
MAS364/61006: Assignment 1

You can find formulae for named distributions and conjugate pairs in Appendix A of the lecture
notes.

Solutions and discussion are written in blue. Some common pitfalls are indicated in teal. A
sample mark scheme is given in red, with each mark placed after the statement/deduction
for which the mark would be given. As usual, mathematically correct solutions that follow a
different method would be marked analogously.

Marks are given for [A]ccuracy, [J]ustification, and [M]ethod.

1. (a) Let X ∼ Pareto(2,1). Find the probability density function of X |{X≥5}.??

(b) Let (X , Y ) be continuous random variables with p.d.f. satisfying

fX ,Y (x , y)∝

¨

ye−λy x y−1 if x ∈ (0,1) and y ∈ (0,∞),
0 otherwise

i. Find the distribution of Y .
ii. Find the distribution of X |{Y=y}, for y ∈ (0,∞).

Solution.

(a) We have P[X |{X≥5} ∈ [5,∞)] = 1 [1M] and for A⊆ [5,∞) we have

P[X |{X≥5} ∈ A] =
P[X ∈ A]
P[X ≥ 5]

=

∫

A 2x−3 d x
∫∞

5 2x−3 d x
=

∫

A 2x−3 d x

5−2
=

∫

A
50x−3 d x

[1M] It follows that

fX |{X≥5}
(x) =

¨

50x−3 for x ≥ 5

0 otherwise.

[2A] (The question does not ask to name it, but this is the Pareto(5,2) distribution.)

Pitfall: Don’t forget to specify the region on which the p.d.f. is non-zero.

(b) i. Recall that fY (y) =
∫

R fX ,Y (x , y) d x . Hence, for y ∈ (0,∞) we have

fY (y)∝
∫ 1

0

ye−λy x y−1 d x = ye−λy
�

x y

y

�1

x=0
= e−λy

[1M] and fY (y) = 0 for y ≤ 0. We recognize Y ∼ Exp(λ). [1A]
In particular this tells us that normalizing constant above is λ, so

fY (y) =

¨

λe−λy for y ∈ (0,∞),
0 otherwise.

ii. Here are two different ways to solve this question.
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For the first way, we use that fX |{Y=y}
(y) =

fX ,Y (x ,y)
fY (y)

[1M] and compute that

fX |{Y=y}
(x)∝

¨

ye−λy x y−1

λe−λy for x ∈ (0,1),
0 otherwise,

=

¨

y x y−1 for x ∈ (0,1),
0 otherwise.

We recognize this p.d.f. as X |{Y=y} ∼ Beta(y, 1). [1A]

Alternatively: we could add a factor λ into fX ,Y (x , y) and then we obtain

P[X ∈ A, Y ∈ B]∝
∫

B

∫

A
λe−λy y x y−1 d x d y =

∫

B

�∫

A
y x y−1 d x

�

λe−λy d y

∝
∫

B
P [Beta(y, 1) ∈ A] fY (y) d y

which matches the form of a Bayesian model (X , Y )with model family (Beta(1, y))y∈(0,∞)
and prior Y ∼ Exp(λ). Hence, the normalizing constant above must be 1. For this
model we know that X |{Y=y} ∼ Beta(1, y).

2. In ancient Rome, the denarius was a commonly used coin. In this question we are inter-?
ested in the weight of a denarius coin, which is variable because they were manufactured
by hand. A further complication is that, as Roman craftsmanship gradually improved,
smaller and smaller versions of the same coin were made.

An analysis of the production methods has suggested that we should model the weight
of a single coin, in grams, as N(θ , 0.52). An archaeological dig finds 3 denarii coins, with
weights (in grams)

x = (3.68,3.92, 3.85).

The archaeologists believe these coins are from the era 37-14 B.C. shortly after the death
of Julius Ceaser (in 44 B.C.). They are certain that Julius Ceaser set the official weight of
a denarius at 3.9g, but they don’t know how closely this was followed, in practice. After
some consultation, we decide on a prior Θ ∼ N(3.9,1.22).

(a) Write down a suitable model family Mθ , which leads to a Bayesian model (X ,Θ)
applicable to the data x .

(b) Use the Normal-Normal conjugate pair to write down the distribution of the poste-
rior Θ|{X=x}.

(c) This part should be done on a computer and is not for handing in. You may it helpful
to use the code provided in Excercise 2.1 (or 4.1) of the lecture notes.
Use R or Python to plot the prior and posterior density functions from (b) on the
same axes.

(d) Suppose that, in an alternate reality, we had found the data x but had not been able
to discuss the choice of prior with the archaeologists. Instead of the prior above we
chose Θ ∼ N(7.5,4.52) – based, say, on the rough weights of various modern coins,
which are usually between 3g and 12g. Find the resulting posterior Θ|{X=x} and
comment on how this compares to the results in (b).

Solution.
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(a) Mθ ∼ N(θ , 0.52)⊗3 [1A]
Pitfall: We need the ⊗3 because we have three (independent) datapoints.

