this case. If the process satisfies Xt > µ

then we have θ(µ−Xt) < 0, which is a drift downwards, meaning that (on average) the process
Xt will tend to become closer to its mean value µ in the near future. Similarly, if Xt < µ then
we have θ(µ−Xt) > 0, which is a drift upwards, meaning that (on average) the process Xt will
tend to become closer to its mean value µ in the near future. In both cases, the drift is towards
the average value µ.

At the same time, the σdBt term constantly pushes Xt upwards and downwards in random
directions. Coupled with drift, these two forces create a balance where (Xt) randomly oscillates
around own its mean value µ. The further away it goes, the stronger the drift term tries to bring
it back. This picture is usually described as mean reversion. Here’s a sample path of (Xt), with
µ = 1, σ = 1

4 and θ = 3, showing random oscillations around the mean value 1.

More generally, for any X0 ∈ R the same line of thinking shows that the OU process has a drift
towards its long-term mean µ.

3Pronounced Awn-stein Oo-len-beck.
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We can solve (13.11), at least to an extent, to obtain a useful formula for (Xt). First we
substitute Yt = Xt − µ and apply Ito’s formula to (13.11), we obtain dYt = −θYtdt + σdBt (this
calculation is left for you). Next, set Zt = eθtYt to obtain

dZt =

(
θeθtYt + eθt(−θYt) +

1

2
(0)(σ)2

)
dt+ (eθt)(σ) dBt

= 0 dt+ σeθt dBt.

In integral form we have Zt − Z0 =
∫ t
0 σe

θs dBs, and using that Zt = eθt(Xt − µ) gives us

Xt = µ+ e−θt(X0 − µ) + σ

∫ t

0
e−θ(t−s) dBs. (13.12)

This is not quite an explicit formula, but it is still a useful representation of the OU process.

Remark 13.3.1 Those of you studying time series may recognize a similarity between the AR(1)
process and the OU process. More specifically, the OU process is a continuous time version of
AR(1).

Modelling interest rates

The Ornstein-Uhlenbeck process is sometimes thought of as a model for interest rates, because
of the mean reversion property. In this context it is often referred to as the Vasicek model. We
won’t discuss the reasons why interest rates display mean reversion here, save for noting that in
many countries the central bank has a mandate to target a particular inflation rate (in the UK
it is 2% per year). They have various tools available to try and achieve this, including increasing
or decreasing the supply of money available.

The OU process is not an ideal model for interest rates, because it can take negative values
whereas real interest rates essentially never become negative. For the OU process this issue may
occur (even if it is very unlikely in some cases) for all choices of the model parameters. Various
models have been introduced to avoid this problem, such as the Cox–Ingersoll–Ross model defined
by dXt = θ(µ−Xt) dt+ σ

√
Xt dBt, for which it is known that P[for all t,Xt > 0] = 1 under the

condition 2θµ > σ2. We won’t be able to prove that fact within our course.
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13.4 Stochastic exponentials and martingale representation

In this section we look at a close relative of the SDE (13.8) for geometric Brownian motion. In
particular, we look at

dXt = σtXt dBt (13.13)

with the initial condition X0 = 1. Here, σt is a stochastic process. By comparison to (13.8), we
have set α = 0 (which makes our life easier) but σ is no longer a deterministic constant (which
makes our life harder).

The key idea is the same: we assume that a strictly positive solution exists, take logarithms
Zt = logXt, then look for an explicit formula for Z, and in turn an explicit formula for X, which
we can then go back and check is really a solution.

From Ito’s formula we have

dZt =

(
0 + 0 +

1

2
(σtXt)

2−1

X2
t

)
dt+ σtXt

1

Xt
dBt

= −1

2
σ2
t dt+ σt dBt.

This gives us

Zt = Z0 +

∫ t

0
σu dBu − 1

2

∫ t

0
σ2
u du

and hence
Xt = X0 exp

(∫ t

0
σu dBu − 1

2

∫ t

0
σ2
u du

)
. (13.14)

It can be checked (again, left for you, see 13.13) that this formula really does solve (13.13).

Remark 13.4.1 If σ is a deterministic constant, then (13.14) becomes precisely (13.9) with
α = 0; as we would expect since this is also how (13.13) is connected too (13.8).

In view of (13.14) we have:

Definition 13.4.2 The stochastic exponential of the process σt is

Eσ(t) = exp
(∫ t

0
σu dBu − 1

2

∫ t

0
σ2
u du

)
.

Of course, we have shown that Eσ(t) solves (13.13), and noting that Eσ(0) = 1 we thus have

Eσ(t) = 1 +

∫ t

0
σuEσ(u) dBu. (13.15)

We record this equation here because we’ll need it in the next section.
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The martingale representation theorem (?)

Note that this section is off-syllabus, since it is marked with a (?). However, since it covers a result
that we will need in our analysis of the Black-Scholes model, it will still be covered in lectures.

Recall from Theorem 12.2.1 that Ito integrals
∫ t
0 Fu dBu are martingales. This might make us

wonder if, given a martingale Mt ∈ H2, whether it is possible to write M as

Mt = M0 +

∫ t

0
hu dBu

for some stochastic process h. Here, we follow common convention in denoting ht with a lower
case letter. The answer is strongly positive:

Theorem 13.4.3 (Martingale Representation Theorem) Let Mt ∈ H2 be a continuous mar-
tingale. Fix T ∈ (0,∞). Then there exists a stochastic process ht ∈ H2 such that

Mt = M0 +

∫ t

0
hu dBu

for all t ∈ [0, T ].

Sketch of Proof: Thanks to (13.15), we already know that this theorem holds if M0 = 1 and
Mt is the stochastic exponential of some stochastic process σt – in this case we take ht = σtEσ(t).
The proof of the martingale representation theorem, which we don’t include in this course, works
by showing that any continuous martingale Mt ∈ H2 can be approximated by a sequence M

(n)
t

of continuous martingales that are themselves stochastic exponentials. As a consequence, the
martingale representation theorem tells us that the process ht exists, but does not provide us
with a formula for ht. �

The martingale representation theorem illustrates the importance of Ito integrals, and suggests
that they are likely to be helpful in situations involving continuous time martingales. In fact,
Theorem 13.4.3 will sit right at the heart of the argument that we will use (in Section 15.2) to
show that hedging strategies exist in continuous time.
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13.5 Exercises on Chapter 13

In all the following questions, Bt denotes a Brownian motion and Ft denotes its generated filtra-
tion.

On Ito’s formula

13.1 Write the following equations in integral form.

(a) dXt = 2t dt+Bt dBt over the time interval [0, t],

(b) dYt = t dt over the time interval [t, T ].

Write down a differential equation satisfied by Yt. Is Xt differentiable?

13.2 Apply Ito’s formula to find an expression for the stochastic differential of Zt = t3Xt, where
dXt = αdt+ β dBt and α, β ∈ R are deterministic constants.

13.3 In each case, find the stochastic differential dZt, with coefficients in terms of t, Bt and Zt.

(a) Zt = tB2
t

(b) Zt = eαt, where α > 0 is a deterministic constant.

(c) Zt = (Xt)
−1, where dXt = t2 dt+Bt dBt.

(d) Zt = sin(Xt), where dXt = cos(Xt) dt+ cos(Xt) dBt.

13.4 Find dFt where Ft = Bn
t , where n ≥ 2. Hence, show that

E[Bn
t ] =

n(n− 1)

2

∫ t

0
E[Bn−2

u ] du.

Check that this is consistent with the formula obtained in part (c) of exercise 11.4.

13.5 Show that the following processes are martingales:

(a) Xt = et/2 cos(Bt),

(b) Yt = (Bt + t)e−Bt−t/2.

13.6 Use Ito’s formula to show that

tBt =

∫ t

0
u dBu +

∫ t

0
Bu du.

On stochastic differential equations

13.7 Suppose that Xt satisfies X0 = 1 and dXt = (2 + 2t) dt+Bt dBt.

(a) Find E[Xt] as a function of t.

(b) Let Yt = X2
t . Calculate dYt and hence find var(Xt) as a function of t.

(c) Suppose that X ′
t satisfies X ′

t = 1 and dX ′
t = (2 + 2t) dt + Gt dBt, where Gt is some

unknown function of t and Bt. Based on your solutions to (a) and (b), comment on
whether Xt and X ′

t are likely to have the same mean and/or variance.
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13.8 Suppose that Xt satisfies X0 = 1 and dXt = αXt dt + σt dBt, where α is a deterministic
constant and σt is a stochastic process. Find E[Xt] as a function of t.

13.9 Suppose that Xt satisfies Xt = 1 and dXt = Xt dBt. Show that var(Xt) = et − 1.

13.10 (∆) Let (Xt) be the Ornstein-Uhlenbeck process introduced in Section 13.3. Calculate the
autocovariance function C(s, t) = cov(Xt, Xs), where s ≤ t, in terms of the parameters µ, θ

and σ. Hence show that var(Xt) → σ2

2θ as t → ∞.

Hint: For s ≤ t and a deterministic f : R → R, the random variables
∫ s
0 f(u)dBu and∫ t

s f(u)dBu are independent. Can you explain why?

13.11 Consider the stochastic differential equation

dXt = 3X
1/3
t dt+ 3X

2/3
t dBt

with the initial condition X0 = 0.

(a) Show that Zt = B3
t is a solution of this equation.

(b) Can you think of another solution?

13.12 Check that (13.9) is a solution of (13.8).

13.13 Check that (13.14) is a solution of (13.13).

Challenge Questions

13.14 Fix T > 0.

(a) Let Y be an FT measurable random variable such that Y ∈ L2. Show that Mt =

E[Y | Ft] is a martingale for t ∈ [0, T ].

(b) You may assume that the stochastic process Mt in part (a) is continuous. Hence, for
any given Y ∈ FT , the martingale representation theorem, from Section 13.4, tells us
that there exists a stochastic process ht such that

Mt = M0 +

∫ t

0
hu dBu.

for all t ∈ [0, T ]. Find an explicit formula for ht in each of the following cases.

(i) Y = B2
T

(ii) Y = B3
T

(iii) Y = eσBT , where σ > 0 is a deterministic constant.

Hint: Use the various connections that we’ve already found (in lemmas, exercises,
examples, etc) between Brownian motion and martingales. For example, for (i) you
might look at the formula for dZt where Zt = B2

t .
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Chapter 14

Stochastic processes in continuous
time

We’ve already made several comparisons between ordinary differential equations and SDEs. We
make a further connection in this section: we show how SDEs can be used to represent solutions
to a particular family of partial differential equations. We’ll also develop a little bit of general
theory concerning the Markov property.

14.1 The Feynman-Kac formula

Consider F (t, x) where t ∈ [0, T ] and x ∈ R. We will begin by looking at the partial differential
equation

∂F

∂t
(t, x) + α(t, x)

∂F

∂x
(t, x) +

1

2
β(t, x)2

∂2F

∂x2
(t, x) = 0 (14.1)

F (T, x) = Φ(x) (14.2)

Here, α(t, x) and β(t, x) are (deterministic) continuous functions, and Φ(x) is a function known
as the boundary condition.

Remark 14.1.1 (?) Those familiar with partial differential equations may want to hear the
‘proper’ terminology: this is a second order parabolic PDE with a terminal boundary condition.

We will now show that the solutions of this PDE can be written in terms the solutions to a
SDE. In particular, let X be a stochastic process that satisfies

dXu = α(u,Xu) du+ β(u,Xu) dBu. (14.3)

We will need to consider solutions to this SDE where we vary the initial value of x, and also the
time at which the ‘initial’ value occurs. For given x ∈ R and t ∈ [0, T ] we write the subscripts
Pt,x (and Et,x) to specify that X represents the solution of (14.3) with the initial condition that
Xt = x (and we are then interested in Xu during time u ∈ [t, T ]). We will continue to use
P and E to denote starting at time 0 with unspecified initial value X0. We assume also that
β(t,Xt)

∂F
∂x (u,Xu) is in H2, to ensure that the Ito integrals in the proof really exist.

The connection is as follows.
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Lemma 14.1.2 Suppose that F is a solution of (14.1) and (14.2). Then,

F (t, x) = Et,x [Φ(XT )]

for all x ∈ R and t ∈ [0, T ].

Proof: We apply Ito’s formula to Zt = F (t,Xt), giving

dZt =

(
∂F

∂t
+ α(t,Xt)

∂F

∂x
+

1

2
β(t,Xt)

2∂
2F

∂x2

)
dt+ β(t,Xt)

∂F

∂x
dBt

where, as usual, we have suppressed the (t,Xt) arguments of the partial derivatives of F . We
know that F satisfies the PDE (14.1), which means the first term on the right hand side of the
above vanishes. Writing the result out with integrals, and taking the time limits to be [t, T ], then
gives

F (T,XT ) = F (t,Xt) +

∫ T

t
β(u,Xu)

∂F

∂x
(u,Xu) dBu.

We now take expectations Et,x, and recall from Theorem 12.2.1 that the expectation of in-
tegrals with respect to dBt is zero. Note that here, to apply Theorem 12.2.1, we use that
β(t,Xt)

∂F
∂x (u,Xu) is in H2. This leaves us with

Et,x[F (T,XT )] = Et,x[F (t,Xt)]

Under Et,x we have Xt = x, so F (t,Xt) = F (t, x), which is deterministic. From (14.2) we have
F (T,XT ) = Φ(T ), which is also deterministic. Hence we have

Et,x[Φ(XT )] = F (t, x)

as required. �

Lemma 14.1.2, (14.1) is very useful, from a theoretical point of view, but it is not quite what
we need for later. The PDE that will turn out to be important for option pricing is

∂F

∂t
(t, x) + α(t, x)

∂F

∂x
(t, x) +

1

2
β(t, x)2

∂2F

∂x2
(t, x)− rF (t, x) = 0 (14.4)

F (T, x) = Φ(x) (14.5)

where α, β,Φ are as before and r is a deterministic constant. We can treat this PDE in a similar
style, even using the same SDE for X; we just need an extra term in the calculations.

Lemma 14.1.3 Suppose that F is a solution of (14.4) and (14.5). Then,

F (t, x) = e−r(T−t)Et,x [Φ(XT )] (14.6)

for all x ∈ R and t ∈ [0, T ].

Proof: This time we apply Ito’s formula to the process Zt = e−rtF (t,Xt). We obtain

dZt =

(
−re−rtF + e−rt∂F

∂t
+ α(t,Xt)e

−rt∂F

∂x
+

1

2
β(t,Xt)

2e−rt∂
2F

∂x2

)
dt+ β(t,Xt)e

−rt∂F

∂x
dBt

= e−rt

(
−rF +

∂F

∂t
+ α(t,Xt)

∂F

∂x
+

1

2
β(t,Xt)

2∂
2F

∂x2

)
dt+ e−rtβ(t,Xt)

∂F

∂x
dBt.

42



©Nic Freeman, University of Sheffield, 2024.

We know that F satisfies (14.4), so the first term on the right hand side vanishes. Writing the
result as integrals with time interval [t, T ] we obtain

e−rTF (T,XT ) = e−rtF (t,Xt) +

∫ T

t
e−ruβ(u,Xu)

∂F

∂x
(u,Xu) dBu.

The second term on the right is an Ito integral, and hence has mean zero. Taking expectations
Et,x leaves us with

Et,x

[
e−rTF (T,XT )

]
= Et,x

[
e−rtF (t,Xt)

]
.

Under Et,x we have Xt = x, so F (t,Xt) = F (t, x) which is deterministic. We obtain that

e−r(T−t)Et,x [F (T,XT )] = F (t, x)

and using (14.5) then gives us

e−r(T−t)Et,x [Φ(XT )] = F (t, x)

as required. �

Remark 14.1.4 Setting r = 0 in Lemma 14.1.3 gets us back to the statement of Lemma 14.1.2.

We can start to see the connection to finance emerging in (14.6). If we set t = 0, we obtain

F (0, x) = e−rTE0,x[Φ(XT )]

which bears a resemblance to the risk-neutral valuation formula we found in Chapter 5. The
connection will be explored when we come to apply Lemma 14.1.3, in Section 15.3.

Both Lemma 14.1.2 and 14.1.3 assert that, for some particular PDE, if a solution exists then
it has a particular form. They assert uniqueness of solutions, without proving that a solution
exists. In fact, in both cases, a (unique) solution does exist; this can be proved either using
theory from the PDE world, or by using delicate real analysis to show explicitly that Et,x[Φ(XT )]

is differentiable. We don’t include this step in our course.
Lemmas 14.1.2, 14.1.3 and variations on the same theme are collectively known as ‘the’

Feynman-Kac formula. They are named after the Richard Feynman (a theoretical physicist,
famous for his work in quantum mechanics) and Mark Kac (pronounced “Kats”, a mathematician
famous for his contributions to probability theory).

Remark 14.1.5 (?) There are many other families of PDEs that have relationships to other fami-
lies of stochastic processes. These connections are exploited by researchers to transfer information
and results between the ‘dual’ worlds of stochastic processes and PDEs.

Example 14.1.6 In cases where we can solve (14.3), we can use the Feynman-Kac formula to
find explicit solutions to PDEs. For example, consider

∂F

∂t
(t, x) +

1

2
σ2∂

2F

∂x2
(t, x) = 0

f(T, x) = x2.

Here, σ ≥ 0 is a deterministic constant and t, x ∈ R.
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We have α(t, x) = 0, β(t, x) = σ (both constants), and Φ(x) = x2. From Lemma 14.1.2 the
solution is given by

F (t, x) = Et,x[X
2
T ]

where dXu = 0 du+ σ dBu = σ dBu. This means that

XT = Xt + σ

∫ T

t
dBu = Xt + σ(BT −Bt).

Therefore,

F (t, x) = Et,x

[
(Xt + σ(BT −Bt))

2
]

= E
[
(x+ σ(BT −Bt))

2
]

= E
[
x2 + σ2(BT −Bt)

2 + 2xσ(BT −Bt)
]

= x2 + σ2(T − t).

Here, we use that Xt = x under Et,x and that BT −Bt ∼ BT−t ∼ N(0, T − t).
See exercises 14.1 and 14.2 for further examples of this method.
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14.2 The Markov property

The notation Et,x[. . .] from Section 14.1, along with conditional expectation, allows us to formally
express one of the most useful concepts in probability theory: the Markov property.

Those of you taking the MAS61023 version of the course have already studied a more extensive
treatment of the Markov property, in discrete time, in Section 8.4. We’ll use slightly different
notation here.

The idea of the Markov property is the following. Suppose that we have a stochastic process
(Xt), and that we have waited up until time t, so the information visible to us is given by Ft. We
want to make a best guesses for some information about XT where T > t. In symbols this means
that we have chosen some (deterministic) function Φ and we are interested in

E[Φ(XT ) | Ft].

In principle, we have access to all the information in Ft. However, in many cases it holds that 1

E[Φ(XT ) | Ft] = Et,Xt
[Φ(XT )]. (14.7)

Recall our intuition for conditional expectation: we view the left hand side of (14.7) as our best
guess for Φ(XT ), based on the information we have seen during [0, t]. On the right hand side,
we simply start at time t, fix the value of Xt, run the stochastic process until time T , and take
expectations. Thus, the right hand side relies on much less information (in particular, we ignore
the values of Xu for u ∈ [0, t) and only need to know Xt).

Equation (14.7) is known as the Markov property for the stochastic process X. Not all stochas-
tic processes are Markov, but many of the most useful ones are. Intuitively, the future (random)
behaviour of a Markov process depends on its current value – but, crucially, the future doesn’t
depend on the whole history of the process, just on the current value.

For our purposes we need only know that:

Lemma 14.2.1 All Ito processes satisfy the Markov property.

In particular, the formula (14.7) holds when X is Brownian motion, and when X is geometric
Brownian motion.

Remark 14.2.2 (∆) (?) In Section 8.4 we introduced the strong Markov property for random
walks. All Ito processes are strongly Markov, so (14.7) also holds at stopping times T .

1Formally, viewing random variables as functions on Ω, this equation reads E[Φ(XT )](ω) = Et,Xt(ω)[Φ(XT )].
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14.3 Exercises on Chapter 14

On the Feymann-Kac formula

14.1 Find an explicit formula for the solution of the PDE

∂f

∂t
(t, x)− 2t

∂f

∂x
(t, x) = 0

f(T, x) = ex.

14.2 Find an explicit formula for the solution of the PDE

∂f

∂t
(t, x) +

∂f

∂x
(t, x) +

1

2

∂2f

∂x2
(t, x) = 0

f(T, x) = x2.

14.3 Let T > 0. Let F be the solution of the PDE

∂F

∂t
(t, x) + α(t, x)

∂F

∂x
(t, x) +

1

2
β(t, x)2

∂2F

∂x2
(t, x) +

∂γ

∂t
(t) = 0 (14.8)

F (T, x) = Φ(x). (14.9)

Here, α(t, x), β(t, x), γ(t) and Φ(x) are known functions.

(a) Let Xt satisfy dXu = α(u, x) du + β(u, x) dBu. Define Zt = F (t,Xt) + γ(t). Use Ito’s
formula to find dZt.

