SOME DISCRETE DISTRIBUTIONS

Name Parameters Genesis / Usage p(z) = P[X = z] E[X] Var(X) Comments
and non-zero range
Uniform (discrete) | k € N Set of k equally likely outcomes. p(z)=1/k k£l % Fair dice roll with k£ = 6.
r=1,....k
Bernoulli trial 0 € [0,1] Experiment with two outcomes; | p(z) = 0%(1 — 0)}~= 0 0(1—0)
typically, success = 1, fail = 0. z=0,1
Binomial neN Number of successes in n | p(z) = (1)0"(1—60)""" | nd nf(1—0) | Often written Bin(n,0).
0 €10,1] i.i.d. Bernoulli trials. r=0,1,2,....,n Bin(1, ) ~ Bernoulli(§)
Geometric 0 € (0,1] Number of failed i.i.d. Bernoulli tri- | p(x) = 6(1 — 6)* % (1229)2 Alternative parametrisations:
als before the first success. x=0,1,2,... swap 0 and 1 — 0,
or X’ = X +1 to include the final trial.
Negative Binomial | k € N Number of failed i.i.d. Bernoulli tri- | p(x) = k(lg %) k(;g) Many alternative parametrisations.
0 € (0,1] als before the k™ success. (xH;_l)Gk(l —0)* NegBin(1,0) ~ Geometric(6).
z=0,1,2,...
. . . . k\ (N—k N —
Hypergeometric N eN Number of special objects in a ran- | p(z) = (r) (n_m)/(n) an: nN_’f % X
ke {0,...,N} | dom sample of n objects, from a | x =0,...,n 1— %)
n € {0,...,n} | population of N objects with k spe-
cial objects.
Poisson A€ (0,00) Counting events occurring uni- | p(x) = 67;!’\1" A A
formly at random within space or | x =0,1,2, ...

time.




SOME CONTINUOUS DISTRIBUTIONS

Name Parameters Genesis / Usage f(z) = p.d.f. Var(X) Comments
and non-zero range
Uniform o, eR The uniform distribution for a | f(z) = B%a 8 T Ik
(continu- with a < 8 continuous interval. z € (a,p)
ous)
Normal uweR Empirically and theoretically | f(z) = \/ﬁ exp (— (12; g’z) o? Often written N(u,o?).
o€ (0,00) (via CLT) a good model in | z e R Alternative parameter: 7 = .
© 5
many situations. aN(u,0%) 4+ b~ N(ap+ b,a’c?)
Exponential | A € (0, 00) Inter-arrival times of random | f(z) = Ae™* 3 % Often written Exp(A).
events. x € (0,00) Alternative parameter: 6 = 1.
Gamma a € (0,00) Lifetimes of ageing items, multi- | f(z) = F?Z)xafle*m 3 = Often written I'(a, ).
B € (0,00 inter-arrival times. z € (0,00 Alternative parameter: 6 = +.
(0, 00)
Gamma(1, \) ~ Exp(})
Beta a € (0,00) Quantities constrained to be | f(x) = B(é ) o711 — z)ft W Beta(1,1) ~ Uniform(0, 1)
B € (0,00) within intervals. zelo,1
Cauchy a€R Heavy tailed, pathological ex- | f(z) = Wib )T undefined
b€ (0,00) amples. z€eR
Pareto a € (0,00) Heavy tailed quantities. f(z) = ;‘ffl (a_la)z% Sometimes written Pareto(f, «).
B € (0,00) z € (B,00) ifa>2 log (Met%(aﬁ)) ~ Exp(a)
Weibull A€ (0,00) Lifetimes, extreme values. flz)y=% (%)kil e~ (@/NF AL(1+1/k) | A2[r(+2/k) (%H(Ak))k ~ Exp(1)
ke (0,00) z € (0,00) +T(1 +1/k)?]
Log-Normal | u € R Quantities related to exponen- | f(z) = ml% exp (—(logi}% (e“" — 1) Often written LogN(u,o?).
o€ (0,00) tial growth. z € (0, 00) x 21 to” log(LogN(p, 02)) ~ N(u,0?)
Chi-squared | n € N Statistical testing. flx) = mx"/%le*xﬂ 2n Often written y2.
z € (0, 00) X5 ~ Gamma(n/2,1/2)
X; ~N(0,1) iid. = YT X2~ 2
E3Y p
Student ¢ neN Statistical testing. fz) = \;%I%(ﬂ)) (1+ %2)_%1 L5 if n > 2 | Often written ,.
reR ’ Can allow n € (0, c0).
t; = Cauchy(0,1)
Inverse a € (0,00) Quantities related to the | f(z) = Fﬁzz)x “~Lexp (/) % Often written IGamma(a, ).
Gamma B € (0,00) Gamma distribution. z € (0,00) ifa>2 [Gamma(a, 3) ~ Gamma(a )