(b) Our data satisfies
∑3

1 x i = 11.45, our prior is Θ ∼ N(3.9,1.22), and we have fixed σ2 = 0.5
in our model. Putting these into the update equations for the Normal-Normal conjugate
pair gives posterior

Θ|{X=x} ∼ N

� 1
0.52 (11.45) + 3.9

1.22

3
0.52 +

1
1.22

,
1

3
0.52 +

1
1.22

�

≈ N(3.82,0.0788).

where we have rounded the parameters in the final step. [1M + 2A]

(c) You should obtain the following graph: [2A]

(d) We have the same setup as in (b), except that now the prior is Θ ∼ N(7.5,4.52), resulting
in

Θ|{X=x} ∼ N

� 1
0.52 (11.45) + 7.5

4.52

3
0.52 +

1
1.22

,
1

3
0.52 +

1
4.52

�

≈ N(3.83,0.0830).

[1M + 2A]
In (b) we obtained a slightly different mean and a lower variance in the posterior distribu-
tion. We started out with a prior distribution in (b) that has a lower mean and was more
concentrated about its mean, and used the same data in both cases, so it makes sense that
the posterior distribution also has a (slightly) lower mean and is more concentrated in (b).
[1J]
However, the posteriors obtained in both cases are very similar. Our choice of prior has not
had much effect here. [1J]

3. In this question we use the parametrization of the Geometric distribution from the ref-??
erence sheet, that is

P[Geometric(θ ) = k] =

¨

θ (1− θ )k for k ∈ N0 = {0,1, 2, . . .},
0 otherwise.

(a) Let n ∈ N. Let (X ,Θ) be a Bayesian model with model family Mθ ∼ Geometric(θ )⊗n,
where θ ∈ [0,1], and prior Θ ∼ Beta(a, b), where a, b ∈ (0,∞).
Let x = (x1, . . . , xn) ∈ (N0)n. Show that the posterior distribution is

Θ|{X=x} ∼ Beta

�

a+ n, b+
n
∑

i=1

x i

�

.
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In this question you should justify your calculations without using the reference sheet
of conjugate pairs.

(b) The probability of a wild oyster containing a pearl is around one in ten thousand.
This probability can be greatly increased in farmed oysters with various techniques,
but it is still an uncertain process.
An oyster farmer opens oysters one by one. We use a Geometric(θ ) distribution to
model the number of times the farmer opens an oyster and does not find a pearl,
up to (but not including) the time at which the first pearl is found. We decide to
use the prior Θ ∼ Beta(1,10). The farmer has repeated this experiment 10 times
and obtained the data

x = (25, 38, 11, 60, 23, 29, 4, 28, 61, 28). (?)

For this data
∑10

i=1 x i = 307.

i. What is the range R and the parameter space Π of the discrete Bayesian model
specified above?

ii. How many oysters have been opened, in total, to collect the data (?)?
iii. Use part (a) to find the posterior distributionΘ|{X=x}, using the data supplied by

the oyster farmer. What is the value of E[Θ|{X=x}] and how does this compare
to our prior?

iv. Suppose that, instead, we choose to model the probability of finding a pearl
inside a single oyster as Bernoulli(θ ).
Let (Y,Θ) be a Bayesian model with model family Bernoulli(θ )⊗317, with the
same prior Θ ∼ Beta(1,10). Use the reference sheet of conjugate pairs to find
the posterior parameters for this model, given the data represented in (?).

v. You should obtain the same posterior distribution in parts iii and iv. Suggest
why has this happened.

Solution.

(a) Using Bayes rule (in the case of discrete data) we have [1M]

fΘ|{X=x}
(θ )∝ P[Geometric(θ )⊗n = x] fBeta(a,b)(x)

∝

� n
∏

i=1

θ (1− θ )x i

�

�

1
B(a, b)

θ a−1(1− θ )b−1
�

∝
�

θ n(1− θ )
∑n

1 x i
�

�

θ a−1(1− θ )b−1
�

∝ θ a+n−1(1− θ )b+
∑n

1 x i−1.

for θ ∈ (0,1), and fΘ|{X=x}
(θ ) = 0 otherwise. [2M+2A]

We recognize Θ|{X=x} ∼ Beta(a+ n, b+
∑n

1 x i) as required.

(b) i. Π= (0,1) (or (0,1] will do) and R= {0,1, 2, . . .}10. [2A]
ii. 317, [1A] of which 10 contained pearls and 307 did not.

iii. We apply part (a) with n= 10 and
∑n

1 x i = 307. We obtainΘ|{X=x} ∼ Beta(1+10,10+
307)∼ Beta(11,317). [2A]
We have E[Θ] = 1

1+10 ≈ 0.09 and E[Θ|{X=x}] =
11

11+317 ≈ 0.03. Compared to our prior,
this posterior distribution suggests that (on average) many fewer oysters contain pearls
than we originally believed. [1J]
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iv. We apply a Bayesian model (Y,Θ) with n = 317, model family Bernoulli(θ )⊗317 and
priorΘ ∼ Beta(1,10). Our data from (?) is a vector y ∈ {0,1}317, such that y = (yi)

317
i=1

contains k =
∑317

1 yi = 10 ones (i.e. successes) and n− k = 307 zeros (i.e. failures).
[2M]
We obtain Θ|{X=x} ∼ Beta(1+ k, 10+ n− k)∼ Beta(11,317). [1A]

v. If (X i)i∈N is a sequence of i.i.d. Bernoulli(θ ) random variables, then the Geometric(θ )
distribution counts number of i = 0,1, 2, . . . for which we have X i = 0, up until the first
1. [1J] We made the same transformation to the data between parts iii and iv, when
we used a vector containing 307 zeros and 10 ones in place of (?). For this reason,
our two models are really the same model, with different formats for the data. [1J]

Total marks: 35
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