(b) Show that F (t, x) = Et,x [Φ(XT )] + γ(T )− γ(t).

Challenge Questions

14.4 Give an example of a stochastic process that is adapted to the generated filtration (Ft) of a
Brownian motion (Bt), but which does not satisfy the Markov property.
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Chapter 15

The Black-Scholes model

Our discussion of finance, in continuous time, will be centred around the Black-Scholes model.
The Black-Scholes model is, in some sense, the continuous time version of the binomial model
from Section 5.4. Moving into continuous time has one big advantage: we can make our stock
price process more realistic.

15.1 The Black-Scholes market

The Black-Scholes market contains two assets, cash and stock. In analogy to our discrete time
model, cash earns interest at a deterministic rate, whereas the value of stock fluctuates randomly.
As in discrete time, the model has some parameters: r, µ and σ, all real valued deterministic
constants.

Here is the model:

• The value of a unit of stock at time t is St, where St is a geometric Brownian motion (from
Section 13.2) given by the SDE

dSt = µSt dt+ σSt dBt, (15.1)

with initial value S0. Here, of course, Bt is a Brownian motion. From (13.9) we know that
the (unique) solution of this SDE is St = S0e

(µ− 1

2
σ2)t+σBt .

• If we hold x units of cash at the start of a time interval of length t, its final value will be
xert. This is the definition of ‘cash earning interest at continuous rate r > 0 for time t’.

A neater way of representing it is that we think of cash as an asset whose value changes over
time. That is, the value of a ‘unit of cash’ at time t is given by

dCt = rCt dt. (15.2)

with initial condition C0 = 1, and (unique) solution Ct = ert.

It might be appealing to ‘divide by dt’ and write (15.2) as an ODE, in the form dCt

dt = rCt (with
solution Ct = C0e

rt). Justifying this step rigorously requires an application of the fundamental
theorem of calculus. Whilst it would be mathematically correct, it is not what we want; (15.2) is
better because its form is more compatible with the SDE (15.1).
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Remark 15.1.1 We write the initial value of the stock as S0. We will use s as a variable. Note
that this is different to our use of s in discrete time, in which we set s = S0.

As usual, we work over a filtered space (Ω,F , (Ft),P) where the filtration Ft is generated by
the Brownian motion Bt, that is

Ft = σ(Bu ; u ≤ t).

Here, Bt is the same Brownian motion that drives the random stock price in (15.1). Within the
Black-Scholes model, Bt is the only source of randomness that we’ll need.

As in the binomial model, we assume that we can borrow both cash and stock, and hold real
valued amounts in each case. Thus, our definition of a portfolio remains the same as before:

Definition 15.1.2 A portfolio is a pair h = (x, y) where x ∈ R denotes an amount of cash and
y ∈ R denotes a number of units of stock. The value of this portfolio at time t is

V h
t = xCt + ySt.

However, our definition of a portfolio strategy needs to be upgraded. Previously, at each time
t ∈ N we had a round of buying/selling, and then in between times t 7→ t+ 1 we had stock/cash
changing in value. Now, both these process must occur together, continuously. Happily, we have
already developed the theoretical framework to do this:

Definition 15.1.3 A portfolio strategy is a pair of continuous stochastic processes (ht) =

(xt, yt) where both xt and yt are adapted to the filtration Ft. The value of (ht) at time t is

V h
t = xtCt + ytSt.

Note that here we break our usual convention of writing random quantities in capitals and deter-
ministic quantities in lower case. The amounts of cash xt and stock yt that we hold at a given
time are stochastic processes. (Just like in discrete time.)

We have required that our portfolio strategies be continuous. This assumption is helpful from
a mathematical point of view, because we have only developed Ito integration for continuous
processes, but it is not entirely realistic. In reality, it is possible to buy/sell large amounts of
stock in a single transaction. We’ll put this issue to one side for now, but we will return to discuss
discontinuities and related matters (such as transaction costs) in Sections 16.1 and 17.3.

Definition 15.1.4 A portfolio strategy (ht) is said to be self-financing if

dV h
t = xt dCt + yt dSt. (15.3)

We will need a little thought to understand why this definition captures the concept of a portfolio
being self-financing. To do so, we need to think of a stochastic differential dXt as ‘the change
in X over a short time interval. That is, if we choose time limits [t, t + δ] where δ is small then
YtdXt represents

∫ t+δ
t Yu dXu ≈ Yt(Xt+δ −Xt). Note that we use Yt and not Yt+δ here to match

the definition of the Ito integral in (12.12). So, approximately, (15.3) means that

V h
t+δ − V h

t = xt(Ct+δ − Ct) + yt(St+δ − St)

This means that xt and yt are chosen in such a way as the changes in C and S entirely explain the
variation in the value V h during the time interval [t, t + δ]. In other words, we haven’t injected

48



©Nic Freeman, University of Sheffield, 2024.

any value in, nor taken any value out. Formally, imposing this condition for all t in a limit as
δ ↓ 0 results in (15.3).

Finally, and exactly as before:

Definition 15.1.5 We say that a self-financing portfolio strategy (ht) is an arbitrage possibil-
ity if

V h
0 = 0

P[V h
t ≥ 0] = 1

P[V h
t > 0] > 0

Definition 15.1.6 A contingent claim with date of exercise T is any random variable of the
form X = Φ(ST ), where Φ : [0,∞) → R is a deterministic function.

We say that a portfolio strategy ht = (xt, yt) hedges (or replicates) X if (ht) is self-financing
and V h

T = X.

For now, we restrict ourselves to portfolios ht = (xt, yt) containing only cash and stock. Later
on, in Chapter 16, we will also consider portfolios that include financial derivatives (such as
call/put options).
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15.2 Completeness

We’ll begin our analysis of the Black-Scholes model by showing that, in the Black-Scholes market,
we can replicate any contingent claim that has a well-defined expectation. This is, essentially,
what is meant by completeness in the Black-Scholes model.

Remark 15.2.1 The Black-Scholes model uses Ito integration. Up to now, whenever we wrote
an Ito integral

∫ t
0 Ft dBt we were careful to check that F ∈ H2. From now on, we won’t go to the

trouble of checking this condition (although it does always hold). We’ll say slightly more about
this issue in Section 17.3

In the binomial model we discovered the importance of the so-called risk-neutral world, Q. We
will see that the corresponding concept is equally important in continuous time.

Definition 15.2.2 The risk-netural world Q is the probability measure under which St evolves
according to the SDE

dSt = rSt dt+ σSt dBt. (15.4)

Here, Bt has the same distribution (i.e. Brownian motion) under Q as in the ‘real’ world P.

The key point here is that, compared to the ‘real’ dynamics of St, given in (15.1), we have
replaced µ with r.

Definition 15.2.3 As in Section 13.2, we refer to r as the drift and to σ as the volatility.

The next lemma, at first glance, appears rather odd. It gives an awkward looking condition
under which we can replicate a contingent claim. The point, as we will see immediately after, is
that it turns out we can always satisfy this condition.

For reasons that will become clear in Section 17.2, in this section we’ll tend to write X (instead
of our usual Φ(ST )) for contingent claims.

Lemma 15.2.4 Let X ∈ FT be a contingent claim in the Black-Scholes market with exercise time
T . Suppose that the stochastic process

Mt = e−rTEQ [X | Ft]

exists and has the stochastic differential

dMt = ft dZt (15.5)

where Zt = e−rtSt, for some (continuous, adapated) stochastic process ft. Then there exists a
replicating portfolio strategy for X.

Proof: We are looking for a portfolio strategy ht = (xt, yt) such that both

V h
T = X , (15.6)

dV h
t = xtdCt + ytdSt. (15.7)

Here, the first equation is ‘replication’ and the second is ‘self-financing’. The portfolio strategy
we will use is

xt =
(
Mt − e−rtftSt

)
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yt = ft.

It is immediate that xt and yt are continuous and adapted, so ht = (xt, yt) is a portfolio strategy
and we must check (15.6) and (15.7) hold. Recalling that Ct = ert, we note that

V h
t = xtCt + ytSt

= ertMt − ftSt + ftSt

= ertMt. (15.8)

Hence V h
T = erTMT = erT e−rTEQ[X | FT ] = X, because X ∈ FT . This checks (15.6) i.e. (ht)

replicates X.
Now, for (15.7). We need to apply Ito’s formula to obtain dV h

t , and we’ll do it using (15.8).
This means that we need to calculate dMt, which we can do using (15.5), meaning that we’ll need
to start by finding an expression for dZt.

Using Ito’s formula on Zt = ertSt we obtain that

dZt =
(
−rSte

−rt + µSte
−rt + 0

)
dt+ σSte

−rt dBt

= e−rtSt(µ− r) dt+ σe−rtSt dBt.

This represents Z as an Ito process. Hence, using (15.5),

dMt = e−rtftSt(µ− r) dt+ σe−rtftSt dBt

and we are now ready to apply Ito’s formula to V h
t = ertMt. We obtain

dV h
t =

(
rertMt + e−rtftSt(µ− r)ert + 0

)
dt+ σe−rtftSte

rt dBt

=
(
rertMt − rftSt

)
dt+ ft [µSt dt+ σSt dBt]

=
(
Mt − e−rtftSt

) [
rert dt

]
+ ft [µSt dt+ σSt dBt] .

=
(
Mt − e−rtftSt

)
dCt + ft dSt.

The second and third lines are collecting terms, so that in the final line we can use the definitions
of dCt and dSt from (15.2) and (15.1). Recalling the definitions of xt and yt we now have

dV h
t = xt dCt + yt dSt

and, as required, we have checked (15.7) i.e. (ht) is self-financing. �

Theorem 15.2.5 Let X ∈ FT be a contingent claim in the Black-Scholes market with exercise
time T . Suppose that EQ[|X|] < ∞. Then there exists a replicating portfolio strategy for X.

Proof: We define Mt = e−rTEQ [X | Ft] and look to apply Lemma 15.2.4. Note that since
EQ[|X|] < ∞ this conditional expectation is well defined. From Example 3.3.9 (which is easily
adapted to continuous time) we have that E[X | Ft] is a martingale. Hence, since e−rT is just a
constant, we know that Mt is a martingale.

The key step is the next one: use the martingale representation theorem (Theorem 13.4.3), in
the risk neutral world Q, to say that under Q there exists a process gt such that

dMt = gt dBt. (15.9)
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Let Zt = e−rtSt, as in Lemma 15.2.4. Under Q, the dynamics of S are that dSt = rSt dt+σSt dBt,
so in world Q when we apply Ito’s formula to Zt we obtain

dZt =
(
−re−rtSt + rSte

−rt + 0
)
dt+ σe−rtSt dBt

= σZt dBt.

Combining with (15.9) we obtain

dMt =
gt
σZt

σZt dBt =
gt
σZt

dZt.

This shows that (15.5) holds, with ft =
gt
σZt

. Finally, we apply Lemma 15.2.4 and deduce that
there exists a replicating portfolio strategy for X. �

In some ways, Theorem 15.2.5 is very unsatisfactory. It asserts that (essentially, all) contingent
claims can be replicated, but it doesn’t tell us how to find a replicating portfolio. The root cause
of this issue is that we used the martingale representation theorem – which told us the process g

existed, but couldn’t give us an explicit formula for g. Without calculating g, we can’t calculate
xt, yt either.

Of course, to trade in a real market, we would need a replicating portfolio ht = (xt, yt), or at
the very least a way to numerically estimate one. With this in mind, in the next section, we will
show how to find a replicating portfolio explicitly. The argument we will use to do so relies on
already knowing that a replicating portfolio exists; for this reason, we needed to prove Theorem
15.2.5 first.

Another issue is that we have not addressed is to ask if our replicating portfolio is unique.
Potentially, two different replicating portfolios could exist. We will show in the next section that
the replicating portfolio is, in fact, unique.
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15.3 The Black-Scholes equation

We now look at how a replicating portfolio can be found explicitly, for a given contingent claim
Φ(ST ). We will, from now on, assume that our model is free of arbitrage.

In the case of the binomial model we found ourselves solving pairs of linear equations for each
time-step; now, in continuous time, we will instead find ourselves solving a partial differential
equation. This is natural – our linear equations told us how things changed across a single time-
step, and PDEs can describe the changing state of a system in continuous time.

Let Φ(ST ) be a contingent claim in the Black-Scholes market (with parameters r, µ, σ), and
suppose that F (t, s) is a (suitably differentiable) function such that F (t, St) denotes the value of
the contingent claim Φ(ST ) at time t ∈ [0, T ]. Then, as we will show in Theorem 15.3.1, for all
s > 0 and t ∈ [0, T ] we have

∂F

∂t
(t, s) + rs

∂F

∂s
(t, s) +

1

2
s2σ2∂

2F

∂s2
(t, s)− rF (t, s) = 0, (15.10)

F (T, s) = Φ(s). (15.11)

This is known as the Black-Scholes equation. It dates from a now famous research article by
Fischer Black and Myron Scholes1, published in 1973. The rigorous mathematical basis for the
model was provided, also in 1973, by Robert C. Merton2 In 1997 Merton and Scholes received
the Nobel prize in economics, in recognition of their contributions (Black died in 1995, and Nobel
prizes are only awarded to the living).

Theorem 15.3.1 Let Φ(ST ) be a contingent claim such that EQ[Φ(ST )] < ∞. Then a replicating
portfolio for Φ(ST ) is given by

xt =
1

rCt

(
∂F

∂t
(t, St) +

1

2
σ2S2

t

∂2F

∂s2
(t, St)

)
yt =

∂F

∂s
(t, St)

where F (t, s) is the solution to (15.10),(15.11). The value of this portfolio at time t is equal

F (t, St) = e−r(T−t)EQ[Φ(ST ) | Ft], (15.12)

and in particular its value at time 0 is

e−rTEQ[Φ(ST )]. (15.13)

The formulae given for xt, yt are a big improvement on Theorem 15.2.5, because a computer can
simulate solutions to (15.10), as well as their partial derivatives, without (much) difficulty. This
allows computation of the replicating portfolio in real-time. You are not expected to memorize
these formulae for ht = (xt, yt). The other formula in Theorem 15.3.1 can be found on the formula
sheet, in Appendix E.

Of course, (15.13) is known as the risk-neutral valuation formula, in direct analogy to the
discreet time version we found in Proposition 5.2.6.

1Black, Fischer; Myron Scholes (1973). ”The Pricing of Options and Corporate Liabilities”. Journal of Political Economy.
81 (3): 637–654.

2Merton, Robert C. (1973). ”Theory of Rational Option Pricing”. Bell Journal of Economics and Management Science.
The RAND Corporation.
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We will most of this section proving the claims in Theorem 15.3.1.
Proof: First let us deduce that (15.11). Equation (15.11) is known as the boundary condition,
because it relates to the exercise time T . It holds because, by definition of F (t, St), at the exercise
time T the value of Φ(ST ) must be equal F (T, ST ) i.e. Φ(ST ) = F (T, ST ). Since ST may take
any positive value we simply replace ST with a general s > 0.

Note that we don’t need to worry about s < 0 because St is a geometric Brownian motion,
which (from Section 13.2) is always positive.

We now work towards proving that (15.10) holds. From Theorem 15.2.5 we know that Φ(ST )

can be replicated by a self-financing portfolio strategy ht = (xt, yt). Therefore, because we assume
that our model is free of arbitrage, the value of this portfolio strategy at time t must be equal to
F (t, St):

F (t, St) = V h
t = xtCt + ytSt (15.14)

In particular, this implies that dF (t, St) = dV h
t . We plan to calculate both these stochastic

differentials, written out in full, and then use Lemma 12.4.5 to equate the dt and dBt coefficients.
It will turn out that this leads to precisely (15.10), and along the way we will discover formulae
for xt and yt.

Since (ht) is self-financing we have

dV h
t = xt dCt + yt dSt.

Substituting in (15.1) and (15.2), this becomes

dV h
t = (xtrCt + ytµSt) dt+ ytσSt dBt. (15.15)

Next: recalling that dSt = µSt dt+ σSt dBt, by Ito’s formula we have

dF (t, St) =

(
∂F

∂t
+ µSt

∂F

∂s
+

1

2
σ2S2

t

∂2F

∂s2

)
dt+ σSt

∂F

∂s
dBt (15.16)

where we have suppressed the (t, St) arguments of the partial derivatives of F .

Remark 15.3.2 Here, we assume, without justifying ourselves, that F (t, s) is differentiable (once
in t and twice in s). This is a minor issue that can be dealt with using appropriate results from
analysis, but it is beyond the scope of our course.

Equating the dBt coefficients between (15.15) and (15.16) gives us that

yt =
∂F

∂s
.

With this in hand, equating the dt coefficients gives us

∂F

∂t
+ µSt

∂F

∂s
+

1

2
σ2S2

t

∂2F

∂s2
= xtrCt +

∂F

∂s
µSt (15.17)

and the terms µSt
∂F
∂s cancel giving

∂F

∂t
+

1

2
σ2S2

t

∂2F

∂s2
= xtrCt.

so as

xt =
∂F
∂t + 1

2σ
2S2

t
∂2F
∂s2

rCt
.
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Using (15.14) to substitute in for Ct in (15.17), we obtain
∂F

∂t
+

1

2
σ2S2

t

∂2F

∂s2
= xtr

(
F − ytSt

xt

)
= rF − rSt

∂F

∂s
.

This is equation (15.10), but with St in place of s. Equation (15.10) follows, because we can see
from (13.9) that St takes values on the whole of the positive reals (0,∞). Note that we have also
discovered formulae for xt, yt along the way, which must satisfy F (t, St) = V h

t because they were
derived to satisfy (15.14).

Next we use Lemma 14.1.3, which tells us that the solution to be Black-Scholes equation can
be written as

F (t, s) = e−r(T−t)EQ
t,s[Φ(ST )].

Note that here we take expectation in the risk neutral world Q, in which St follows dSt =

rSt dt + σSt dBt (in the notation of Lemma 14.1.3 we have α(t, s) = rs and β(r, s) = σs). We
deduce that the value at time t of the replicating portfolio is

F (t, St) = e−r(T−t)EQ
t,St

[Φ(ST )]

To finish the proof, we use that St is a Markov process. By the Markov property at time t,
from Lemma 14.2.1, we have

EQ
t,St

[Φ(ST )] = EQ[Φ(ST ) | Ft].

Setting t = 0, and recalling that F0 is the trivial σ-field (containing no information) we have

EQ[Φ(ST ) | F0] = EQ[Φ(ST )],

as required. �

Corollary 15.3.3 The replicating portfolio given in Theorem 15.3.1 for Φ(ST ) is unique.

Proof: The calculations in the proof of Theorem 15.3.1 showed that any replicating portfolio
(consisting solely of stocks and cash) could be written in terms of the solution to the Black-Scholes
equation, as in the statement of Theorem 15.3.1. It is known from the world of PDEs that the
Black-Scholes equation has a unique solution, so the replicating portfolio is also unique. �

Remark 15.3.4 We have now seen that the Feynman-Kac formula is important to mathematical
finance; it is the key to establishing the risk-neutral valuation formula (15.13). This formula links
arbitrage free pricing theory to Brownian motion, through the stochastic differential equation
dSt = µSt dt+ σSt dBt.

The Feynman-Kac formula has much wider applications too. We have already mentioned heat
diffusion and movements of particles within fluids, and we could re-phrase our ‘by hand’ results
from Section 11.3 in terms of the Feynman-Kac formula. We list two further examples here:

• It is used to describe solutions to the Schrödinger equation, a PDE which is the equivalent
in quantum mechanics of Newton’s second law (i.e. F = ma, the ‘law of motion’).

• It is used, in a variety of SDE based models, by mathematicians trying to model evolution,
to analyse the positions and/or proportions of genes within a population.

There are many others – Brownian motion sits right at the heart of the physical world.
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15.4 Martingales and ‘the risk-neutral world’

In this section we give a (brief) explanation of where the term ‘risk-neutral world’ comes from.
Offering explanations for mathematical wording is something of a dangerous game – in prac-
tice terminology often arises from accidents of history. There are many cases where “Someone’s
Theorem” was not discovered by the same Someone whose name is generally quoted.

As we saw in Proposition 5.5.6, in the risk neutral world Q the discounted stock price is a
martingale. In continuous time we have the precise equivalent:

Lemma 15.4.1 The stochastic process
St

Ct

is a martingale in the risk-neutral world Q.

Proof: Recall that Ct = ert. Thus we are interested in the process Xt = e−rtSt. In the
risk-neutral world Q the process St satisfies dSt = rSt dt+ σSt dBt, so by Ito’s formula we have

dXt =
(
−re−rtSt + rSte

−rt + 0
)
dt+ σSte

−rt dBt

= σSte
−rt dBt

By Theorem 12.2.1, we have that Xt is a martingale (under Q). �

In fact, more is true. Our next result says that, in the risk neutral world, once we have
discounted for interest rates (i.e. divided by Ct), the price of any contingent claim is a martingale.
As we saw in Section 3.3, martingales model fair games that are (on average) neither advantageous
or disadvantageous to their players. The term ‘risk-neutral’ captures the fact that, inside the risk-
neutral world, if we forget about interest rates, buying/selling on the stock market would be a
fair game.