SOME CONJUGATE PAIRS

n+p

Model family Prior family Data Posterior parameters
Bernoulli(6)®" 0 ~ Beta(a, b) z € {0,1}" af=a+d
b*=b+n-—>"1uz
Bin(mi,0) ® ... ® Bin(m,,0) | 6 ~ Beta(a,b) rxef{0,1,....}" at=a+d
with mq,...m, € N fixed. where x; € {0,...,m;} b*=b+Y1mi—> 1
Geometric(9)®" 6 ~ Beta(a, b) xe{0,1,...,}" a*=a+n
b* =b+ Z? xX;
Poisson(6)®" 6 ~ Gamma(a, b) ze{0,1,...,}" at=a+> 1w
b*=b+n
Exp(\)®" A ~ Gamma(a, b) z € (0,00)" a*=a+n
b*=1b + Z? s
Weibull (0, 3)®" 0 ~ IGamma(a, b) z € (0,00)" a*=a+n
with € (0,00) fixed. b*=b+37 x;ﬁ
N(6,02)%n 0 ~ N(u, s?) z €R" w= (LY e+ %)/ (5+%
with o € (0, 00) fixed. P =1/(%+ S—I:
N(f, Ly®n 0 ~N(u,1) x €R" w = (Y Vi +ut)/(tn+1t)
with 7 € (0, 00) fixed. E=1/(tn+t)
N(p, 1)®n 7 ~ Gamma(a, b) z eR” at=a+%
with p € R fixed. b* =b+ 2>z — p)?
N(p, 1)®n (u, 7) ~ NGamma(m, p, a, b) reR" mt = ni:?p
pr=n+p
a*=a+ 3

b*:b—i-%(S?—l—L(i’—m)Q)

7o— 1N . 2 _
where = - > 7 z; and s° =

1

n

(2 — 1)?

See the sheet on conditional probability for the Normal-Gamma distribution.
For all other distributions, see the reference sheets of discrete and continuous distributions.




CONDITIONAL PROBABILITY AND RELATED FORMULAE

We say that a random variable X is discrete if there exists a countable set
A C R% such that P[X € A] = 1. In this case the function px(z) = P[X = ],
defined for z € R?, is known as the probability mass function of X. The
range of X is the set Ry = {z € RY; P[X = 2] > 0}.

We say that a random variable X is continuous if there exists a function
fx : R4 — [0,00) such that P[X € A] = [, fx(z)dz for all A C R%. In this
case fx is known as the probability density function of X. The range of
X is the set Ry = {z € R?; fx(x) > 0}.

If X and Y are discrete, and px < py, then X dy.
If X and Y are continuous, and fx « fy, then X 4y,

If X is a random variable and P[X € A] > 0 then the conditional distribu-
tion of X|xca) satisfies P[X|;xcay € A] =1 and

P[X € B

P[X|{XGA} € B] = m

for all B C A.

If X and Y are random variables, with A C Rx, B C Ry and P[X € A] > 0,

then
X €AY € B]

PIX € 4]

P
P[YV]xea; € B] = L\

If (Y,Z) and random variables and P[Y = y] = 0 then it is sometimes pos-
sible to define the conditional distribution of Z ]{y:y} via taking the limit
P[Z|{jy—y<e} € A] = P[Z|{y—yy € Al as € = 0.

Let (Y, Z) be a pair of continuous random variables. If the conditional distri-
bution of Z|gy_,, exists then it is given by

_ friz(y,2)
T =Ty

For a discrete or continuous random variable X, the likelihood function of

X is
P|X =] if X is discrete,
L(e) = { X = 4]

if X is continuous.

[x(X)

The general formula for completing the square as a function of 8 € R is
A2 —20B+C=A(0-8) 10— 2

The sample-mean-variance identity states Y 7 (z; — p)? = ns? + n(z — p)?

where Z = 1 3 z; and 5% = 2 3 (z; — 7)%
The Beta and Gamma functions are given by
1 00
B(a,b) = / 271 — ) e, I'(z) = / t*te~t dt.
0 0

They are related by B(a,b) = Fr(ggi(bg). Forn eN, (n—1)! =T(n).

The Normal-Gamma distribution has p.d.f. given by
fN(m,piT) (ﬂ) fGamma(a,b) (T)
1

x 772 exp (—%(/L — m)2 — bT) .

fNGamma(m,p,a,b) (,ua T) =

for 4 € R and 7 > 0, and zero otherwise. The parameters are m € R,
p € (0,00), a € (0,00) and b € (0,00). If (U,T) ~ NGamma(m, p,a,b) then
T ~ Gamma(a, b) and Ul;p—ry ~ N(m, p%\)



BAYESIAN MODELS AND RELATED FORMULAE

The Bayesian model associated to the model family (Mpy)gerr and prior
p.d.f. fo(#) is the random variable (X,0) € R" x R? with distribution given
by

P[X € B,© € A] = / P[My € B]fe(0)db.
A

The model family satisfies X|{o—g) 4 M.