It is important to remember that we do not believe that the risk-neutral world is the real world.
We believe in the absence of arbitrage, and we only care about the risk neutral world because it
is useful when calculating arbitrage free prices.

Proposition 15.4.2 Let Φ(ST ) be a contingent claim and let Πt denote the price of this contingent
claim at time t. Then

Πt

Ct

is a martingale in the risk-neutral world Q.

Proof: Our strategy, which is based on the proof of Lemma 15.4.1, is to set Xt =
Πt

Ct
= e−rtΠt

and calculate dXt using Itos formula. If Xt is to be a martingale, it should have the form
dXt = (. . .) dBt, in which case we can use Theorem 12.2.1 to finish the proof. We’ll carry out the
whole proof in the risk-neutral world Q.

To avoid arbitrage, Πt is equal to the value of the replicating portfolio for Φ(ST ) at time t.
Hence, by Theorem 15.3.1,

Πt = F (t, St). (15.18)

Recall that, in the risk neutral world Q, we have dSt = rSt dt+σSt dBt. By Ito’s formula (applied
in the risk neutral world!), we have

dΠt =

(
∂F

∂t
+ rSt

∂F

∂x
+

1

2
σ2S2

t

∂2F

∂x2

)
dt+ σSt

∂F

∂x
dBt
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where we have suppressed the (t, St) arguments of F and its partial derivatives. We know that F
satisfies the Black-Scholes PDE (15.10). Hence,

dΠt = rF dt+ σSt
∂F

∂x
dBt

and using (15.18) again we have

dΠt = rΠt dt+ σSt
∂F

∂x
dBt

which represents Πt as an Ito process.
We have Xt = e−rtΠt. Using Ito’s formula again, this gives us

dXt =
(
−re−rtΠt + rΠte

−rt + 0
)
dt+ σSt

∂F

∂x
e−rt dBt

= σSt
∂F

∂x
e−rt dBt.

Hence, by Theorem 12.2.1, Xt is a martingale (under Q). �
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15.5 The Black-Scholes formula

In principle, Theorem 15.3.1 tells us the arbitrage free price, under the Black-Scholes model, of
any contingent claim (such that EQ[Φ(ST )] exists). In many cases the only way to evaluate (15.13)
is with numerics. However, in some cases it is possible to derive an explicit formulae.

In this section, we find explicit formulae for the case of European call options. The result is
often referred to as the Black-Scholes formula.

We begin from the formula given to us by Theorem 15.3.1: the price of the contingent claim
Φ(ST ) at time 0 is

F (t, St) = e−r(T−t)EQ [Φ(ST ) | Ft] . (15.19)

Here, since we take expectation in the risk-neutral world Q, the stock price process St has dynamics

dSt = rSt dt+ σSt dBt.

From (13.10) we have

ST = St exp
(
(r − 1

2σ
2)(T − t) + σ(BT −Bt)

)
(15.20)

= Ste
Z (15.21)

where Z ∼ N
[
(r − 1

2σ
2)(T − t), σ2(T − t)

]
= N [u, v2] is independent of Ft. Here, we use u and

v to keep our notation manageable.
Before we attempt to price a call option, let us work through a simpler case.

Example 15.5.1 We look to find the price, at time t ∈ [0, T ], of the contingent claim Φ(ST ) =

2ST + 1. From (15.19), the price is

e−r(T−t)EQ [2ST + 1 | Ft] .

Using (15.21) we obtain

e−r(T−t)EQ [2ST + 1 | Ft] = e−r(T−t)EQ [2Ste
Z + 1 | Ft

]
= e−r(T−t)

(
2StEQ [eZ | Ft

]
+ 1
)

= e−r(T−t)
(
2StEQ [eZ]+ 1

)
= e−r(T−t)

(
2Ste

(r−1
2σ

2)(T−t)+ 1

2
σ2(T−t) + 1

)
= e−r(T−t)

(
2Ste

r(T−t) + 1
)

= 2St + e−r(T−t)

Here, we use that St is Ft measurable, and that Z is independent of Ft. We use (11.2) to calculate
E[eZ ].

Note that the price obtained corresponds to the hedging strategy of, at time 0, owning two units
of stock, plus e−rT cash. The value of this portfolio at time t is then 2St+erte−rT = 2St+e−r(T−t).

Using the (15.19) in combination with either (15.20) or (15.21) is usually the best way to
compute explicit pricing formulae. See exercises 15.2-15.5 for more examples in the same style.
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We’ll give one more example in these notes. Consider the case of a call option with strike price
K and exercise date T . This case is not easy, and it will involve some hefty calculations because
of the max present in the contingent claim:

Φ(ST ) = max(ST −K, 0).

We are now looking to evaluate

F (t, St) = e−r(T−t)EQ[Φ(ST ) | Ft]

= e−r(T−t)EQ[Φ(Ste
Z) | Ft],

where we use (15.21). Writing s = St ∈ mFn and using the probability density function of Z

gives us

F (t, s) = e−r(T−t)

∫ ∞

−∞
Φ(sez)fZ(z) dz

= e−r(T−t)

(
0 +

∫ ∞

log(K/s)
(sez −K)fZ(z) dz

)

= e−r(T−t)

∫ ∞

log(K/s)
(sez −K)

1√
2πv

e−
(z−u)2

2v2 dz

=

A︷ ︸︸ ︷
e−r(T−t)

∫ ∞

log(K/s)
sez

1√
2πv

e−
(z−u)2

2v2 dz −

B︷ ︸︸ ︷
e−r(T−t)

∫ ∞

log(K/s)
K

1√
2πv

e−
(z−u)2

2v2 dz (15.22)

Here, to deduce the second line, we split the integral into the cases seZ < K and seZ ≥ K. In
the first case, Φ(seZ) = max(seZ −K, 0) = 0.

The strategy now is to treat A and B separately. We plan to re-write each of A and B in terms
of N (z) = 1√

2π

∫ z
−∞ e−x2

dx, the cumulative distribution function of the N(0, 1) distribution.
Let’s look at the the B term first. Setting y = −z, we have

B =
K√
2πv

e−r(T−t)

∫ −∞

− log(K/s)
e−

(−y−u)2

2v2 (−1) dy

=
K√
2πv

e−r(T−t)

∫ log(s/K)

−∞
e−

(y+u)2

2v2 dy

and setting x− y+u
v we have

B =
K√
2πv

e−r(T−t)

∫ 1

v
(log(s/K)+u)

−∞
e−

x2

2 v dx

= Ke−r(T−t)

∫ 1

v
(log(s/K)+u)

−∞

1√
2π

e−
x2

2 dx

= Ke−r(T−t)N
[
1

v

{
log
( s

K

)
+ u
}]

.

For the A term, we have an extra factor ez. To handle this factor we will have to complete the
square inside the exponential term before we make the x substitution (i.e. the same technique as
in exercise 11.5). Again setting y = −z we have

A =
s√
2πv

e−r(T−t)

∫ −∞

− log(K/s)
e−ye−

(−y−u)2

2v2 (−1) dy
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=
s√
2πv

e−r(T−t)

∫ log(s/K)

−∞
e−ye−

(y+u)2

2v2 dy

=
s√
2πv

e−r(T−t)

∫ log(s/K)

−∞
exp

(
−1

2v2
[
y2 + (2u+ 2v2)y + u2

])
dy

=
s√
2πv

e−r(T−t)

∫ log(s/K)

−∞
exp

(
−1

2v2

[(
y + (u+ v2)

)2 − (u+ v2)2 + u2
])

dy

=
s√
2πv

e−r(T−t)+ (u+v2)2−u2

2v2

∫ log(s/K)

−∞
exp

(
−(y + (u+ v2)2)

2v2

)
dy

Noting that r(T − t) = u + 1
2v

2, it is easily seen that −r(T − t) + (u+v2)2−u2

2v2 = 0, so the first
exponential term is simply equal to 1. Setting x = y+(u+v2)

2v2 we obtain

A =
s√
2πv

∫ 1

v
(log(s/K)+u+v2)

−∞
exp

(
−x2

2

)
v dx

= s

∫ 1

v
(log(s/K)+u+v2)

−∞

1√
2π

exp
(
−x2

2

)
dx

= sN
[
1

v

{
log
( s

K

)
+ u+ v2

}]
.

Substituting back in for u and v, and recalling that we use the shorthand s = St, we obtain
the following formula for price, at time t ∈ [0, T ], of a European call option with strike price K

and exercise date T .
F (t, St) = StN [d1]−Ke−r(T−t)N [d2] (15.23)

where

d1 =
1

σ
√
T − t

{
log
(
St

K

)
+

(
r +

1

2
σ2

)
(T − t)

}
d2 =

1

σ
√
T − t

{
log
(
St

K

)
+

(
r − 1

2
σ2

)
(T − t)

}
.

This expression for F (t, St) is known as the Black-Scholes formula. It is historically significant,
which is the only reason that we have included it within the course. The precise form of the
formula is not very important, and you are certainly not expected to remember it. However, the
discovery by Black and Scholes that the absence of arbitrage led to explicit pricing formulae for
commonly used derivatives (such as calls and puts), revolutionized the financial world.
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15.6 Exercises on Chapter 15

All questions refer to the Black-Scholes model, and use the the same notation as in the rest of
this chapter.

On the Black Scholes model

15.1 Let c ∈ R be a deterministic constant. Show that the functions f(t, s) = cs and g(t, s) = cert

are both solutions of the Black-Scholes PDE (15.10).

15.2 Consider the contingent claim Φ(ST ) = K. Use the risk neutral valuation formula (15.13)
to show that its price, at time t, is Ke−r(T−t).

15.3 (a) Find the price, at time t, of the contingent claim Φ(ST ) = log(ST ). Show that at time
t = 0 this gives a price of

e−rT
(
logS0 + (r − 1

2σ
2)T
)
.

(b) An excitable mathematician suggests the following hedging strategy:
“At time 0, I will buy logS0 units of stock. Then I’ll wait until time T . The
stock will be worth ST then so then I will have log(ST ) worth in stock. This
means that at time 0 the arbitrage free price of the contingent claim log(ST ) is
actually logS0, and therefore the formula in part (a) can’t be true.”

Where is the flaw in this argument?

15.4 Let β ≥ 2.

(a) Calculate dYt where Yt = Sβ
t , in the risk neutral world Q. Hence, show that Yt is a

geometric Brownian motion and find its parameters.
(b) Show that the arbitrage free price, at time t, of the contingent claim Φ(ST ) = Sβ

T is
given by

Sβ
t exp

{
−r(T − t)(1− β)− 1

2σ
2β(T − t)(1− β)

}
.

15.5 Let 0 < α < β and K > 0 be deterministic constants. A binary option is a contract with
contingent claim

Φ(ST ) =

{
K if ST ∈ [α, β]

0 otherwise.

Find an explicit formula (in terms of the cumulative distribution function of the N(0, 1)

distribution) for the value of this contingent claim at time t ∈ [0, T ].

15.6 Find a deterministic process Ft such that St

Ft
is a martingale under P.

15.7 Given a contingent claim Φ(ST ), let Πt(Φ) denote the price of this contingent claim at time
t ∈ [0, T ]. Let Φ1(ST ) and Φ2(ST ) be two contingent claims, with exercise date T , and let
α, β ∈ R be deterministic constants. Show that

Πt(αΦ1 + βΦ2) = αΠt(Φ1) + βΠt(Φ2)

for all t ∈ [0, T ].
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Challenge Questions

15.8 Our excitable mathematician from exercise 15.3 is back. In response to 15.4, they say

The situation in exercise 15.4, is equivalent to a ‘new’ Black-Scholes model in
which the stock asset is not St, but Yt. Since, by part (a) of 15.4, Yt follows a
geometric Brownian motion, this new model is actually just our usual Black-Scholes
model but with different parameters. In this new model, we can hedge a single unit
of the new ‘Yt’ stock by simply buying a single unit of the new stock. So, the
arbitrage free price of a single unit of the new stock will be Yt = Sβ

t and the answer
claimed in 15.4(b) is wrong.

Where is the flaw in this argument?
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Chapter 16

Application and extension of the
Black-Scholes model

In this section we study the issue of how to make enough connections between the Black-Scholes
model and reality that it can be used in the process of trading financial derivatives.

16.1 Transaction costs and parity relations

In our definition of the Black-Scholes market we assumed that it was possible to buy and sell,
continuously, without any cost to doing so. In reality, there are costs incurred each time a stock
is bought/sold, in the form of administrative cost and taxes.

For most contingent claims Φ(ST ), the replicating portfolio ht = (xt, yt) given by Theorem
15.3.1 changes continuously with time. This would mean continually incurring transaction costs,
which is not desirable.

Our first idea for dealing with transaction costs comes form the (wishful) observation that it
would be nice if we could replicate contingent claims with a constant portfolio ht = (x, y) that
did not vary with time.

Definition 16.1.1 A constant portfolio is a portfolio that we buy at time 0, and which we then
hold until time T .

That is, we don’t trade stock for cash, or cash for stock, during (0, T ). Note that the hedging
portfolios ht = (xt, yt) that we found in Theorem 15.3.1 are (typically) non-constant, since yt = ∂F

∂s

will generally not be constant. Worse, Corollary 15.3.3 showed that these hedging portfolios were
unique: there are no other self-financing portfolio strategies, based only on cash and stock, which
replicate Φ(ST ).

A possible way around this limitation is to allow ourselves to hold portfolios that include
options, as well as just cash and stock. Let us illustrate this idea with European call/put options.
First, we need some notation. Given a contingent claim Φ(ST ) with exercise date T we write
Πt(Φ) for the price of this contingent claim at time t, and hΦt = (xΦt , y

Φ
t ) for its replicating

portfolio.
In the case of European call/put options, the key to finding constant replicating portfolios is

the ‘put-call parity relation’, which we’ll now introduce (although we have touched on the discrete
time version of it in exercise 5.4). Let Φcall and Φput denote the contingent claims corresponding
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respectively to European call and put options, both with strike price K and exercise date T . Let
Φstock and Φcash denote the contingent claims corresponding respectively to (the value at time T

of) a single unit of stock, and a single unit of cash. Thus we have

Φcash(ST ) = 1

Φstock(ST ) = ST

Φcall(ST ) = max(ST −K, 0)

Φput(ST ) = max(K − ST , 0).

The put-call parity relation states that

Φput(ST ) = Φcall(ST ) +KΦcash(ST )− Φstock(ST ). (16.1)

This can be verified from the definitions of the functions, and considering the two cases ST ≥ K

and ST ≤ K separately. Doing so is left for you, in exercise 16.1. It follows (strictly speaking,
using the result of exercise 15.7) that if we buy a portfolio, at time 0, consisting of

• one European call option (with strike K and exercise T ),

• Ke−rT units of cash,

• minus one units of stock,

then at time T this portfolio will have the same payoff as a European put option (with strike K

and exercise T ).
We could rearrange (16.1) into the form Φcall(ST ) = . . . and carry out the same procedure for

a call option. So, we learn that if we allow ourselves to hold portfolios containing options, we can
hedge European call/put options using constant portfolios. It’s possible to hedge other types of
contract too:

Example 16.1.2 Consider a contract with contingent claim

Φstraddle(ST ) = |ST −K| =

{
K − ST if ST ≤ K

ST −K if ST > K.

This type of contingent claim is known as a straddle, with strike price K and exercise time T . It
is easy to see that the parity relation

Φstraddle(ST ) = Φput(ST ) + Φcall(ST )

holds. Hence, we can hedge a straddle by holding a portfolio of one call option, plus one put
option, with the same strike price K and exercise date T .

See exercises 16.3, 16.4 and 16.5 for more examples.

There is a drawback here. This hedging strategy requires that we purchase calls and puts
(whenever we like), based on the stock St with a strike K and a exercise dates T of our own
choosing. For calls/puts and equally common types of derivative, this is, broadly speaking, possi-
ble. For exotic types of option, even if we can find a suitable relation between payoffs in the style
of (16.1) the derivative markets are often less fluid and the hedging portfolio we wish to buy may
simply not be available for sale.
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A ‘next best’ approach, for general contingent claims (of possibly exotic options), is to try and
approximate a general contingent claim Φ(ST ) with a constant hedging portfolio consisting of
cash, stock and a variety of call options with a variety of strike prices and exercise times. It turns
out that this approximation is possible, at least in theory, with arbitrarily good precision for a
large class of contingent claims. The formal argument, which we don’t include in this course, relies
on results from analysis concerning piecewise linear approximation of functions. Unfortunately,
in most cases a large number/variety of call options are needed, and this greatly increases the
transaction cost of just buying the portfolio at time 0.

In short, there is no easy answer here. Transaction costs have to be incurred at some point,
and there is no ‘automatic’ strategy that is best used to minimize them.
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16.2 The Greeks

As usual, let F (t, s) be a differentiable function such that F (t, St) denote the value, at time t, of
a portfolio that replicates the contingent claim Φ(ST ). We adopt one key idea from the previous
section: we allow this portfolio strategy to include options as well as cash and stock.

In this section we explore the sensitivity of replicating portfolios to changes in:

1. The price of the underlying stock St.

2. The model parameters r, µ and σ.

In the first case, we are interested to know, at a given time, how exposed our current portfolio is
to changes in the asset price. That is, if the stock price were to quickly fall/rise, how much value
are we likely to gain/lose?

In the second case, our concern is that the model parameters we’re using may not be a good
match for reality (or that reality may change so as new parameters are needed). This is a serious
issue, since in practice the values used for r, µ, σ are obtained by statistical inference, and it is
not easy process to obtain them.

Various derivatives of F are used to assess the sensitivity of the associated portfolio, and they
are known collectively as the Greeks. They are

∆ =
∂F

∂s
(Delta)

Γ =
∂2F

∂s2
(Gamma)

Θ =
∂F

∂t
(Theta)

ρ =
∂F

∂r
(rho)

V =
∂F

∂σ
(V ega)

all of which are evaluated at (t, St). Note that, for ρ and V , we regard r and σ as variables (instead
of constants) and differentiate with respect to them. There is no point in having a derivative with
respect to µ because, as we have seen in Theorem 15.3.1, µ does not affect the risk-neutral world
and consequently its value has no effect on arbitrage free prices: ∂F

∂µ = 0.
If we have an explicit formula for F , such as the Black-Scholes formula (15.23) for European

call options, then we can differentiate to find explicit formulae for the Greeks. This can involve
some quite messy calculations, so we don’t focus on this aspect of the Greeks in this course
(but, see exercise 16.12 if you like doing messy calculations). In general, they can be estimated
numerically.

For us, ∆ and Γ are most important. In the next section we study hedging strategies based
on ∆ and Γ.

Remark 16.2.1 In fact, V is not a letter of the Greek alphabet, it is a calligraphic Latin V , but
the terminology ‘the Greeks’ is used anyway.
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16.3 Delta and Gamma Hedging

As in the previous section, consider a portfolio consisting of both options, stock and cash, whose
value at time t is given by F (t, St). In this section we will make heavy use of the first two Greeks,
∆(t, St) =

∂F
∂s (t, St) and Γ(t, St) =

∂2F
∂s2 (t, St).

In this section we will need to consider several portfolios at once. If F (t, St) is the value of
a portfolio at time t then we say that F is the price function of this portfolio, and we write the
corresponding ∆ and Γ as

∆F =
∂F

∂s
, ΓF =

∂2F

∂s2
.

We focus first on ∆F .

Definition 16.3.1 A portfolio with price function F is said to be delta neutral at time t if
∆F (t, St) = 0.

Let us think about delta neutrality for a moment. In words, ∆F (t, St) = 0 says that the
derivative, with respect to the stock price, of the value of the replicating portfolio F , is zero. This
means that if St where to vary (slightly), we would not expect the value of F to vary much. In
other words, to some extent, the value of F is not exposed to changes in the price of the underlying
stock; which is a good thing, since it means the holder of the portfolio takes less risk. With this
motivation, we will now look at a hedging strategy that tries to keep ∆ ≈ 0.

For a contingent claim Φ(ST ), let F (t, St) be the value of the ‘usual’ hedging portfolio ht =

(xt, yt), consisting of just cash and stocks, that is provided by Theorem 15.3.1. Such a portfolio
is typically not delta neutral. We consider including an amount zt of some derivative (say, a call
option) with itself has hedging portfolio with value Z(t, St). The value of our new portfolio is
therefore

V (t, St) = F (t, St) + ztZ(t, St).

We would like this new portfolio to be delta neutral, say at time t. That is, we would like
∆V = ∂V

∂s = 0, which gives us the equation

∂F

∂s
+ zt

∂Z

∂s
= 0 (16.2)

and solving for zt we see that we should hold

zt = −∆F

∆Z

units of the derivative. Adding this amount of the deriative into our usual replicating portfolio,
with the aim of having ∆V = 0, is known as a delta hedge.

Example 16.3.2 Suppose that we have entered into a contract, as the seller, where the value to
the other party in the contract (the buyer) at time t is given by P (t, St). We want to delta hedge
our position. So, we have F (t, St) = −P (t, St).

Suppose that the ‘derivative’ that we wish to use for our delta hedge is the underlying stock
itself, which of course has price function

Z(t, St) = St,
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giving Z(t, s) = s. Then ∂V
∂s = 0 when

∂F

∂s
+ zt

∂Z

∂s
= −∂P

∂s
+ zt = 0

and we see that we need to hold an additional

zt = ∆P

units of stock in order to delta hedge.

There is a spanner in the works here. The value of zt changes with time. If, at time t, we
delta hedge using zt, then at time t+ ε we will discover that zt+ε is slightly different from zt and
our delta hedge is no longer working. On the other hand, if we continually adapt our portfolio to
precisely match zt then we will suffer high transaction costs.

To handle this issue, there is a procedure known as discrete rebalanced delta hedge. We
explain it in the setting of Example 16.3.2, where we have sold one unit of an option with price
function P , and wish to delta hedge the sale.

First, we fix some ε > 0. Then:

• At time t = 0, sell one unit of an option with price P .

• Compute zt = ∆P (t, St) (using Theorem 15.3.1) at t = 0 and buy (or sell) this many units
of stock.

• Wait for time ε. Recompute zt = ∆P (t, St) at time t = ε, then buy/sell stock to re-balance
the amount of ‘extra’ stock that we hold, to match this new amount.

• Repeat the rebalancing at each time t = ε, 2ε, 3ε, 4ε, . . . and so on.

Of course, a smaller ε results in closer approximation of zt ≈ ∆P (t, St) and (consequently) a more
effective delta hedge, but with higher transaction costs; a larger ε results in less effective delta
hedge but lower transaction costs. This is natural – we can’t expect to reduce risk for free.

Remark 16.3.3 (?) It can be shown that as ε → 0, the resulting portfolio approximates the true
delta hedged portfolio that corresponds, at all times, to holding zt extra stock.

Of course, there is no need for all of our rebalancing time intervals to have length ε. In fact, if
∆P is changing rapidly then we will need to rebalance frequently in order to keep zt ≈ ∆P (t, St),
but if ∆P is relatively stable then we’ll want to rebalance infrequently and spend less on transaction
costs. This observation leads us on to the idea of Γ neutrality.

Definition 16.3.4 A portfolio with price function F is said to be gamma neutral at time t if
ΓF (t, St) = 0.

The key idea is that ΓP (t, St) = ∂
∂s∆P (t, St) measures how quickly ∆P changes in response

to changes in the underlying stock price St. When ΓP ≈ 0, we have that ∆P does not change
quickly in response to small changes in the stock price. For this reason, it is advantageous to hold
portfolios which are delta neutral and gamma neutral. How to achieve this?

We now find ourselves wanting to augment a replicating portfolio (that, recall, has price
function F (t, St)) into a portfolio with price function V (t, St) in such a way as both

∆V =
∂V

∂s
= 0, ΓV =

∂2V

∂s2
= 0. (16.3)
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It should be intuitively clear that, because we now have two conditions to satisfy, we’ll need to
consider adding in two extra quantities in order to achieve this. So, consider adding in wt of
some derivative with price function W (t, St) and zt of some other derivative with price function
Z(t, St). Then V (t, St) = F (t, St) + wtW (t, St) + ztZ(t, St) and to satisfy (16.3) we need that
both

∆F + wt∆W + zt∆Z = 0

ΓF + wtΓW + ztΓZ = 0. (16.4)

We could solve this pair of linear equations to find formulae for wt and zt, in terms of the ∆s
and Γs. Since the formulae themselves are not particularly interesting to see, we won’t bother.
Including the resulting amounts wt of W , plus zt of Z, into a portfolio, in order to achieve (16.3)
is known as a gamma hedge.

Remark 16.3.5 Of course, zt and wt vary with time, which means that implementing a gamma
hedge requires a discrete rebalancing scheme, in the same spirit as we described for the delta
hedge. In the interests of brevity, we don’t go into any further details on this point.

Delta and gamma hedging are the basis for many of the hedging strategies that are employed
by investment banks and hedge funds.
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16.4 Exercises on Chapter 16

On parity relations

16.1 (a) Draw graphs of the functions Φcash(ST ), Φstock(ST ), Φcall(ST ) and Φput(ST ) defined in
Section 16.1, as functions of ST .

(b) Verify that the put-call parity relation (16.1) holds.

16.2 Use the put-call parity relation to show that the price at time 0 of a European put option
with strike price K and exercise date T is given by Ke−rTN (−d2) − S0N (−d1), where d1
and d2 are from (15.23).

16.3 Write down a constant portfolio, which may consist of cash, stock and/or European call and
put options, that would replicate the contingent claim

ST − 1 if ST > 1,

0 if ST ∈ [−1, 1]

−1− ST if ST < −1.

16.4 Let A ≥ 0 and K ≥ 0 be deterministic constants. Consider the contingent claim, with
exercise date T ,

Φ(ST ) =


K if ST ≤ A,

K +A− ST if A ≤ ST ≤ K +A,

0 if K +A < ST .

(a) Sketch (for general A ≥ 0) a graph of Φ(ST ) as a function of ST . Find a constant
portfolio consisting of European put options, with exercise dates and strike prices of
your choice, that replicates Φ(ST ).

(b) Find a constant portfolio consisting of cash, stock, and European call options (with
exercise dates and strike prices of your choice) that replicates Φ(ST ).

(c) In parts (a) and (b) we found two different replicating portfolios for Φ(ST ). However
Corollary 15.3.3 claimed that ‘replicating portfolios are unique’. Why is this not a
contradiction?

16.5 Let A and B be deterministic constants with A < B. Consider the contingent claim

Φbull(ST ) =


B if ST > B,

ST if A ≤ ST ≤ B,

A if ST < A.

This is known as a ‘bull spread’. Find a constant portfolio consisting of cash and call options
that replicates Φbull(ST ).

On the Greeks and delta/gamma hedging

16.9 Let β > 2. Find the values of all the Greeks, at time t ∈ [0, T ], for the derivative with
contingent claim Φ(ST ) = Sβ

T . (Hint: You will need part (b) of 15.4.)
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16.10 At time t you hold a portfolio h with value F (t, St), for which (at time t) ∆F = 2 and
ΓF = 3.

(a) You want to make this portfolio delta neutral by adding a quantity of the underlying
stock St. How much should you add? What is the cost of doing so?

(b) You want to make this portfolio both delta and gamma neutral, by adding a combination
of the underlying stock St as well a second financial derivative with value D(t, St), for
which ∆D = 1 and ΓD = 2. How much of each should you add? What is the cost of
doing so?

16.11 Consider trying to gamma hedge a portfolio with value F (t, St), by adding in an amount wt

of a financial derivative with value W (t, St) and an amount zt of a financial derivative with
value Z(t, St).

(a) An excitable mathematician suggests the following idea:

First, delta hedge using W : add in wt = − ∆F

∆W
of the first derivative to make

our portfolio delta neutral. Then, add in a suitable amount zt of Z to make the
portfolio gamma neutral.

Why does this idea not work?

(b) Consider the case in which Z(t, St) = St. In this case, solve the equations (16.4) to find
explicit expressions for wt and zt.

(c) Does the following idea work? Explain why, or why not.

First, add in an amount wt of the first derivative to make the portfolio gamma
neutral. Then, add in a suitable amount zt of stock to make the portfolio delta
neutral.

Challenge Questions

16.12 Use the Black-Scholes formula (15.23) to verify that, in the case of a European call option
with strike price K and exercise date T , the Greeks are given by

∆ = N (d1), Γ =
φ(d1)

sδ
√
T − t

,

ρ = K(T−t)e−r(T−t)N (d2), Θ = − sφ(d1)σ

2
√
T − t

−rKe−r(T−t)N (d2), V = sφ(d1)
√
T − t.

Here, φ(x) = 1√
2π
e−x2/2 is the p.d.f. of a N(0, 1) distribution, and N (x) is its c.d.f.

Use the put-call parity relation to find the values of the Greeks in the case of a European
put option.
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Chapter 17

Further topics on the Black-Scholes
model (?)

In this section we briefly survey a number of further ways in which the standard Black-Scholes
model is often extended. We include some (perhaps surprising) information about what the
Black-Scholes model is used for, in practice. This chapter mostly contains discussions rather
than mathematical arguments. As in Chapter 16 we follow a strategy of keeping things simple
by studying each extension in isolation. Note that the whole of Chapter 17 is off-syllabus, and
marked with (?)s.

17.1 Time inhomogeneity (?)

We’ve kept the model parameters r, µ and σ as fixed, deterministic constants throughout our
analysis of the Black-Scholes model. In fact, there is no need to do so. It is common to allow µ

and σ to depend on both t and St, written µ(t, St) and σ(t, St).
The situation for r is similar. It is common to allow r to depend on t, but not on St, written

simply r(t). The for this choice is simply that reason interest rates are generally not thought to
be dependent on stock prices. Moreover, interest rates tend to vary much more slowly than stock
prices, and it is not unusual to assume that r is constant.

Allowing r, µ and σ to vary makes the problem of parameter inference much more difficult,
but it is easily absorbed (without major changes) into the pricing theory that we’ve studied in
this course. Essentially, the reason that no major changes occur is that our use of Ito’s formula
did not ever require us to differentiate r, µ or σ.

In the situation where r = r(t), µ = µ(t, St) and σ = σ(t, St), it turns out that the risk neutral
valuation formula for the contingent claim Φ(ST ) turns into

Πt = e−
∫ T

t
r(u) du EQ

t,St
[Φ(ST )] ,

where the risk neutral world Q has the dynamics of S as

dSt = r(t)St dt+ σ(t, St)St dBt.

It is easily seen that this generalizes the version of risk-neutral valuation that we proved in
Theorem 15.3.1: when r is constant we have

∫ T
t r du = r(T − t). Note, though, that in this case

we don’t have the explicit formula (15.20) for ST in terms of St.
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17.2 American and Exotic options (?)

We have generally used European call (and sometimes put) options as our canonical examples of
financial derivatives. Whilst European call and put options are traded on many stocks, the most
common type of financial derivative is actually the American call/put option.

In all our previous work, we assumed that the exercise time T of an option was agreed in
advance, and was deterministic. American options are options in which the holder can choose
when to exercise the option. For example, an American call option with strike K and ‘final’ exer-
cise date T , gives the holder the right to buy one unit of stock St for a (pre-agreed, deterministic)
strike price K at a time of their own choosing during [0, T ].

The time τ at which the holder chooses to exercise their right to buy may depend on the
current value of the stock price. As a result, the argument that we used to derive the prices (in
Section 15.3) breaks down. The underlying cause is that they relate to a family of PDEs that are
much more difficult to handle than the standard Black-Scholes PDEs – and for which Feynman-
Kac formulas are not known to exist. In some special cases (including the case of American call
options) explicit hedging strategies that are known, which allow explicit formulas for prices to be
found, but in general numerical techniques are the only option.

Remark 17.2.1 (∆) To be precise, what American options lead too, in place of the risk-neutral
valuation formula, is a so-called ‘optimal stopping problem’: their value is given by

max
τ

EQ [e−rτΦ(Sτ )
]

(17.1)

where the max is taken over stopping times τ . The optimal stopping problem is to identify the
stopping time τ at which the maximum occurs.

Optimal stopping problems are generally quite difficult, and the mathematics needed to attack
(17.1) is outside of the scope of what we can cover in this course.

Another interesting class of financial derivatives are exotic options. This is a general term
used for options in which the contingent claim is either complicated to write down, or simply of
an unusual form. They include

1. digital options, which give a fixed payoff if (and only if) the stock price is above a particular
threshold;

2. barrier options, in which the exercise rights of the holder vary according to whether the
stock price has crossed particular thresholds;

3. Asian options, whose payoff depends on the average price of the underlying asset during a
particular time period;

and many other variants (such as cliquet, rainbow, lookback, chooser, Bermudean, . . .). Often
such options are not traded on stock exchanges because there is insufficient demand for their
individual characteristics. As a result, their prices are agreed through direct discussions between
the two (or more) parties involved in the contract. We don’t attempt to make a catalogue of the
theory of pricing such options. If you want to see some examples, there are plenty in Chapters
11-14 of the book ‘The Mathematics of Financial Derivatives’ by Wilmott, Howison and Dewynne.
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Remark 17.2.2 In Section 15.2 we were careful to write our contingent claims as X, rather than
Φ(ST ). The reason is that the argument we gave for the Theorem 15.2.5, which essentially stated
that the Black-Scholes market was complete, relied only on the fact that X ∈ mFT (and not on
having the form X = Φ(ST )).

As a consequence, we do know that most types of exotic option can be hedged in the Black-
Scholes model – but, in general, we don’t know how to find the replicating portfolios.

17.3 Discontinuous stock prices and heavy tails (?)

We now begin to move further afield, towards some serious extensions of the standard Black-
Scholes model.

The following graph shows the Standard & Poor’s 500 index, usually known in short as the
S&P 500, during 1987. It is essentially an averaged value of the stock prices of the top 500
companies within the American stock market1. The S&P 500 is widely regarded as one of the
best ways of representing, in a single number, the value of stocks within the U.S. stock markets.
We won’t go into exactly how the ‘average’ is taken.

The feature of the graph that grabs our immediate attention is the huge fall, which occurs
on Monday 19th October 1987. This date has become known as Black Monday. We see an
instantaneous drop, with apparently no warning, in which the S&P 500 loses nearly 30% of its
value. This is its largest fall ever, over twice the magnitude of the second largest fall (which you
may remember: it occurred on 15th October 2008).

Remark 17.3.1 Something which may strike you as very strange: no single explanation for the
Black Monday crash has ever been found. There are various theories as to what triggered the crash,
ranging from a sudden lack liquidity to sudden implementations of new pricing methodology. It is
often claimed that some high-frequency trading algorithms (which were relatively new, at the time)
were programmed to automatically sell stocks when they saw them drop; meaning that once a
small crash occurred there was suddenly a huge number of investors wanting to sell, exacerbating
the drop in prices. However, in this case the largest drops occurred when trading volumes were
low, meaning that high frequency trading is unlikely to be the full explanation.

1Including both the NYSE and the NASDAQ.
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Of the many stock market crashes that have occurred in history, one other deserves special
mention: the financial crisis of 2007-8. We will discuss it (briefly) in Chapter 18. For now,
let us focus on how we might incorporate rare, but sudden, downward drops in prices into the
Black-Scholes model.

A rapid downward drop in prices is best represented by a discontinuity (downwards) in the
stock price. However, the theory of Ito integration that we developed only worked for continuous
stochastic process. In fact, a theory of Ito integration that can handle discontinuities does exist,
but it requires much heavier use of analysis than the version we developed. The complication is
that, in continuous time, we need to be clear about what information is known instantaneously
before a jump takes place – we cannot allow ourselves to foresee the jump, since this would be
unrealistic. Doing so necessitates much more careful use of σ-fields, filtrations and left/right-
continuity than we saw in Chapter 12.

Happily, there is a generalization of Brownian motion, known as a Lévy process, which naturally
incorporates unpredictable jumps, both upwards and/or downwards. It turns out that Lévy
processes are intimately connected to heavy tailed random variables (that is, where E[X] or
E[X2] is not defined). This, in turn, means we need a further extension of Ito calculus, to remove
our reliance on H2 and allow for infinite means and variances. After all this theoretical work, we
can then build versions of the Black-Scholes model that incorporate the possibility of rare, but
unpredictable, jumps in stock prices.

To summarize: such extensions are possible (and exist, and are used), but they are much
harder to work with.

17.4 Volatility (?)

Let us begin to think a little about what we would need to do to make use of the model, within
a real market.

It is clear that we would need estimates of the parameters r and σ (we don’t need to know µ,
because it has no effect on arbitrage free prices). Estimating the interest rate r is often rather
easy, because interests rates don’t change quickly and they are chosen by banks, who generally
also make them public information; so we won’t worry about r.

It is much harder to estimate the volatility σ. We focus on this issue for the remainder of this
section.

Historical volatility (?)

One obvious idea is to estimate the future volatility based on the stock prices that we have
observed in the recent past. Let us discuss one method for doing so.

Recall that our stock price process follows

dSt = µSt dt+ σSt dBt

which, as we saw in Section 13.2, has solution

St = S0 exp
(
(µ− 1

2σ
2)t+ σBt

)
.
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We fix ε > 0 and set ti = iε. We look at our historical data and find the values of St at times
t = ti, which we assume to all be in the past. Fix some n ∈ N and for i = 1, . . . , n define

ξi = log
(

Sti

Sti−1

)
.

This gives us that

ξi =

(
µ− σ2

2

)
ε+ σ

(
Bti −Bti−1

)
.

Using the independence properties of Brownian motion, we have that the (ξi)
n
i=1 are i.i.d. random

variables with common distribution

N
[
(µ− σ2

2 )ε, σ2ε
]
.

We can estimate their (common) variance εσ2 by the sample variance:

εσ2 ≈ 1

n− 1

n∑
i=1

(
ξi − ξ̄

)2
where ξ̄ = 1

n

∑n
i=1 ξi.

Remark 17.4.1 If you are familiar with statistical inference, you should recognize the maximum
likelihood estimator for the variance of the normal distribution.

We thus obtain the estimator

σ̂ =
1√
ε

(
1

n− 1

n∑
i=1

(ξi − ξ̄)2

)1/2

for σ. What we have obtained here is a estimate of what the volatility was during the time period
containing t1, . . . , tn, which is in the past. When we are pricing options, what we would like to
is an estimator of the volatility for future. We might be prepared to assume that the future will
be similar to the past, and if we are then we can use σ̂. Unfortunately, historical volatilities often
turn out to be a poor method of predicting future volatilities. With this in mind, we move on
and examine an alternative idea.

Implied volatility and the volatility smile (?)

Suppose that we wish to gauge what the (rest of the) market thinks is a reasonable estimate for
volatility over the next, say, six months. Here’s one way we could do it.

Take our Black-Scholes model. Find the pricing formula for a European call option that has
a date of exercise six months into the future. Let us write this price as c(K, t, T, r, σ). We know
the value today of the stock St, we have argued that estimating r is not difficult, we know K, and
we know that T = six months. We can also look at the market and see the price at which this call
option is being sold for – call this price p. We can then solve the equation

p = c(K, t, T, r, σ) (17.2)

for σ, and obtain what is known as the implied volatility, often abbreviated simply to vol.
Essentially, this is the volatility that ‘the market’ currently believes in.
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This may seem like a circular procedure; if we were to then use the implied volatility as an
estimator for σ and price accordingly, we would discover (at least, in theory) that we might as
well have just charged whatever prices we could already see in the market. However, there is more
to this situation that meets the eye.

Suppose that we are wanting to price an exotic derivative that is not commonly traded. This
means that we cannot see current market prices for it – so we could not use our exotic derivative
to find the implied volatility in the style of (17.2). But what we can do is:

1. Look at prices of call options (or some other options, based on the same underlying stock,
which are commonly traded) based on this derivative with the same exercise date. Use these
to work out the implied volatility.

2. Use the resulting implied volatility, in the Black-Scholes model, to compute the price that
we should charge for our exotic derivative.

In fact, this is currently the way in which the Black-Scholes model is most commonly used.
In another vein, we can use the idea of implied volatility to test the accuracy of the Black-

Scholes model. Suppose that we observe the market prices of a number of call options, on the
same stock, with the same exercise date, but with different strike prices. We can use each of these
observations to calculate a value for the implied volatility. In theory, each of these calculations
should give us the same σ.

They don’t. In practice, it is often the case that options for which St � K or St � K (at the
current time t) tend to suggest higher implied volatilities that those for which St ≈ K. We thus
obtain a graph of implied volatility as a function K, which typically looks like

This picture is known as the volatility smile. The exact shape of the smile varies from market
to market, and can also vary substantially over time. Sometimes the smile becomes inverted, and
is known as a ‘volatility frown’.

The appearance of the volatility smile reflects deficiencies in the standard version of the Black-
Scholes model. It is generally believed that the appearance of the volatility smile is closely
connected to the standard Black-Scholes model not accounting for the possibility of jumps in the
stock price; investigating this issue in detail is currently an active area of mathematical finance.

Despite the existence of the volatility smile, the Black-Scholes model is used extensively, in
practice. The volatility smile provides an indicator of how well/badly the Black-Scholes model is
capturing reality. It’s consequences, including what can be learned from the precise shape of the
smile, are well understood by traders.

It should be noted that, in practice, decisions taken on trading stocks and shares are based both
on information obtained using modelling techniques (such as Black-Scholes) as well as qualitative
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information (such as reading the annual general reports of companies, being aware of the political
environment, etc). Combining all this information together is a difficult task, which requires
understanding the modelling theory well enough to judge, in detail, which aspects of reality are
modelled well and which are not. There is nothing special to the world of finance here – all
sophisticated stochastic modelling requires this the same level of care.

17.5 Incomplete markets (?)

In Theorem 15.2.5 we proved that we could replicate any contingent claim X (providing that
EQ[X] exists, which is not a major restriction). Essentially, replication relies on having enough
independently tradeable commodities that we can create a portfolio that fully replicates the ran-
domness built into the contingent claim X.