The distribution of X is known as the sampling distribution, given by

PX =z] = / P[My = z|fo(0) do if (Mpy) is a discrete family,
d
p (*)
fx(z) = / fu,(x) fo(8)deb. if (Mp) is a continuous family.
Rd
The distribution of ©|;x—_,} is known as the posterior distribution given
the data x. Bayes rule states that

Folex_ (0) = = Lagy () fo (0)

Z
where Ljy, is the likelihood function of Mp; the p.d.f. in the absolutely con-
tinuous case and the p.m.f. in the discrete case. The normalizing constant Z
is given by Z = [; Lag, () fe(0) df, which is equal to P[X = z] in the discrete
case and equal to fx(x) is the continuous case.

The predictive distribution is given by replacing feo in (x) with fg, (X—a}”

If 6 is a real valued parameter and X ~ My, the reference prior O associated
to the model family (Mpy) has density function given by

1/2 9 1/2

X B |~ You(Lu (X))

fo(f) x E T

(jelogme)))Q]

Consider a Bayesian model with unknown parameter 6 and data x. Let Hy
be the hypothesis that 6 € 11y, and H; be the hypothesis that 6 € I1;, where
[Ty and II; partition the parameter space II. The prior and posterior odds
ratios of Hy against H; are

]P[@ € HO]
]P[@ € Hl]

P[O]{x =z} € o]

and .
PlO|{x=) € ]

. __ posterior odds
The Bayes factor is B = prior odds

guide to interpreting the Bayes factor.

. The following table provides a rough

Bayes factor | Interpretation: evidence in favour of Hy over Hy
1to 3.2 Indecisive / not worth more than a bare mention
3.2 to 10 Substantial
10 to 100 Strong

above 100 | Decisive

A high posterior density region is a subset Il C II that is chosen to
minimize the size of 1y and maximize P[O|(x_,; € o).

If ©];x—,) has a distribution with a single peak then it is common to choose
an equally tailed HPD region of the form Ily = [a, b] where

1—
P [@|{X:x} < a] =P [@|{X:$} > b] = Tp

and some value is picked for p € (0, 1).

If Z ~ N(0,1) then P[Z > 1.645] ~ 0.95, P[Z > 1.96] ~ 0.975 and P[Z >
2.58] ~ 0.995.



SOME USEFUL ALGORITHMS

The Metropolis-Hastings algorithm for simulating (approximate) samples
from the distribution of Y is as follows. The key ingredient of the algorithm is
a joint distribution (Y, Q), where Q|{y—,} and Y|{g—,) are both well defined
for all y € Ry, both with the same range as Y.

Let 4o be a point within Ry. Then, given y,, we define y,,41 as follows.

1. Generate a proposal point § from the distribution of Q|{y:ym}.

! _(ym) fy (@
2. Calculate the value of @ = min {1 Vigggy W)y () }

) fQ\{Y:ym}(g)fY(ym)

J ith probabilit
3. Then, set ypym+1 = Y W? proba 11 v
ym  with probability 1 — a.

For sufficiently large m, the distribution of ¥, is approximately that of Y.

The distribution Q|ry—,) is called the proposal distribution, based on its role
in steps 1 and 2. The two cases in step 3 are usually referred to as acceptance
(when yp,+1 = ) and rejection (when Y11 = ym)-

The Metropolis algorithm is the special case

FQlp=py D) = Fyigep ), (1)
in which case step 2 simplifies to @ = min {1, f%% }

The random walk Metropolis algorithm is the choice Q =Y + Z, where
Z is independent of Y and @ and satisfies fz(z) = fz(—2) for all z € Rz. In
this case

d

d -
Q’{Y:y} =y+Z and Y\{Q:g} g+ Z,

which implies (1). A common choice is Z ~ N(0, o?).

The random walk MCMC algorithm is obtained by applying the random
walk Metroplis algorithm to find the posterior distribution of a Bayesian model.
The algorithm is as follows. We start with a (discrete or continuous) Bayesian
model (X,0), where the parameter space is II = R?. We want to obtain
samples of O[;x_,} and we know the p.d.f. f@|{X=x}.

Choose an initial point yg € II. Choose a continuous distribution for Z satis-
fying fz(z) = fz(—=z) for all z € R. A common choice is Z ~ N(0,02).

Then, given y,,, we define y,,,+1 as follows.

1. Sample z from Z and set § = y,, + 2.

_ . fe\{X:x} (7)
2. Calculate o = min (1, Tolix—pyWm) )

Z ith probabilit
3. Then, set Y41 = Y with probability «,
Ym  with probability 1 — a.

The Gibbs sampler for § = (0,...,0,) is as follows. We first choose an
initial point yg = (9&0), e ,0((10)) € II. Then, for each ¢ = 1,...,d, sample g
from ®*i|{X:z} and set

’Q(W) ~ H(W) ’Qc(im))

ym—l-l:(ggm)a"' iflaya i+10c

Note that we increment the value of m each time that we increment i. When
reach 7 = d, return to ¢ = 1 and repeat. For sufficiently large m, the distribu-
tion of y,, is approximately that of ©|x_z.

The distributions of @i]{@7i297i7xzx}, fori=1,...,d, are known as the full
conditional distributions of ©. They satisfy

foilio_.—o_, xeu (0i) < fo) x_,, (0)

3

Here  treats 6_; and x as constants, and the only variable is 6;.