In some markets, the number of (independent) sources of random information is much greater
than then number of (independent) commodities that are traded. They are known as incomplete
markets. In practice, it is not particularly easy to judge if a given market fits into this class, but
very many do.

In an incomplete market we can’t hedge every contingent claim. Consequently, we also can’t
deduce arbitrage free prices for every contingent claim. Instead, it is possible to construct arbi-
trage based arguments to say that particular relationships exist between contingent claims must
exist; statements of the form ‘if the price of X is this then the price of Y must be that’. Then,
by observing some carefully chosen prices from the market, we have enough information (when
combined with the usual arbitrage free pricing methods) to uniquely determine the price of any
contingent claim. The ‘extra’ information, that is observed via prices, essentially involves quan-
tifying how risk averse the market is towards particular asset classes.

We won’t go into any details on this procedure in these notes. A good source of further
information is Chapter 15 of the book ‘Arbitrage Theory in Continuous Time’ by Bjork.
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Chapter 18

The financial crisis of 2007/8 (?)

In Section 17.3 we mentioned briefly that the cause of the Black Monday stock market crash, the
single biggest fall in the S&P 500, has never been fully understood. The second, third, and fourth
biggest one day falls in the S&P 500 all occurred towards the end of 2008, and form part of what
is often referred to as the ‘sub-prime mortgage crisis’. They present a very different picture. The
U.S. Financial Crisis Enquiry Commission reported in 2011 that

“the crisis was avoidable and was caused by: widespread failures in financial regulation,
including the Federal Reserve’s failure to stem the tide of toxic mortgages; dramatic
breakdowns in corporate governance including too many financial firms acting recklessly
and taking on too much risk; an explosive mix of excessive borrowing and risk by
households and Wall Street that put the financial system on a collision course with
crisis; key policy makers ill prepared for the crisis, lacking a full understanding of the
financial system they oversaw; and systemic breaches in accountability and ethics at
all levels.”

Let us take some time to unpick the chain of events that occurred.

Availability of credit during 2000-07

During 2000-07 it was easy to obtain credit (i.e. borrow money) in Europe and the United States.
Unrelated events in Russia and Asia during the late 1990s resulted in investors moving their money
away, in many cases meaning they moved it into the U.S. and Europe. Part of this investment
financed a boom in construction (i.e. house building) and also financed a boom in mortgages
(i.e. loans with which people buy houses).

Loans have value: they are a contract which says that, at some point in the future, the money
will be paid back, with interest. As a result loans are, essentially, a commodity. A ‘share in a
loan’ is a share of the right to be re-paid when the time limit on the loan expires. These rights
can be bought and sold.

As a consequence of these two factors, there was an increase in the number of financial deriva-
tives for which the underlying ‘stock’ was mortgages. There was also a rise in house prices, because
the easy availability of mortgages led to higher demand. We’ll come back to this.
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Deregulation of lending

In all economies, business that wish to grow require the ability to borrow money, in order to fund
their growth. Investors (private investors, banks, governments, pension funds, etc.) provide this
money, typically as a loan or by purchasing newly created stock. These investors take a risk: the
value of their investment depends on the future success of the businesses in which they invest.
Investment banks are one of the vehicles through which this process takes place. They act as
middlemen, connecting multiple investors and business together.

Since the 1970s, governments in both the U.S. and Europe tended towards policies of dereg-
ulation. They aimed to offer more freedom to financial institutions, and (consequently) increase
investment and activity within the wider economy.

Deregulation meant that financial institutions had to share less data about their own activities
with regulators and policy makers. As a result, regulators did not immediately recognize the
growth and increasing importance of investment banks and hedge funds to the wider economy.
These institutions became major providers of credit, but were subject to less regulation than
commercial banks. In part this lack of regulation was due to their use of complex financial
derivatives, which were not well understood by regulators or subject to much regulation.

The housing boom

From around 2000 onwards, relaxed regulations allowed large numbers of lenders in U.S. to issue
‘sub-prime’ mortgages. These are mortgages issued to individuals who are at higher than normal
risk of defaulting on their mortgage payments. When a homeowner is unable to keep up their
mortgage payments, the bank takes ownership of their house (and its occupants must leave).

Of course, financial institutions are in a much better position than ‘ordinary’ people to predict,
in the long run, whether or not someone is capable of paying back their mortgage – but (at
least, initially) selling the mortgages was profitable, including selling the mortgages that were
at high risk of eventually defaulting. As a result many financial institutions were keen to sell
sub-prime mortgages. Moreover, deregulation allowed financial institutions to attract customers
into ‘variable rate’ mortgages, that required lower repayments in their initial years, followed soon
after by higher repayments.

At this point, you may hear alarm bells ringing and guess what happens next. Of course,
you have the benefit of hindsight; in 2006/07 the prevalent view was that financial innovations
were supporting a stable, high-growth housing market, with the (politically popular, and widely
enjoyed) consequence of increased home-ownership.

The end of the housing boom

A house building boom, accompanied by a fast rise in house prices, does not continue forever. In
around 2006, a point was reached where the supply of new houses outstripped demand for them,
and house prices began to fall. Those who had taken out mortgages became less wealthy, since
they owned a house whilst it decreased in value, but still owed the same mortgage repayments.
In addition, the variable rate mortgages began to require higher repayments, with the result that
many individuals (particularly in the U.S.) defaulted and lost their homes. This, in turn, increased
the supply of empty houses, and further lowered house prices.

80



©Nic Freeman, University of Sheffield, 2024.

The mortgages (and the houses that became owned by banks when defaults occurred) were now
worth much less. Some investment banks and other financial institutions simply ran out of money
and collapsed. At this point, another unfortunate (and not foreseen) part of financial system
came to light. Major investment banks had sold and re-sold large volumes of financial derivatives
to each other, but there was no global register of who owed what to whom. Consequently, no-one
knew which institution was most at risk of collapsing next, and no institution knew exactly which
of its own investments were at risk of not being repaid. Worse, perhaps the collapse of a single
large institution would result in enough unpaid debts that a chain of other institutions would be
bought down with it.

The result was a situation where banks were very reluctant to lend, to anyone, including each
other. This resulted in less investment in businesses, which as we have already commented, hurts
the wider economy. Moreover, since lending is the major source of income for banks, a lack of
lending results in all banks becoming weaker – and the cycle continues. Worse still, the divide
between investment banks and commercial banks had gradually eroded: some of the institutions
at risk of collapse were (also) high street banks, who hold the savings of the general public and
operate ATMs. This situation, which occurred during 2008, seems good reason for the term ‘the
financial crisis’.

Outcomes

The possibility of the general public losing savings, along with wider effects on the economy,
resulted in governments and central banks stepping in. Broadly speaking, they choose to provide
loans and investment (using public money), to support financial institutions that were at risk of
collapse and were also important to the public and the wider economy. Not all institutions were
offered protection. We won’t discuss the details of how these arrangements worked. In many
countries, the amount of cash that was used to prop up failing financial institutions led to a very
substantial deterioration in the state of public finances.

The impacts on the U.S. economy were huge. In the U.S. the S&P 500 lost around 45% of its
value during 2008. The total value of houses within the U.S. dropped from $13 trillion1 in 2006
to less than $9 trillion at the end of 2008. Total savings and investments owned by the general
public, including retirement savings, dropped by around $8.3 trillion (approximately $27, 000 per
person, around 25% of an average persons savings).

Although the effects of the housing boom, and the housing boom itself, were greatest in the
U.S., similar situations had occurred to varying extents in European countries. Coupled with the
globally linked nature of the economy, and the fact that most major financial institutions now
operate internationally, the financial crisis quickly spread to affect most of the developed world.
A decrease in the amount of global trade resulted, along with a prolonged reduction in economic
growth (which is still present today).

The process of changing the regulatory environment, in response to the financial crisis, is still
ongoing. Broadly speaking, there is a move to involve macroprudential measures, which means
considering the state of the financial system as a whole, instead of focusing in isolation only on the
health of individual institutions. Mathematicians involved in this effort often argue that greater
volumes of data on market activity should be collected and made public.

1$1 trillion = $1, 000, 000, 000, 000.
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The role of financial derivatives

As we can see from this story, many different parties are involved and most of them can reasonably
be attributed with a share of the blame. From our point of view, perhaps the most interesting
aspect is that (with hindsight) it is clear that financial derivatives that were built on sub-prime
mortgages were, prior to 2008, being priced incorrectly. These prices were typically computed by
traders using variants and extensions of the Black-Scholes model.

The over-use of collateralized debt obligations (CDOs) is often cited as a practice that con-
tributed greatly the financial crisis. CDOs are financial derivatives in which many different loans
of varying quality are packaged together, and the holders of the CDO receive the repayments on
the loans. Typically, not all loans are repaid and the CDO contract specifies that some of its
holders are paid in preference to others.

Participation in a CDO is worth something and is therefore a tradeable asset. However, the
underlying loans became packaged, bought, sold, divided, renamed, and repackaged, to such an
extent that CDOs became highly complicated products in which the level of risk could not be
known accurately. Moreover, packaging assets together in multi-party contracts increased the
extent to which financial institutions became dependent on each other. Both these factors were
not adequately captured by pricing models.

Another factor was credit default swaps (CDSs) in which an investor (typically an insurance
company) would be paid an up-front sum, in cash, in return for promising to pay off the value of
a loan in the case of a default. There was little regulation of this practice. Some institutions took
on large volumes of mortgage CDSs and, in the short term, earned cash from doing so. Later,
when mortgages defaulted, most were unable to cover their costs.

At the heart of the problem with CDSs was a widespread belief (before 2007) that the price of
CDSs were correlated with the price of the underlying mortgages. This belief was realized through
a pricing model known as the Gaussian copula formula, which became widely (and successfully)
used during 2000-07. The intention of the model was to capture and predict correlations within
the movements of prices of different assets. However, the shortcomings of the model were poorly
understood and, in particular, it turned out to fail in the market conditions that emerged during
2007 when house prices dropped sharply.

Further reading

I recommend The End of Alchemy: Money, Banking, and the Future of the Global Economy,
published in 2017 and written by Mervyn King, who was governor of the Bank of England from
2003 to 2013.
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Chapter 19

Financial networks (∆)

Following the financial crisis of 2007/08, both regulators and banks have become more interested
in viewing the financial system as a connected whole – as opposed to viewing it as a collection of
isolated institutions. With this new perspective, one aspect that commands special attention is
debt contagion.

Debt contagion refers to the following scenario. Consider a connected network of banks who
lend to each other. Suppose that one of these institutions, call it bank A, suddenly fails (i.e. goes
bankrupt) and is then unable to pay its debts. In doing so, A harms its neighbours (i.e. banks
who lent to A). Some of the neighbours of A may then also fail, and be unable to pay their own
debts, harming their own neighbours – and so on. This process is usually known as a cascade.
Potentially, the end result could be that a large fraction of the whole network fails.

As we discussed in Chapter 18, it is known that the global financial system was at risk of
precisely this scenario during parts of the financial crisis of 2008. Since then, there has been effort
within the mathematical finance research community to provide models that describe when, and
precisely how, such a risk is felt. In this section we give a brief introduction to one of the first
(and consequently, simplest) models that was developed, followed by a discussion of how it was
later extended.
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19.1 Graphs and random graphs (∆)

A network is a set of nodes, some of which are connected together by edges. For example,

Here, the nodes are A,B,C,D,E. The terms graph and network are usually used interchangeably.
The terms vertex and node are also used interchangeably. We’ll use all these terms.

We will always be interested in the directed case, in which each edge has a direction. In the
graph above this direction is signified by the direction of the arrows. The node at the start of an
edge is called the head (of the edge) and the node at the end of the edge is called the tail (of the
edge).

We write degin(i) for the number of edges that have node i as their head, and we call each such
edge an in-edge of i. We write degout(i) for the number of edges that have i as their tail, and we
call each such edge an out-edge of i. It’s common to imagine each edge as split in half, with an
‘in’ part and an ‘out’ part

We write an edge as (tail, head). So the edge of the graph above are (C,A), (B,C), (C,E), (E,D)

and (D,C).
Formally, a graph is a pair G = (V,E) where V is the set of vertices and E is a set of ordered

pairs of vertices. Each element of E has the form (v1, v2), where v1, v2 ∈ V , and denotes an edge
with source v1 and sink v2. In this notation, our graph is

G = (V,E) where V = {A,B,C,D,E} and E = {(C,A), (B,C), (C,E), (E,D), (D,C)}.

Given a graph G = (V,E), the degree distribution of G is the distribution of the random
variable

DG = (degin(v), degout(v)), (19.1)
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where v is a node sampled uniformly at random from V . In words, DG is the (bivariate) random
variable who’s distribution matches the frequencies of in/out degrees present in nodes of G. For
example, for the graph above we have 5 nodes and

P[DG = (1, 0)] =
1

5
(node A)

P[DG = (0, 1)] =
1

5
(node B)

P[DG = (2, 2)] =
1

5
(node C)

P[DG = (1, 1)] =
2

5
(nodes D and E)

A random graph is, as you might expect, a graph where the sets of edges and vertices are
both randomly sampled. We’ll come back to thinking about random graphs in Section 19.3. A
graph is said to be a tree if, between any pair A,B of vertices, there is precisely one path along
edges (travelling in the direction they point) that gets from A to B. It is perhaps clearest from a
picture:

Graph 1 is not a tree: for example, to get from A to A we can take the paths ABDCA and
ABDCABDCA. Graph 2 is a tree, because for any pair of vertices there is only one way to get
between them. Graph 3 is not a tree: for example to get from A to D we can take the paths
ABD and ACD.
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19.2 The Gai-Kapadia model of debt contagion (∆)

Fix n ∈ N and take a graph G = (V,E). Think of each vertex a ∈ V as a bank, and think of each
edge (a, b) ∈ E as saying that bank a has been loaned money by bank b.

Each loan has two possible states: healthy, or defaulted. Each bank has two possible states:
healthy, or failed. Initially, all banks are assumed to be healthy, and all loans between all banks
are assumed to be healthy.

We’ll make the following key assumption, that there are numbers ηj ∈ [0, 1] (known as conta-
gion probabilities) such that:

(†) For any bank a, with in-degree j if, at any point, a is healthy and one of the loans owed to
a becomes defaulted, then with probability ηj the bank a fails. All loans owed by bank a

become defaulted.

Note that that banks who are owed a large number of loans (i.e. for which degin(a) is large) are
less likely to fail when any single one of these loans becomes defaulted. We’ll discuss how realistic
this assumption is in Section 19.4.

The way the model works is as follows. To begin, a single bank is chosen uniformly at random;
this bank fails and defaults on all of its loans. Because of (†) this (potentially) causes some other
banks to default on their own loans, which in turn causes further defaults. We track the ‘cascade’
of defaults, as follows.

The set of loans which default at step t = 0, 1, 2, . . . , of the cascade will be denoted by Lt.

• On step t = 0, we pick a single bank a uniformly at random from V = {1, . . . , n}. This
banks fails, and all defaults on all of its loans: we set D0 to be the set of out-edges of a.

• Then, iteratively, for t = 1, 2, . . ., we construct Lt as follows.
For each (b, c) ∈ Lt−1, we apply (†) to c. That is, if c is healthy then c fails with probability
ηdegin(c). If this causes c to fail, then we include all out-edges of c into Lt.

Eventually, because there are only finitely many edges in the graph, we reach a point at which Lt

is empty. From then on, Lt+1, Lt+2 are also empty. Then, the set of loans which were defaulted
on during the cascade is

L =

∞⋃
i=1

Lt. (19.2)

We’ll be interested in working out how big the set L is. That is, we are interested to know how
many loans become defaulted once cascade finishes.

Remark 19.2.1 In reality, the main object of interest is how many banks fail during the cascade.
This is closely connected to how many loans default but, for simplicity, we choose to focus on
loans.

A summary of this model appears on the formula sheet, see Appendix E. We refer to it as
the Gai-Kapadia model (of debt contagion). The parameters ηj are known as the contagion
probabilities.

We’ll now look at an example of the steps the cascade could take, on the graph we used as
an example in Section 19.1. We’ll mark defaulted/failed edges/nodes as red and take ηj = 1

j .
Initially, let us say that node B fails and defaults on the loan it owes to C:
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Since C has two in-edges, and η2 =
1
2 , C has a probability 1

2 of failing as a result of this default.
So - we toss a coin and lets say that we discover that C does fail. Then C also defaults on all its
loans:

Now, both E and A have only a single in-edge. Since η1 = 1 this makes them certain to fail when
their single debtor defaults. Similarly, D also fails. So the final result is that the whole graph is
defaulted.

Of course, it didn’t have to be this way. If our coin toss had gone the other way and C had not
failed, the cascade would have finished after its first step and the final graph would simply look
like

So we obtain that these two outcomes are both possible, each with probability 1
2 . Of course, in a

bigger graph, the range of possible outcomes can be very large.
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19.3 Approximating contagion by a Galton-Watson process (∆)

Consider the debt contagion model from the previous section. We are interested to discover more
about the quantity L defined in (19.2).

We need to specify which graph G we are using for the banking network. In fact, what we’ll do
is use some approximations. Firstly, we think of the cascade defined in Section 19.2 as exploring,
edge by edge, a large random graph G. Recall the degree distribution DG, defined in (19.1).

1. We’ll imagine that our cascade explores a (large) random graph G. As we move through the
graph, we map out the effects of the defaults.

In reality, to evaluate the cascade we would need to keep track of which nodes and edges we’ve
already visited, but this makes our model too complicated. To make our calculations simpler:

2. We’ll assume that each time we add a new out-edge into Lt, its associated in-edge is attached
to a previously unseen node.

Each time we move along a defaulted edge into previously unseen node, we do not (by assumption!)
encounter any of the nodes/edges previously involved in the cascade. So, following any given
defaulted edge results in a random number G of new defaulted edges, independently of all else.
This provides an important property: the number of loans Zn that are marked defaulted at each
stage of the cascade is a Galton-Watson process.

This assumption we’ve just made is an approximation – we are essentially approximating G

with a randomly sampled tree. We need to be precise about how the sampling is done. At the
same time, from Section 4.3 it is clear that we are most interested in knowing the expectation of
the offspring distribution of the Galton-Watson process. In other words, we want to know, when
we follow an edge of the cascade, the expected number of new edges that become added into the
cascade.

Consider what would happen if we sampled an edge, uniformly at random from G, and moved
along it. We use this as our approximation for what is found when we follow a defaulted edge.
Where do we end up? Given a node v ∈ G, the number of in-edges of this node is degin v.
Sampling a random edge is equivalent to sampling a random in-edge, so the chance that we end
up at a given node v is

degin(v)∑
u∈V

degin(u)
.

The chance that this node fails as a result of our discovering it in our cascade (i.e. one of its
in-edges defaults) is ηj , where j = degin(v). So the chance that we end up in v and that v is
defaulted is

degin(v)ηdegin(v)∑
u∈V

degin(u)
.

When this case occurs, all out-edges of v will become defaulted, which adds degout(v) new de-
faulted edges to our cascade. Hence, the expected number of newly defaulted edges that we
discover in our cascade is ∑

v∈V
degout(v)

degin(v)ηdegin(v)∑
u∈V

degin(u)
. (19.3)
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Let us write |V | for the number of nodes in the graph and |E| for the number of edges. Note
that

|E| =
∑
u∈V

degin(u) =
∑
u∈V

degout(u).

Also, let us write pj,k = P[DG = (j, k)]. By definition of DG, the number of nodes with degree
(j, k) is |V |pj,k. Therefore,

∑
v∈V (. . .) is the same operation as

∑∞
j,k=0 |V |pj,k(. . .), where (j, k)

represents the degree of node v ∈ V , and so we have

(19.3) =
∞∑

j,k=0

|V |pj,k
jkηj
|E|

=
|V |
|E|

∞∑
j,k=0

jkpj,kηj . (19.4)

This is the expected number of newly defaulted loans that result from any given defaulted loans.
If this quantity is strictly greater than one, then our Galton-Watson process has positive prob-
ability of tending to ∞ – meaning that our cascade of defaults can grow infinitely large. If not,
then our Galton-Waton process only ever contains finitely many defaulted loans. Therefore, our
(approximate) analysis suggests that we could use the value of (19.4) as a criteria for how resilient
our financial network is to debt contagion.
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19.4 Modelling discussion on financial networks (∆)

The analysis in Section 19.3 was essentially suggested in 2010 by Gai and Kapadia1. It was one
of the earliest attempts at modelling debt contagion, and was published shortly after the financial
crisis of 2008.

Typically, in the world of stochastic modelling, the first models of any new phenomenon are
both simple and inaccurate; they provide a starting point for extension and refinement. With this
in mind, let us discuss the shortcomings of the analysis in Section 19.3, and what might (and, in
some cases, has) be done to improve it.

• The assumption (†) claims that a bank is equally dependent on each of its creditors. In
practice, some loans are bigger than others, and some banks are better able to absorb
defaults than others. For example, if it was the case that larger loans tended to be between
larger (and, consequently, more strongly connected) banks, the model would not capture the
effect.

To correct this we’d want to understand the correlations between the size of a banks own
balance sheet and the number of creditors/debtors it is connected too.

• The approximation used to turn the cascade into a Galton-Watson process results in us only
ever visiting each bank once. This means that, in our approximation, each bank only ever
sees one of its creditors default. As a result, we ignore the possibility that, once one of bank
As creditors defaults it becomes very likely that other creditors of A will also default.

For example, the real banking network could contain a core of strongly connected large
banks all of whom lend large amounts to each other – and the effect of contagion essentially
depends on how much it injures this central network. (In fact, in several cases where data
on banking networks is available, this is now believed to be the case.)

One obvious question to ask is ‘why not simply take the values from the real network and
simulate a cascade of debt contagion on it?’. This does get done to some extent, with more
complex models, but it is far from a complete answer to the problem. Regulators are interested
in how you can modify the network (i.e. restructure the graph or change the rules) to become
more resilient, and this demands a deeper understanding of the problem than simulations can
typically provide. Also, simply running simulations and trusting them is very exposed to the
shortcomings of the model, which itself may work well in some situations and badly in others.
In practice, simulations and theoretical study are combined to provide insight into how resilient
banking networks are.

Similar (but not identical) methodology is used to model the spread of disease, the vulnerability
of computer networks to hacking attacks, the propagation of news across social networks, and
many other scenarios.

1Gai and Kapadia (2010), Contagion in financial networks, Bank of England working paper, Number 383.
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19.5 Exercises on Chapter 19 (∆)

On random graphs and debt contagion

19.1 Consider the following graph G. Write down the distribution of DG.

If we sample a uniformly random edge, and position ourselves at the head of this edge, what
is the distribution of the out-degree O of the (random) node that we end up at?

19.2 Consider the following graph, as a banking network in the Gai-Kapadia model (as described
in Section 19.2).

Let the contagion probabilities be ηj =
1
j . Suppose that the bank marked X fails. What is

the probability that the bank marked Y also fails?

19.3 Consider the following graph, as a banking network in the Gai-Kapadia model.

Let the contagion probabilities be ηj =
1
j . Suppose that the bank marked X fails. What is

the probability that the bank marked Y fails?
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19.4 Consider the following graph (known as a binary tree) as a banking network in the Gai-
Kapadia model.

This graph is a tree, with infinitely many nodes, in which every node except for v0 has one
in-edge and two out-edges.

Let the contagion probabilities be ηj = α, where α ∈ (0, 1) is constant. Suppose that the
bank marked V0 fails. Explain how the cascade of defaults that results can be represented
as a Galton-Watson process.

We say that a ‘catastrophic default’ occurs if an infinite number of banks fail. Under what
condition on α does this event have positive probability?

19.5 Consider the following graph, as a banking network in the Gai-Kapadia model.

Let the contagion probabilities be ηj =
1

1+j . Suppose that the bank marked A fails.

(a) What is the probability that every bank within the graph fails?

(b) What is the probability that the bank marked F fails?
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Appendix C

Solutions to exercises (part two)

Chapter 11
11.1 (a) We have Ct = µt+ σBt. Hence,

E[Ct] = E[µt+ σBt] = µt+ σE[Bt] = µt

E[C2
t ] = E[µ2tt + 2tµσBt + σ2B2

t ] = µ2t2 + 2tµσ(0) + σ2t = µ2t2 + σ2t

var(Ct) = E[C2
t ]− E[Ct]

2 = σ2t.

where we use that E[Bt] = 0 and E[B2
t ] = t.

(b) We have

Ct − Cu = µt+ σBt − µu− σBu = µ(t− u) + σ(Bt −Bu) ∼ µ(t− u) + σN(0, t− u)

where, in the final step, we use the definition of Brownian motion. Then, by the scaling properties
normal random variables we have Ct − Cu ∼ N(µ(t− u), σ2(t− u)).

(c) Yes. By definition, Brownian motion Bt is a continuous stochastic process, meaning that the prob-
ability that Bt is a continuous function is one. Since t 7→ µt is a continuous function, we have that
µt+ σBt is a continuous function with probability one; that is, Bt is a continuous stochastic process.

(d) We have E[Ct] = µt, but Brownian motion has expectation zero, so Ct is not a Brownian motion.
11.2 We have

cov(Bu, Bt) = E[BtBu]− E[Bt]E[Bu]

= E[BtBu]

= E[(Bt −Bu)Bu] + E[B2
u]

= E[Bt −Bu]E[Bu] + E[B2
u]

= 0× 0 + u

= u

Here, to deduce the fourth line, we use the second property in Theorem 11.2.1, which tells us that Bt −Bu

and Bu are independent.
11.3 When u ≤ t the martingale property of Brownian motion (Lemma 11.4.3) implies that E[Bt | Fu] = Bu.

When t ≤ u we have Bt ∈ Fu so by taking out what is known we have E[Bt | Fu] = Bt. Combing the two
cases, for all u ≥ 0 and t ≥ 0 we have E[Bt | Fu] = Bmin(u,t).

11.4 (a) We’ll use the pdf of the normal distribution to write E[Bn
t ] as an integral. Then, integrating by parts

(note that d
dz
e−

z2

2t = −z
t
e−

z2

2t ) we have

E[Bn
t ] =

1√
2πt

∫ ∞

−∞
zne−

z2

2t dz

=
1√
2πt

∫ ∞

−∞

(
−tzn−1)(−z

t
e−

z2

2t

)
dz
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=

[
− 1√

2πt
tzn−1e−

z2

2t

]∞
z=−∞

+
1√
2πt

∫ ∞

−∞
t(n− 1)zn−2te−

z2

2t dz

= 0 + t(n− 1)E[Bn−2
t ].

(b) We use the formula we deduced in part (a). Since E[B0
t ] = E[1] = 1, we have E[B2

t ] = t(2− 1)(1) = t.
Hence E[B4

t ] = t(4− 1)E[B2
t ] = t(4− 1)t = 3t2 and therefore var(B2

t ) = E[B4
t ]− E[B2

t ]
2 = 2t2.

(c) Again, we use the formula we deduced in part (a). Since E[Bt] = 0 it follows (by a trivial induction)
that E[Bn

t ] = 0 for all odd n ∈ N. For even n ∈ N we have E[B2
t ] = t and (by induction) we obtain

E[Bn
t ] = tn/2(n− 1)(n− 3) . . . (1).

(d) We have var(Bn
t ) = E[B2n

t ]− E[Bn
t ]

2 which is finite by part (c). Hence Bn
t ∈ L2, which implies that

Bn
t ∈ L1.

11.5 Using the scaling properties of normal random variables, we write Z = µ+ Y where Y ∼ N(0, σ2). Then,
eZ = eµeY and

E[eY ] =
1√
2πσ

∫ ∞

−∞
eye

− y2

2σ2 dy

=
1√
2πσ

∫ ∞

−∞
exp

{
− 1

2σ2

(
y2 − 2σ2y

)}
dy

=
1√
2πσ

∫ ∞

−∞
exp

{
− 1

2σ2

(
(y − σ2)2 − σ4)} dy

= e
σ2

2
1√
2πσ

∫ ∞

−∞
exp

{
− (y − σ2)2

2σ2

}
dy

= e
σ2

2 .

Here, to deduce the third line we complete the square, and to deduce the final line we use that the p.d.f. of
a N(σ2, σ) random variable integrates to 1. Therefore,

E[eZ ] = eµE[eY ] = eµ+
σ2

2 .

11.6 (a) Since Bt is adapted, eσBt− 1
2
σ2t is also adapted. By (11.2) and scaling of normal random variables we

have that eσBt− 1
2
σ2t is in L1. It remains only to check that

E
[
exp

(
σBt −

1

2
σ2t

)
| Fu

]
= E

[
exp

(
σ(Bt −Bu) + σBu − 1

2
σ2t

)
| Fu

]
= exp

(
σBu − 1

2
σ2t

)
E [exp (σ(Bt −Bu)) | Fu]

= exp
(
σBu − 1

2
σ2t

)
E [exp (σ(Bt −Bu))]

= exp
(
σBu − 1

2
σ2t

)
exp

(
1

2
σ2(t− u)

)
= exp

(
σBu − 1

2
σ2u

)
.

Here, the second line follows by taking out what is known, since Bu is Fu measurable. The third line
then follows by the definition of Brownian motion, in particular that Bt − Bu is independent of Fu.
The fourth line follows by (11.2), since Bt−Bu ∼ N(0, t−u) and hence σ(Bt−Bu) ∼ N(0, σ2(t−u)).

(b) Since Bt is adapted, B3
t −3tBt is also adapted. From 11.4 we have B3

t , Bt ∈ L1, so also B3
t −tBt ∈ L1.

Using that Bu is Fu measurable, we have

E
[
B3

t − 3tBt | Fu

]
= E

[
(B3

u − 3uBu) +B3
t − 3tBt − (B3

u − 3uBu) | Fu

]
= B3

u − 3uBu + E
[
B3

t −B3
u − 3tBt + 3uBu | Fu

]
so we need only check that the second term on the right hand side is zero. To see this,

E
[
B3

t −B3
u − 3tBt + 3uBu | Fu

]
= E

[
B3

t −B3
u − 3tBu + 3uBu − 3t(Bt −Bu) | Fu

]
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= E
[
B3

t −B3
u − 3tBu + 3uBu | Fu

]
+ 0

= E
[
B3

t −B3
u | Fu

]
− 3Bu(t− u)

= E
[
(Bt −Bu)

3 + 3B2
tBu − 3B2

uBt | Fu

]
− 3Bu(t− u)

= E
[
(Bt −Bu)

3 | Fu

]
+ 3BuE

[
B2

t | Fu

]
− 3B2

uE[Bt | Fu]− 3Bu(t− u)

= E
[
(Bt −Bu)

3]+ 3Bu

(
E
[
B2

t − t | Fu

]
+ t
)
− 3B3

u − 3Bu(t− u)

= 0 + 3Bu

(
B2

u − u+ t
)
− 3B3

u − 3Bu(t− u)

= 0.

Here we use several applications of the fact that Bt − Bu is independent of Fu, whilst Bu is Fu

measurable. We use also that E[Z3] = 0 where Z ∼ N(0, σ2), which comes from part (c) of 11.4
(or use that the normal distribution is symmetric about 0), as well as that both Bt and B2

t − t are
martingales (from Lemmas 11.4.3 and 11.4.4).

11.7 (a) We have

n−1∑
k=0

(tk+1 − tk) = (tn − tn−1) + (tn−1 − tn−2) + . . .+ (t2 − t1) + (t1 − t0)

= tn − t0

= t− 0

= t.

This is known as a ‘telescoping sum’. The same method shows that
∑n−1

k=0 (Btk+1−Btk ) = Bt−B0 = 0.
(b) We need a bit more care for this one. We have

0 ≤
n−1∑
k=0

(tk+1 − tk)
2 ≤

n−1∑
k=0

(tk+1 − tk)

(
max

j=0,...,n−1
|tj+1 − tj |

)

=

(
max

j=0,...,n−1
|tj+1 − tj |

) n−1∑
k=0

(tk+1 − tk)

=

(
max

j=0,...,n−1
|tj+1 − tj |

)
t.

Here, the last line is deduced using part (a). Letting n → 0 we have maxj=0,...,n−1 |tj+1 − tj | → 0, so
the right hand side of the above tends to zero as n → ∞. Hence, using the sandwich rule, we have
that

∑n−1
k=0 (tk+1 − tk)

2 → 0.
(c) Using the properties of Brownian motion, Btk+1 − Btk ∼ N(0, tk+1 − tk) so from exercise 11.4 we

have

E

[
n−1∑
k=0

(Btk+1 −Btk )
2

]
=

n−1∑
k=0

E
[
(Btk+1 −Btk )

2]
=

n−1∑
k=0

(tk+1 − tk)

= t.

Here, the last line follows by part (a).
For the last part, the properties of Brownian motion give us that each increment Btk+1 − Btk is
independent of Ftk . In particular, the increments Btk+1 − Btk are independent of each other. So,
using exercise 11.4,

var

(
n−1∑
k=0

(Btk+1 −Btk )
2

)
=

n−1∑
k=0

var
(
(Btk+1 −Btk )

2)
=

n−1∑
k=0

2(tk+1 − tk)
2

which tends to zero as n → ∞, by the same calculation as in part (b).
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11.8 (a) Let y ≥ 1. Then

P [Bt ≥ y] =

∫ ∞

y

1√
2πt

e−
z2

2t dz

≤
∫ ∞

y

1√
2πt

ye−
z2

2t dz

≤
∫ ∞

y

1√
2πt

ze−
z2

2t dz

=
1√
2πt

[
−te−

z2

2t

]∞
z=y

=

√
t

2π
e−

y2

2t .

Putting y = tα where α > 1
2

we have

P[Bt ≥ tα] ≤
√

t

2π
e−

1
2
t2α−1

. (C.1)

Since 2α− 1 ≥ 0, the exponential term dominates the square root, and right hand side tends to zero
as t → ∞.
If α = 1

2
then we can use an easier method. Since Bt ∼ N(0, t), we have t−1/2Bt ∼ N(0, 1) and hence

P[Bt ≥ t1/2] = P[N(0, 1) ≥ 1] ∈ (0, 1),

which is independent of t and hence does not tend to zero as t → ∞. Note that we can’t deduce this
fact using the same method as for α > 1

2
, because (C.1) only gives us an upper bound on P[Bt ≥ tα].

(b) For this we need a different technique. For y ≥ 0 we integrate by parts to note that∫ ∞

y

1√
2πt

e−
−z2

2t dz =
1√
2πt

∫ ∞

y

1

z
ze−

−y2

2t dz

=
1√
2πt

([
− t

z
e−

z2

2t

]∞
z=y

−
∫ ∞

y

t

z2
e−

z2

2t

)
dz

≤ 1√
2πt

([
− t

z
e−

z2

2t

]∞
z=y

)

=
1√
2πt

t

y
e−

y2

2t

=
t√
2π

1

y
e−

y2

2t

Using the symmetry of normal random variables about 0, along with this inequality, we have

P[|Bt| ≥ a] = P[Bt ≥ a] + P[Bt ≤ −a]

= 2P[Bt ≥ a]

≤ 2
t√
2π

1

a
e−

a2

2t .

As t ↘ 0, the exponential term tends to 0, which dominates the
√
t, meaning that P[|Bt| ≥ a] → 0 as

t ↘ 0. That is, Bt → 0 in probability as t ↘ 0.

Chapter 12
12.1 From (12.8) we have both

∫ t

0
1 dBu = Bt and

∫ s

0
dBu = Bs, and using (12.6) we obtain∫ t

u

1 dBu =

∫ t

0

1 dBu −
∫ v

0

1 dBu = Bt −Bv.
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12.2 Since Bt is adapted to Ft, we have that eBt is adapted to Ft. Since Bt is a continuous stochastic process
and exp(·) is a continuous function, eBt is also continuous. From (11.2) we have that∫ t

0

E
[(

eBu

)2]
du =

∫ t

0

E
[
e2Bu

]
du

=

∫ t

0

e
1
2
(22)u du

=

∫ t

0

e2u du < ∞.

Therefore, eBt ∈ H2.
12.3 (a) We have

E
[
e

Z2

2

]
=

1√
2π

∫ ∞

−∞
e

z2

2 e
−z2

2 dz =
1√
2π

∫ ∞

−∞
1 dz = ∞.

(b) Using the scaling properties of normal distributions, t−1/2Bt has a N(0, 1) distribution for all t. Hence,
if we set Ft = t−1/2Bt then by part (a) we have∫ t

0

E
[
e

1
2
F2
t

]
du =

∫ t

0

∞ du

which is not finite. Note also that Ft is adapted to Ft. Since et, t2, t−1/2 and Bt are all continuous,
so is e

1
2
F2
t . Hence e

1
2
F2
t is an example of a continuous, adapted stochastic process that is not in H2.

Note that we can’t simply use the stochastic process Ft = Z, because we have nothing to tell us that Z
is Ft measurable.

12.4 We have

E[Xt] = E[2] + E
[∫ t

0

t+B2
u du

]
+ E

[∫ t

0

B2
u dBu

]
= 2 +

∫ t

0

t+ E[B2
u] du+ 0

= 2 + t2 +

∫ t

0

u du

= 2 + t2 +
t2

2

= 2 +
3t2

2
.

12.5 (a) Xt = 0 +
∫ t

0
0 du+

∫ t

0
0 dBu so Xt is an Ito process.

(b) Yt = 0 +
∫ t

0
2u du+

∫ t

0
1 dBu by (12.8), so Yt is an Ito process.

(c) A symmetric random walk is a process in discrete time, and is therefore not an Ito process.
12.6 We have

E[Vt] = E[e−ktv] + σe−ktE
[∫ t

0

eks dBs

]
= e−ktv.

Here we use Theorem 12.2.1 to show that the expectation of the dBu integral is zero. In order to calculate
var(Vt) we first calculate

E
[
V 2
t

]
= E[e−2ktv2] + 2σe−ktE

[∫ t

0

eks dBs

]
+ σ2e−2ktE

[(∫ t

0

eks dBs

)2
]

= e−2ktv2 + 0 + σ2e−2kt

∫ t

0

E
[
(eks)2

]
du

= e−2ktv2 + σ2e−2kt

∫ t

0

e2ku du

= e−2ktv2 + σ2e−2kt 1

2k

(
e2kt − 1

)
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= e−2ktv2 +
σ2

2k

(
1− e−2kt

)
Again, we use Theorem 12.2.1 to calculate the final term on the first line. We obtain that

var(Vt) = E[V 2
t ]− E[Vt]

2

=
σ2

2k

(
1− e−2kt

)
.

12.7 We have
Xt = µt+

∫ t

0

σu dBu.

Since Mt =
∫ t

0
σu dBu is a martingale (by Theorem 12.2.1), we have that Mt is adapted and in L1, and

hence also Xt is adapted and in L1. For v ≤ t we have

E [Xt | Fv] = µt+ E [Mt | Fv]

= µt+Mv

= µt+

∫ v

0

σu dBu

≥ µv +

∫ v

0

σu dBu

= Xv.

Hence, Xt is a submartingale.
12.8 (a) Taking Ft = 0, we have E[Ft] = and

∫ t

0
Fs ds = 0, hence

∫ t

0
E[Fs] ds = E[

∫ t

0
Fs dBs] = 0.

(b) Taking Ft = 1, we have E[Ft] = 1 and
∫ t

0
Fs ds = t, hence

∫ t

0
E[Fs] ds = t and E[

∫ t

0
Fs dBs] = E[Bt] = 0.

12.9 (a) We have (|X| − |Y |)2 ≥ 0, so 2|XY | ≤ X2 + Y 2, which by monotonicity of E means that 2E[|XY |] ≤
E[X2] + E[Y 2]. Using the relationship between E and | · | we have

2|E[XY ]| ≤ 2E[|XY |] ≤ E[X2] + E[Y 2].

(b) Let Xt, Yt ∈ H2 and let α, β ∈ R be deterministic constants. We need to show that ZtαXt+βYt ∈ H2.
Since both Xt and Yt are continuous and adapted, Zt is also both continuous and adapted. It remains
to show that (12.5) holds for Zt. With this in mind we note that

Z2
t = α2X2

t + 2αβXtYt + β2Y 2
t

and hence that

|E[Z2
t ]| =

∣∣α2E[X2
t ] + 2αβE[XtYt] + β2E[Y 2

t ]
∣∣

≤ α2E[X2
t ] + 2|αβ| |E[XtYt]|+ β2E[Y 2

t ]

≤ α2E[X2
t ] + |αβ|(E[X2

t ] + E[Y 2
t ]) + β2E[Y 2

t ]

= (α2 + |αβ|)E[X2
t ] + (β2 + |αβ|)|E[Y 2

t ].

where we use part (a) to deduce the third line from the second. Hence,∫ t

0

E[Z2
u] du ≤

∫ t

0

(α2 + |αβ|)E[X2
u] + (β2 + |αβ|)|E[Y 2

u ] du

= (α2 + |αβ|)
∫ t

0

E[X2
u] du+ (β2 + |αβ|)

∫ t

0

E[Y 2
u ] du < ∞

as required. The final line is < ∞ because Xt, Yt ∈ H2.

12.10 We have IF (t) =
n∑

i=1

Fti−1 [Bti∧t −Bti−1∧t]. We are looking to show that

E[IF (t)2] =
∫ t

0

E[F 2
u ] du. (C.2)

On the right hand side we have∫ t

0

E[F 2
u ] du =

m∑
i=1

∫ ti∧t

ti−1∧t

E[F 2
u ] du
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=

m∑
i=1

(ti ∧ t− ti−1 ∧ t)E[F 2
ti−1

] (C.3)

because Ft is constant during each time interval [ti−1 ∧ t, ti ∧ t). On the left hand side of (C.2) we have

E[IF (t)2] = E

[(
m∑
i=1

Fti−1 [Bti∧t −Bti−1∧t]

)2]

= E

[
m∑
i=1

F 2
ti−1

[Bti∧t −Bti−1∧t]
2 + 2

m∑
i=1

i−1∑
j=1

Fti−1Ftj−1 [Bti∧t −Bti−1∧t][Btj∧t −Btj−1∧t]

]

=

m∑
i=1

E
[
F 2
ti−1

[Bti∧t −Bti−1∧t]
2]+ 2

m∑
i=1

i−1∑
j=1

E
[
Fti−1Ftj−1 [Bti∧t −Bti−1∧t][Btj∧t −Btj−1∧t]

]
In the first sum, using the tower rule, taking out what is known, independence, and then the fact that
E[B2

t ] = t, we have

E
[
F 2
ti−1

[Bti∧t −Bti−1∧t]
2] = E

[
E
[
F 2
ti−1

[Bti∧t −Bti−1∧t]
2 | Fti−1

]]
= E

[
F 2
ti−1

E
[
[Bti∧t −Bti−1∧t]

2 | Fti−1

]]
= E

[
F 2
ti−1

E
[
[Bti∧t −Bti−1∧t]

2]]
= E

[
F 2
ti−1

(ti ∧ t− ti−1 ∧ t)
]

In the second sum, since j < i we have tj−1 ≤ ti, so using the tower rule, taking out what is known, and
then the martingale property of Brownian motion, we have

E
[
Fti−1Ftj−1 [Bti∧t −Bti−1∧t][Btj∧t −Btj−1∧t]

]
= E

[
E
[
Fti−1Ftj−1 [Bti∧t −Bti−1∧t][Btj∧t −Btj−1∧t] | Fti−1

]]
= E

[
Ftj−1 [Btj∧t −Btj−1∧t]Fti−1

(
E
[
Bti∧t | Fti−1

]
−Bti−1∧t

)]
= E

[
Ftj−1 [Btj∧t −Btj−1∧t]Fti−1

(
Bti−1∧t −Bti−1∧t

)]
= 0.

Therefore,

E[IF (t)2] =
m∑
i=1

E
[
F 2
ti−1

(ti ∧ t− ti−1 ∧ t)
]

which matches (C.3) and completes the proof.

Chapter 13
13.1 (a) Xt = X0 +

∫ t

0
2u du+

∫ t

0
Bu dBu.

(b) YT = Yt +
∫ T

t
u du.

By using the fundamental theorem of calculus, we obtain that Y satisfies the differential equation dYt
dt

= t.
Using equation (13.6) from Example 13.1.2, we have that

Xt = X0 + t2 +
B2

t

2
− t

2

which is not differentiable because Bt is not differentiable.
13.2 We have Zt = f(t,Xt) where f(t, x) = t3x and dXt = αdt+ β dBt. By Ito’s formula,

dZt =

{
3t2Xt + (α)(t3) +

1

2
(β)(0)

}
dt+ βt3 dBt

=
(
3t2Xt + αt3

)
dt+ βt3 dBt.

13.3 By Ito’s formula, using that dBt = 0 dt+ 1 dBt, we have

(a) dZt =
{
B2

t + (0)(2tBt) +
1
2
(12)(2t)

}
dt+ (1)(2tBt) dBt =

(
B2

t + t
)
dt+ 2tBt dBt.

(b) dZt =
{
αeαt + (0)(0) + 1

2
(12)(0)

}
dt+ (1)(0) dBt = αeαt dt.
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(c) We have

dZt =

{
(0) + (t2)

(
−1

X2
t

)
+

1

2
(Bt)

2

(
2

X3
t

)}
dt+ (Bt)

(
−1

X2
t

)
Bt

=
(
B2

tZ
3
t − t2Z2

t

)
dt−BtZ

2
t dBt.

(d) We have

dZt =

{
(0) + (cosXt) (cosXt) +

1

2
(cosXt)

2 (− sinXt)

}
dt+ (cosXt)(cosXt) dBt

=
(
1− Zt

2

) (
1− Z2

t

)
dt+

(
1− Z2

t

)
dBt

13.4 We have

dFt =

(
0 + (0)(nBn−1

t ) +
1

2
(12)(n(n− 1)Bn−2

t

)
dt+ (1)nBn−1

t dBt

=
n(n− 1)Bn−2

t

2
dt+ nBn−1

t dBt.

Written out in integral form this gives

Bt
n =

∫ t

0

n(n− 1)Bn−2
u

2
du+

∫ t

0

nBn−1
u dBu.

Taking expectations, swapping
∫

du with E, and recalling from Theorem 12.2.1 that integrals with respect
to dBt have zero mean, we obtain

E[Bn
t ] =

∫ t

0

n(n− 1)E[Bn−2
u ]

2
du+ 0

=
n(n− 1)

2

∫ t

0

E[Bn−2
u ] du

as required.
Let us check that this formula agrees with the results of exercise 11.4 part (c). When n is odd, we had
obtained E[Bn

t ] = 0, so this case is trivial. When n is even, we had obtained E[Bn
t ] = tn/2(n−1)(n−3) . . . (1).

Note that

n(n− 1)

2

∫ t

0

u(n−2)/2(n− 3)(n− 5) . . . (1) du =
n(n− 1)

2

tn/2

n/2
(n− 3)(n− 5) . . . (1) du

= tn/2(n− 1)(n− 3) . . . (1)

as required.
13.5 (a) By Ito’s formula, with f(t, x) = et/2 cosx, we have

dXt =

(
1

2
et/2 cos(Bt) + (0)

(
−et/2 sin(Bt)

)
+

1

2
(12)(−et/2 cos(Bt))

)
dt+ (1)

(
−et/2 sin(Bt)

)
dBt

= −et/2 sin(Bt) dBt.

Hence Xt = X0 −
∫ t

0
eu/2 sin(Bu) dBu, which is martingale by Theorem 12.2.1.

(b) By Ito’s formula, with f(t, x) = (x+ t)e−x−t/2 we have

dYt =

{
e−Bt−t/2 − 1

2
(Bt + t)e−Bt−t/2 + (0)

(
e−Bt−t/2 − (Bt + t)e−Bt−t/2

)
+

1

2
(12)

(
−e−Bt−t/2 − e−Bt−t/2 + (Bt + t)e−Bt−t/2

)}
dt

+ (12)
(
e−Bt−t/2 − (Bt + t)e−Bt−t/2

)
dBt

= (1− t−Bt)e
−Bt−t/2 dBt.

Hence Yt = Y0 +
∫ t

0
(1− u−Bu)e

−Bu−u/2 dBu, which is martingale by Theorem 12.2.1.
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13.6 We apply Ito’s formula with f(t, x) = tx to Zt = f(t, Bt) = tBt and obtain

dZt =

(
Bt + (0)(t) +

1

2
(12)(0)

)
dt+ (1)(t) dBt

so we obtain
tBt = 0B0 +

∫ t

0

Bu du+

∫ t

0

u dBu,

as required.
13.7 (a) We have Xt = X0 +

∫ t

0
2 + 2s ds +

∫ t

0
Bs dBs. Taking expectations, and recalling that Ito integrals

have zero mean, we obtain that

E[Xt] = X0 +

∫ t

0

2 + 2s ds+ 0 = 1 +
[
2s+ s2

]t
s=0

= 1 + 2t+ t2 = (1 + t)2.

(b) From Ito’s formula,

dYt =
(
0 + (2 + 2t)(2Xt) +

1
2
(Bt)

2(2)
)
dt+Bt(2Xt) dBt

=
(
4(1 + t)Xt + (Bt)

2) dt+ 2XtBt dBt.

Writing in integral form, taking expectations, and using that Ito integrals have zero mean, we obtain

E[Yt] = Y0 + E
[∫ t

0

4(1 + s)Xt + (Bs)
2 ds

]
+ 0

= 1 +

∫ t

0

4(1 + s)E[Xs] + E[B2
s ] ds

= 1 +

∫ t

0

4(1 + s)3 + s ds

= 1 +
[
(1 + s)4 + s2

2

]t
s=0

= (1 + t)4 + t2

2

Hence, using that E[X2
t ] = E[Yt],

var(X) = E[X2
t ]− E[Xt]

2

= (1 + t)4 + t2

2
− (1 + t)4

= t2

2
.

(c) If we change the dBt coefficient then we won’t change the mean, because we can see from (a) that
E[Xt] depends only on the dBt coefficient. However, as we can see from part (b), the variance depends
on both the dt and dBt terms, so will typically change if we alter the dBt coefficient.

13.8 In integral form, we have

Xt = X0 +

∫ t

0

αXu du+

∫ t

0

σu dBu.

Taking expectations, swapping
∫

du with E, and recalling from Theorem 12.2.1 that Ito integrals are zero
mean martingales, we obtain

E[Xt] = E[X0] +

∫ t

0

αE[Xu] du.

Applying the fundamental theorem of calculus, if we set xt = E[Xt], we obtain

dxt

dt
= αxt

which has solution xt = Ceαt. Putting in t = 0 shows that C = E[X0] = 1, hence

E[Xt] = eαt.
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13.9 We have Xt = X0 +
∫ t

0
Xs dBs. Since Ito integrals are zero mean martingales, this means that E[Xt] =

E[X0] = 1. Writing Yt = X2
t and using Ito’s formula,

dYt =
(
0 + (0)(2Xt) +

1
2
(Xt)

2(2)
)
dt+ (Xt)(2Xt) dBt

= (X2
t ) dt+ 2X2

t dBt.

= Yt dt+ 2Yt dBt

Writing in integral form and taking expectations, we obtain

E[Yt] = 1 +

∫ t

0

E[Ys] ds+ 0.

Hence, by the fundamental theorem of calculus, f(t) = E[Yt] satisfies the differential equation f ′(t) = f(t).
The solution of this differential equation is f(t) = Aet. Since E[Y0] = 1 we have A = 1 and thus E[Yt] = et.
Hence,

var(Xt) = E[X2
t ]− E[Xt]

2 = E[Yt]− 1 = et − 1.

13.10 Recall that cov(Xs, Xt) = E[(Xt − E[Xt])(Xs − E[Xs]). From (13.12) we have

E[Xt] = E[e−θt(Xt − µ)] + E
[∫ t

0

e−θ(t−u) dBu

]
= E[e−θt(Xt − µ)] + 0,

because Ito integrals are zero mean martingales. Thus Xt−E[Xt] =
∫ t

0
σeθ(u−t) dBu. We can now calculate

cov(Xs, Xt) = Cov
(∫ s

0

σ eθ(u−s)dBu ,

∫ t

0

σ eθ(v−t)dBv

)
= E

[(∫ s

0

σ eθ(u−s)dBu

)(∫ t

0

σ eθ(v−t)dBv

)]
= σ2e−θ(s+t) E

[(∫ s

0

eθudBu

)(∫ t

0

eθvdBv

)]
= σ2e−θ(s+t) E

[(∫ s

0

eθudBu +

∫ t

s

eθudBu

)(∫ s

0

eθvdBv

)]
= σ2e−θ(s+t) E

[(∫ s

0

eθudBu

)2]
+ E

[(∫ s

0

eθvdBv

)(∫ t

s

eθudBu

)]
= σ2e−θ(s+t)

∫ s

0

e2θudu+ E
[∫ s

0

eθvdBv

]
E
[∫ t

s

eθudBu

]
=

σ2

2θ
e−θ(s+t)

(
e2θs − 1

)
+ 0.

In the above, the second line and final lines follow because Ito integrals have zero mean. The penultimate
line follows because

∫ s

0
eθvdBv and

∫ t

s
eθudBu are independent. This fact follows from the independence

property in Theorem 11.2.1 (which defines Brownian motion), which implies that σ(Bv − Bu ; v ≥ u ≥ s)

and σ(Bv −Bu ; s ≥ v ≥ u) are independent. Note that from (12.3) we know that
∫ b

a
Fu dBs only depends

on increments of Brownian motion between times a and b. (The same fact can be deduced from the Markov
property from Section 14.2.)
Hence var(Xt) =

σ2

2θ
e−θ(2t)(e2θt − 1) = σ2

2θ
(1− e−2θt). It follows immediately that var(Xt) → σ2

2θ
as t → ∞.

13.11 (a) Applying Ito’s formula to Zt = B3
t , with f(t, x) = x3, we have

dZt =

(
0 + (0)(3B2

t ) +
1

2
(12)(6Bt)

)
dt+ (1)(3B2

t ) dBt

= 3Bt dt+ 3B2
t dt

and substituting in for Z we obtain

dZt = 3Z
1/3
t dt+ 3Z

2/3
t dBt

as required.
(b) Another solution is the (constant, deterministic) solution Xt = 0.
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13.12 Equation (13.9) says that
Xt = X0 exp

(
(α− 1

2
σ2)t+ σBt

)
.

Using Ito’s formula, with f(t, x) = X0 exp
(
(α− 1

2
σ2)t+ σx

)
we obtain

dXt =

(
(α− 1

2
σ2)Xt + (0)(σXt) +

1

2
(12)(σ2Xt)

)
dt+ (1)(σXt)dBt

= αXt dt+ σXt dBt

and thus Xt solves (13.8).
13.13 Equation (13.14) says that

Xt = X0 exp
(∫ t

0

σu dBu − 1

2

∫ t

0

σ2
u du

)
We need to arrange this into a form where we can apply Ito’s formula. We write

Xt = X0 exp
(
Yt −

1

2

∫ t

0

σ2
u du

)
where dYt = σt dBt with Y0 = 0. We now have Xt = f(t, Yt) where f(t, y) = X0 exp

(
y − 1

2

∫ t

0
σu du

)
, so

from Ito’s formula (and the fundamental theorem of calculus) we obtain

dXt =

(
−1

2
σ2
tXt + (0)(Xt) +

1

2
(σ2

t )(Xt)

)
dt+ (σt)(Xt) dBt

= σtXt dBt.

Hence, Xt solves (13.13).
13.14 (a) This is essentially Example 3.3.9 but in continuous time. By definition of conditional expectation

(i.e. Theorem 3.1.1) we have that Mt ∈ L1 and that Mt ∈ Ft. It remains only to use the tower
property to note that for 0 ≤ u ≤ t we have

E[Mt|Fu] = E[E[Y | Ft]Fu] = E[Y | Fu] = Mu.

(b) (i) Note that M0 = E[B2
T | F0] = E[B2

T ] = T . We showed in Lemma 11.4.4 that B2
t − t was a

martingale, hence

E[B2
T | Ft] = E[B2

T − T + T | Ft]

= B2
t − t+ T

Using (13.6), this gives us that

E[B2
T | Ft] = 2

∫ t

0

Bu dBu + t− t+ T

so we obtain
Mt = T +

∫ t

0

2Bu dBu

and we can take ht = 2Bt.
(ii) Note that M0 = E[B3

T | F0] = E[B3
T ] = 0. We showed in 11.6 that B3

t −3tB− t was a martingale.
Hence,

E[B3
T | Ft] = E[B3

T − 3TBT + 3TBT | Ft]

= B3
t − 3tBt + 3TBt.

Using Ito’s formula on Zt = B3
t , we obtain dZt =

{
0 + (0)(3B2

t ) +
1
2
(12)(6Bt)

}
dt+(1)(3B2

t ) dBt

so as
B3

t = 0 +

∫ t

0

3Bu du+

∫ t

0

3B2
u dBu.

Also, from 13.6 we have

tBt =

∫ t

0

Bu du+

∫ t

0

u dBu,
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so as

E[B3
T | Ft] = 3

∫ t

0

Bu du+ 3

∫ t

0

B2
u dBu − 3

(∫ t

0

Bu du+

∫ t

0

u dBu

)
+ 3TBt

= 3

∫ t

0

B2
u dBu − 3

∫ t

0

u dBu + 3T

∫ t

0

1 dBu

=

∫ t

0

3B2
u − 3u+ 3T dBu.

We can take ht = 3B2
t − 3t+ 3T .

(iii) Note that M0 = E[eσBT | F0] = E[eσBT ] = e
1
2
σ2T by (11.2) and the scaling properties of normal

random variables. We showed in 11.6 that eσBt− 1
2
σ2t was a martingale. Hence,

E[eσBT | Ft] = E[eσBT− 1
2
σ2T e

1
2
σ2T | Ft]

= eσBt− 1
2
σ2te

1
2
σ2T

= eσBt− 1
2
σ2(T−t).

Applying Ito’s formula to Zt = eσBt− 1
2
σ2(T−t) gives that

dZt =

(
−1

2
σ2Zt + (0)(σZt) +

1

2
(12)(σ2Zt)

)
dt+ (1)(σZt) dBt

= σZtdBt

so we obtain that
Zt = Z0 +

∫ t

0

σZu dBu.

Substituting in for Zt we obtain

E[eσBT | Ft] = e
1
2
σ2T +

∫ t

0

σZu dBu

so we can take ht = σZt = σeσBt− 1
2
σ2(T−t).

Chapter 14
14.1 We have α(t, x) = −2t, β = 0 and Φ(x) = ex. By Lemma 14.1.2 the solution is given by

F (t, x) = Et,x[e
XT ]

where dXu = −2u du+ 0 dBu = du. This gives

XT = Xt −
∫ T

t

2u du

= Xt − T 2 + t2.

Hence,

F (t, x) = Et,x

[
eXt−t2

]
= E

[
ex−T2+t2

]
= exe−T2+t2 .

Here we use that Xt = x under Et,x.
14.2 We have α = β = 1 and Φ(x) = x2. By Lemma 14.1.2 the solution is given by

F (t, x) = Et,x

[
X2

T

]
where dXu = du+ dBu. This gives

XT = Xt +

∫ T

t

du+

∫ T

t

dBu
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= Xt + (T − t) + (BT −Bt).

Hence,

F (t, x) = Et,x[(Xt + (T − t) + (BT −Bt))
2]

= E
[
x2 + (T − t)2 + (BT −Bt)

2 + 2x(T − t) + 2x(BT −Bt) + 2(T − t)(BT −Bt)
]

= x2 + (T − t)2 + (T − t) + 2x(T − t).

Here we use that Xt = x under Et,x and that BT −Bt ∼ BT−t ∼ N(0, T − t).

14.3 (a) We have Zt = F (t,Xt) + γ(t), where dXt = α(t, x) dt+ β(t, x) dBt, so

dZt =

(
∂F

∂t
+

∂γ

∂t
(t) + α(t, x)

∂F

∂x
+

1

2
β(t, x)2

∂2F

∂x2

)
dt+ β(t, x)

∂F

∂x
dBt

= β(t, x)
∂F

∂x
dBt

where as usual we have suppressed the (t,Xt) arguments of F and its partial derivatives. Note that
the term in front of the dt is zero because F satisfies (14.8).

(b) We use the same strategy as in the proof of Lemma 14.1.2. Writing out dZt in integral form over time
interval [t, T ] we obtain

ZT = Zt +

∫ T

t

β(u, x)
∂F

∂x
dBu.

Taking expectations Et,x gives us

Et,x [F (T,XT ) + γ(T )] = Et,x[F (t,Xt) + γ(t)]

and noting that Xt = x under Et,x, we have

Ex,t [F (T,XT )] + γ(T ) = F (t, x) + γ(t).

Using (14.9) we have F (T,XT ) = Φ(XT ) and we obtain

Ex,T [Φ(XT )] + γ(T )− γ(t) = F (t, x)

as required.
14.4 Consider (for example) the stochastic process

Mt =

{
Bt for t ≤ 1,

Bt −Bt−2 for t > 1.

We now consider Mt at time 3. The intuition is that E[M3 | F2] can see the value of B1, but that σ(M2) =
σ(B2) and E[M3 |σ(M2)] cannot see the value of B1.
Formally: we have

E[M3 | F2] = E[B3 −B1 | F2]

= B2 −B1 (C.4)

Here, we use that Bt is a martingale. However,

E2,M2 [M3] = E[B3 −B1 |σ(M2)]

= E[B3 −B1 |σ(B2 −B0)]

= E[B3 −B1 |σ(B2)]

= E[B3 −B2 |σ(B2)] + E[B2 |σ(B2)]− E[B1 |σ(B2)]

= E[B3 −B2] +B2 − E[B1 |σ(B2)]

= 0 +B2 − E[B1 |σ(B2)]

= B2 − E[B1 |σ(B2)] (C.5)

If we can show that (C.4) and (C.5) are not equal, then we have that Mt is not Markov. Their difference
is D = (C.4) − (C.5) = E[B1 |σ(B2)]−B1.
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We can write B2 = (B2 − B1) + (B1 − B0). By the properties of Brownian motion, B2 − B1 and B1 − B0

are independent and identically distributed. Hence, by symmetry, E[B2 −B1 |σ(B2)] = E[B1 −B0 |σ(B2)]
and since

B2 = E[B2 |σ(B2)] = E[B2 −B1 |σ(B2)] + E[B1 −B0 |σ(B2)]

we have that E[B2 −B1 |σ(B2)] =
B2
2

. Hence

D =
B2

2
−B1

which is non-zero.

Chapter 15
15.1 We have

∂f

∂t
= 0,

∂f

∂s
= c,

∂2f

∂x2
= 0

which, put into (15.10), gives (0) + rs(c) + 1
2
s2σ2(0)− r(cs) = 0. Similarly,

∂g

∂t
= rcert,

∂g

∂s
= 0,

∂2g

∂x2
= 0

which, put into (15.10), gives (rcert) + rs(0) + 1
2
s2σ2(0)− r(cert) = 0.

15.2 We have

e−r(T−t)EQ [Φ(ST ) | Ft] = e−r(T−t)EQ [K]

= Ke−r(T−t)

because K is deterministic. By Theorem 15.3.1 this is the price of the contingent claim Φ(ST ) at time t.
We can hedge the contingent claim K simply by holding Ke−rT cash at time 0, and then waiting until time
T . While we wait, the cash increases in value according to (15.2) i.e. at continuous rate r. So, this answer
is not surprising.

15.3 (a) By Theorem 15.3.1 the price of the contingent claim Φ(ST ) = log(ST ) at time t is

e−r(T−t)EQ [Φ(ST ) | Ft] = e−r(T−t)EQ [log(ST ) | Ft] .

Recall that, under Q, St is a geometric Brownian motion, with S0 = 0, drift r and volatility σ. So
from (15.20) we have ST = Ste

(r− 1
2
σ2)t+σBt . Hence,

e−r(T−t)EQ [log(ST ) | Ft] = e−r(T−t)EQ [log(St) + (r − 1
2
σ2)(T − t) + σ(BT −Bt) | Ft

]
= e−r(T−t)

(
log(St) + (r − 1

2
σ2)(T − t) + σ

(
EQ[BT | Ft]−Bt

))
= e−r(T−t) (log(St) + (r − 1

2
σ2)(T − t)

)
.

Here, we use that St, Bt are Ft measurable, and that (Bt) is a martingale.
Putting in t = 0 we obtain

e−rT (log(S0) + (r − 1
2
σ2)T

)
,

(b) The strategy could be summarised as ‘write down Φ(ST ), replace T with t = 0 and hope’. The problem
is that if we buy log s units of stock at time 0, then from (15.20) (with t = 0) its value at time T will
be (log s) exp((r − 1

2
σ2)T + σBT ), which is not equal to logST = log s+ (r − 1

2
σ2)T + σBT .

(In more formal terminology, the problem is that our excitable mathematician has assumed, incorrectly,
that the log function and the ‘find the price’ function commute with each other.)

15.4 (a) We have (in the risk neutral-world Q) that dSt = rSt dt+ σSt dBt. Hence, by Ito’s formula,

dYt =

(
(0) + rSt(βS

β−1
t ) +

1

2
σ2S2

t (β(β − 1)Sβ−2
t )

)
dt+ σSt(βS

β−1
t )dBt

=
(
rβ + 1

2
σ2β(β − 1)

)
Yt dt+ (σβ)Yt dBt.

So Yt is a geometric Brownian motion with drift rβ + 1
2
σ2β(β − 1) and volatility σβ.
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(b) Applying (15.20) and replacing the drift and volatility with those from part (a), we have that

YT = Yt exp
((
rβ + 1

2
σ2β(β − 1)− 1

2
σ2β2) (T − t) + σβ(BT −Bt)

)
= Yt exp

((
rβ − 1

2
σ2β

)
(T − t) + σβ(BT −Bt)

)
.

By Theorem 15.3.1, the arbitrage free price of the contingent claim Yt = Φ(ST ) at time t is

e−r(T−t)EQ [YT | Ft] = e−r(T−t)EQ
[
Sβ
t exp

((
rβ − 1

2
σ2β

)
(T − t) + σβ(BT −Bt)

)
| Ft

]
= e−r(T−t)Sβ

t e
(rβ− 1

2
σ2β)(T−t)EQ

[
eσβ(BT−Bt) | Ft

]
= e−r(T−t)Sβ

t e
(rβ− 1

2
σ2β)(T−t)EQ

[
eσβ(BT−Bt)

]
= e−r(T−t)Sβ

t e
(rβ− 1

2
σ2β)(T−t)e

1
2
σ2β2(T−t)

= Sβ
t e

−r(T−t)(1−β)− 1
2
σ2β(T−t)(1−β).

Here, we use that St is Ft measurable. We then use (11.2) along with the properties of Brownian
motion to tell us that σβ(BT −Bt) is independent of Ft with distribution N(0, σ2β2(T − t)).

15.5 From Theorem 15.3.1 the price at time t of the binary option is

e−r(T−t)EQ [Φ(ST ) | Ft] = Ke−r(T−t)EQ [
1{ST∈[α,β]} | Ft

]
We have

ST = Ste
(r− 1

2
σ2)(T−t)+σ(BT−Bt)

= Ste
(r− 1

2
σ2)(T−t)+σ

√
T−tZ

where Z ∼ N(0, 1) is independent of Ft. Here we use that BT − Bt ∼ N(0, T − t) ∼
√
T − tN(0, 1) is

independent of Ft. Therefore,

EQ [
1{ST∈[α,β]} | Ft

]
= EQ

[
1{

Ste
(r− 1

2
σ2)(T−t)+σ

√
T−tZ∈[α,β]

} ∣∣∣Ft

]

= EQ

1
 log

(
α
St

)
−
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

≤ Z ≤
log
(

β
St

)
−
(
r + 1

2
σ2
)
t

σ
√
T − t


∣∣∣∣∣Ft


= EQ

1
 log

(
α
St

)
−
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

≤ Z ≤
log
(

β
St

)
−
(
r + 1

2
σ2
)
t

σ
√
T − t




= N (e2)−N (e1)

where

e1 =
log
(

α
St

)
−
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

e2 =
log
(

β
St

)
−
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

.

Hence the price at time t is given by Ker(T−t) [N (e1)−N (e2)] .

15.6 If we take Ft = eµt then (in world P) we have

St

Ft
=

S0 exp
((
µ− 1

2
σ2
)
t+ σBt

)
exp (µt)

= S0 exp
(
σBt −

1

2
σ2t

)
,

which we showed was a martingale in 11.6.
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15.7 We have the risk neutral pricing formula Πt(Φ) = e−r(T−t)EQ
t,St

[Φ(ST )] for any contingent claim Φ. Hence,
using linearity of EQ,

Πt(αΦ1 + βΦ2) = e−r(T−t)EQ
t,St

[αΦ1(ST ) + βΦ2(ST )]

= αe−r(T−t)EQ
t,St

[Φ1(ST )] + βe−r(T−t)EQ
t,St

[Φ2(ST )]

= αΠt(Φ1) + βΠt(Φ2)

as required.
15.8 In the ‘new’ model we could indeed buy a unit of Yt = Sβ

t and hold onto it for as long as we liked. But in
the ‘old’ model we can only buy (linear multiples of) the stock St; we can’t buy a commodity whose price at
time t is Sβ

t . This means that the hedging strategy suggested within the ‘new’ model doesn’t work within
the ‘old’ model. Consequently, there is no reason to expect that prices in the two models will be equal. In
general they will not be.

Chapter 16
16.1 (a) The functions Φcash(ST ) = 1, Φstock(ST ) = ST , Φcall(ST ) = max(ST−K, 0) and Φput(ST ) = max(K−

ST , 0) look like:

(b) In terms of functions, the put-call parity relation states that

max(K − ST , 0) = max(ST −K) +K − ST .

To check that this holds we consider two cases.
• If K ≤ ST then put-call parity states that 0 = ST −K +K − ST , which is true.
• If K ≥ ST then put-call parity states that K − ST = 0 +K − ST , which is true.

16.2 The put-call parity relation (16.1) says that

Φput(ST ) = Φcall(ST ) +KΦcash(ST )− Φstock(ST ).

Hence,
Πput

t = Πcall
t +KΠcash

t −Πstock
t .

From here, using that Πcash
t = e−r(T−t) (corresponding to Φ(ST ) = 1) and Πstock

t = St (corresponding to
Φ(ST ) = ST ), as well as the Black-Scholes formula (15.23), we have

Πput
t = StN [d1]−Ke−r(T−t)N [d2] +Ke−r(T−t) − St

= St(N [d1]− 1)−Ke−r(T−t)(N [d2]− 1)

= −StN [−d1] +Ke−r(T−t)N [−d2].

In the last line we use that N [x] +N [−x] = 1, which follows from the fact that the N(0, 1) distribution is
symmetric about 0 (i.e. P[X ≤ x] + P[X ≤ −x] = P[X ≤ x] + P[−X ≥ x] = P[X ≤ x] + P[X ≥ x] = 1). The
formula stated in the question follows from setting t = 0.

16.3 Write Φcall,K(ST ) = max(ST − K, 0) for the contingent claim of a European call option, and Φput,K(ST )
for the contingent claim of a European put options, both with strike price K and exercise date T . Then

Φ(ST ) = Φcall,1(ST ) + Φput,−1(ST )

so we can hedge Φ(ST ) by holding a single call option with strike price 1 and a single put option with strike
price −1.
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16.4 (a) A sketch of Φ(ST ) for general A looks like

Let Φput,K(ST ) = max(K − ST , 0) denote the contingent claim corresponding to a European put
option with strike price K and exercise date T . Then, we claim that

Φ(ST ) = Φput,K+A(ST )− Φput,A(ST ). (C.6)

The right-hand side of this equation corresponds to a portfolio of one put option with strike price
K + A and minus one put option with strike price A. We can see that the relation (C.6) holds by
using a diagram

in which the purple line Φput,A(ST ) is subtracted from the red line Φput,K+A(ST ) to obtain the green
line Φ(ST ). Alternatively, we can check it by considering three cases:

• If ST ≤ A then we have K = (K +A− ST )− (A− ST ) which is true.
• If A ≤ ST ≤ K +A then we have K +A− ST = (K +A− ST )− (0) which is true.
• If ST ≥ K +A then we have 0 = (0)− (0) which is true.

Therefore, the portfolio of one put option with strike price K + A and minus one put option with
strike price A is a replicating portfolio for Φ(ST ).

(b) We use put-call parity to replicate our portfolio of put options with a portfolio of cash, stock and
call options. This tells us that Φput,K(ST ) = Φcall,K(ST ) + KΦcash(ST ) + Φstock(ST ). Therefore,
replacing each of our put options with the equivalent amounts of cash and stock, we have

Φput,K+A(ST )− Φput,A(ST ) = Φcall,K+A(ST )− Φcall,A(ST ) + (K +A−A)Φcash(ST )− (1− 1)Φstock(ST )

= Φcall,K+A(ST )− Φcall,A(ST ) +KΦcash(ST ).

Hence, Φ(ST ) can be replicated with a portfolio containing one call option with strike price K + A,
minus one call option with strike price K, and K units of cash.

(c) Corollary 15.3.3 refers to portfolios consisting only of stocks and cash. It does not apply to portfolios
that are also allowed to contain derivatives.

16.5 We can write
Φbull(ST ) = A+ max(ST −A, 0)− max(ST −B, 0).

It may help to draw a picture, in the style of 16.4. If we write Φcall,K(ST ) = max(ST − K, 0) and recall
that Φcash(ST ) = 1 then we have

Φbull(ST ) = AΦcash(ST ) + Φcall,A(ST )− Φcall,B(ST ).

So, in our (constant) hedging portfolio at time 0 we will need Ae−rT in cash, one call option with strike
price A, and minus one call option with strike price B.

16.9 The price computed for the contingent claim Φ(ST ) = Sβ
t in 15.4 is

F (t, St) = Sβ
t exp

(
−r(T − t)(1− β)− 1

2
σ2β(T − t)(1− β)

)
.
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(Recall that Theorem 15.3.1 also tells us that there is a hedging strategy ht = (xt, yt) for the contingent
claim with value F (t, St).)
We have F (t, s) = sβ exp

(
−r(T − t)(1− β)− 1

2
σ2β(T − t)(1− β)

)
and we calculate

∆F =
∂F

∂s
(t, St) = βSβ−1

t exp
(
−r(T − t)(1− β)− 1

2
σ2β(T − t)(1− β)

)
ΓF =

∂2F

∂s2
(t, St) = β(β − 1)Sβ−2

t exp
(
−r(T − t)(1− β)− 1

2
σ2β(T − t)(1− β)

)
ΘF =

∂F

∂t
(t, St) = Sβ

t (1− β)(r + 1
2
βσ2) exp

(
−r(T − t)(1− β)− 1

2
σ2β(T − t)(1− β)

)
ρF =

∂F

∂r
(t, St) = −Sβ

t (T − t)(1− β) exp
(
−r(T − t)(1− β)− 1

2
σ2β(T − t)(1− β)

)
VF =

∂F

∂σ
(t, St) = −Sβ

t σβ(T − t)(1− β) exp
(
−r(T − t)(1− β)− 1

2
σ2β(T − t)(1− β)

)
.

16.10 (a) The underlying stock St has ∆S = 1 and ΓS = 0. If we add −2 stock into our original portfolio with
value F , then its new value is V (t, St) = F (t, St)− 2St, which satisfies ∆V = ∆F − 2 = 0.
The cost of adding −2 units of stock into the portfolio is −2St.

(b) After including an amount wt of stock and an amount dt of D, we have

V (t, St) = F (t, St) + wtSt + dtD(t, St).

Hence, we require that

0 = ∆F + wt + dt∆D = 2 + wt + dt,

0 = ΓF + dtΓD = 3 + 2dt.

The solution is dt =
−3
2

and wt =
−1
2

.
The cost of the extra stock and units of D that we have had to include is − 3

2
D(t, St)− 1

2
St.

16.11 (a) It doesn’t work because adding in an amount zt of Z in the second step will (typically i.e. if ∆Z 6= 0)
destroy the delta neutrality that we gained from the first step.

(b) Since Z(t, St) = St we have

V (t, St) = F (t, St) + wtW (t, St) + ztSt,

so we require that

0 =
∂V

∂s
= ∆F + wt∆W + zt

0 =
∂2V

∂s2
= ΓF + wtΓW .

The solution is easily seen to be

wt = − ΓF

ΓW

zt =
∆WΓF

ΓW
−∆F

(c) This idea works. As we can see from part (b), if we use stock as our financial derivative Z(t, St) = St,
then ΓZ = 0. Hence, adding in a suitable amount of stock in the second step can achieve delta
neutrality without destroying the gamma neutrality obtained in the first step.

16.12 Omitted (good luck).

Chapter 19
19.1 The degrees of the nodes, in alphabetical order, are (1, 1), (0, 2), (2, 2), (2, 0), (1, 1), (1, 2), (1, 0). This gives

a degree distribution

P[DG = (a, b)] =

{
1
7

for (a, b) ∈ {(0, 2), (2, 2), (2, 0), (1, 2), (1, 0)},
2
7

for (a, b) = (1, 1).
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Sampling a uniformly random and moving along it means that the chance of ending up at a node A is
proportional to degin(A). Since the graph has 8 edges, we obtain

P[O = n] =


1
8
+ 2

8
for n = 0 (nodes D and G)

1
8
+ 1

8
for n = 1 (nodes A and E)

0 + 2
8
+ 1

8
for n = 2 (nodes B,C and F)

=


3
8

for n = 0
1
4

for n = 1
3
8

for n = 2

19.2 Node Y can fail only if the cascade of defaults includes X → D → Y . Given that X fails, the probability
that X fails is η3 = 1

3
, because D has 3 in-edges. Similarly, given that D fails, the probability that Y also

fails is 1
2
. Hence, the probability that Y fails, given that X fails, is 1

6
.

19.3 Node Y can fail if the cascade of defaults includes X → B → D → Y or X → B → C → D → Y . Given
that X fails, node B is certain to fail as well, since B has only one in-edge. Given that B fails, C is certain
to fail for the same reason. Therefore, the edges (B,D) and (C,D) are both certain to default. For each
of these edges, independently, there is a chance 1

3
that their own default causes D to fail. The probability

that D fails is therefore
1

3
+

(
1− 1

3

)
× 1

3
=

5

9
.

Here, we condition first on if the link BD causes D to fail (which it does with probability 1
3
) and then, if

it doesn’t (which has probability 1− 1
3
) we ask if the link BC, which fails automatically and causes failure

of CD, causes D to fail.
Given that D fails, Y is certain to fail. Hence, the probability that Y fails, given that X fails, is 5

9
.

19.4 For any node of the graph (except for the root node), if its single incoming loan defaults, then its own
probability of default if α, independently of all else. Hence, each newly defaulted loan leads to two further
defaulted loans with probability α, and leads to no further defaulted loans with probability 1−α. Hence, the
defaulted loans form a Galton-Watson process (Zn) with off-spring distribution G, given by P[G = 2] = α
and P[G = 0] = 1− α, with initial state Z0 = 2 (representing the two loans which initially default when V0

defaults).
The total number of defaulted edges is given by

S =

∞∑
n=0

Zn.

Combining Lemmas 7.4.7, 7.4.6 and 7.4.8, we know that either:

• If E[G] > 1 then there is positive probability that Zn → ∞ as n → ∞; in this case for all large enough
n we have Zn ≥ 1, and hence S = ∞.

• If E[G] ≤ 1 then, almost surely, for all large enough n we have Zn = 0, which means that S < ∞.

We have E[G] = 2α. It is clear that the number of defaulted banks is infinite if and only if the number of
defaulted loans in infinite, which has positive probability if E[G] > 1. So, we conclude that there is positive
probability of a catastrophic default if and only if α > 1

2
.

19.5 (a) The probability that both B and C fail is 1
2

1
2
= 1

4
. Given this event, the probability that both D and

E fail is 1
2
(1− 3

4
3
4

3
4
) = 37

128
; here the first term 1

2
is the probability of D failing (via its link to B) and

the second term is one minus the probability of E not failing despite all its inbound loans defaulting.
Given that D and E both fail, the probability that F fails is 1− 2

3
2
3
= 5

9
.

Hence, the probability that every node fails is

1

4

37

128

5

9
=

185

4608
.

(b) Our strategy comes in three stages: first work out the probabilities of all the possible outcomes relating
to B and C; secondly, do the same for D and E; finally, do the same for F . Each stage relies on the
information obtained in the previous stage.
Stage 1: The probability that B fails and C does not is 1

2
1
2
= 1

4
. This is also the probability that C

fails and B does not. The probability that both B and C fail is also 1
4
.
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Stage 2: Hence, the probability that E fails and D does not is

1

4

(
1

4

1

2

)
+

1

4

(
1

4

)
+

1

4

(
1

2

)(
1

4
+

3

4

1

4

)
=

19

128

The three terms in the above correspond respectively to the three cases considered in the first para-
graph. Similarly, the probability that D fails and E does not is

1

4

(
1

2

3

4

3

4

)
+

1

4
(0) +

1

4

(
1

2

)(
3

4

3

4

3

4

)
=

63

512

and the probability that both D and E fail is

1

4

(
1

2

)(
1

4
+

3

4

1

4

)
+

1

4
(0) +

1

4

(
1

2

)(
1− 3

4

3

4

3

4

)
=

65

512

.
Stage 3: Finally, considering these three cases in turn, the probability that F fails is

19

128

(
1

3

)
+

63

512

(
1

3

)
+

65

512

(
1− 2

3

2

3

)
=

371

2304
.
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Appendix D

Advice for revision/exams

There are two different exam papers, one for MAS352 and one for MAS61023. For both exams the rubric reads
Candidates should attempt ALL questions. The maximum marks for the various parts of the questions
are indicated. The paper will be marked out of X.

For MAS352 X = 100 and for MAS61023 X = 85. Within these notes, material marked with a (∆) is examinable
only for MAS61023, and is non-examinable for MAS352. Material marked with a (?) is non-examinable for
everyone.

• You will be asked to solve problems based on the material in these notes. There will be a broad range of
difficulty amongst the questions. Some will be variations of questions in the assignments/notes, others will
also try to test your ingenuity.

• You may be asked to state important definitions and results (e.g. more than one past exam has asked for
definition of Brownian Motion).

• You will not be expected to reproduce long proofs from memory. You are expected to have followed the
techniques within the proofs (e.g. Ito’s formula, conditional expectation rules) when they are present, and
to be able to use these techniques in your own problem solving.

• There are marks for attempting a suitable method, and for justifying rigorous mathematical deductions, as
well as for reaching a correct conclusion.

• If you apply an important result that has a name e.g. ‘the Martingale Convergence Theorem’ you should
mention that name, or something similar e.g. ‘by mart. conv.’ or ‘by the MCT’.

• Practice using the formula sheet to help you solve questions. It contains lots of useful formulae!

Revision activities
The most important activities:

1. Check and mark your solutions to assignment questions.
2. Learn the key definitions, results, and examples.
3. Do the past exam papers, and mark your own solutions.

Other very helpful activities:
4. Work through, and check your solutions, to non-challenge questions in the notes.

Of course, you should have been working on these questions throughout the year, which is why they are lower
priority now. You do not need to look at the challenge questions as part of your revision – these are intended
only to offer a serious, time consuming challenge to strong students.

In all cases, you are welcome to come and discuss any questions/comments/typos. Please email to arrange a
convenient time.
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Appendix E

Formula sheet (part two)

The formula sheet displayed on the following two pages will be provided in the exam.
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