SOME DISCRETE DISTRIBUTIONS

SOME CONTINUOUS DISTRIBUTIONS

See the sheet on conditional probability for the Normal-Gamma distribution.

For all other distributions, see the reference sheets of discrete and continuous distributions.

CONDITIONAL PROBABILITY AND RELATED FORMULAE

We say that a random variable X is **discrete** if there exists a countable set $A \subseteq \mathbb{R}^d$ such that $\mathbb{P}[X \in A] = 1$. In this case the function $p_X(x) = \mathbb{P}[X = x]$, defined for $x \in \mathbb{R}^d$, is known as the **probability mass function** of X. The **range** of X is the set $R_X = \{x \in \mathbb{R}^d : \mathbb{P}[X = x] > 0\}.$

We say that a random variable X is **continuous** if there exists a function $f_X: \mathbb{R}^d \to [0, \infty)$ such that $\mathbb{P}[X \in A] = \int_A f_X(x) dx$ for all $A \subseteq \mathbb{R}^d$. In this case f_X is known as the **probability density function** of X. The **range** of X is the set $R_X = \{x \in \mathbb{R}^d \, ; \, f_X(x) > 0\}.$

If X and Y are discrete, and $p_X \propto p_Y$, then $X \stackrel{\text{d}}{=} Y$. If X and Y are continuous, and $f_X \propto f_Y$, then $X \stackrel{d}{=} Y$.

If X is a random variable and $\mathbb{P}[X \in A] > 0$ then the **conditional distribution** of $X|_{\{X \in A\}}$ satisfies $\mathbb{P}[X|_{\{X \in A\}} \in A] = 1$ and

$$
\mathbb{P}[X|_{\{X \in A\}} \in B] = \frac{\mathbb{P}[X \in B]}{\mathbb{P}[X \in A]}
$$

for all $B \subseteq A$.

If X and Y are random variables, with $A \subseteq R_X$, $B \subseteq R_Y$ and $\mathbb{P}[X \in A] > 0$. then

$$
\mathbb{P}[Y|_{\{X \in A\}} \in B] = \frac{\mathbb{P}[X \in A, Y \in B]}{\mathbb{P}[X \in A]}.
$$

If (Y, Z) and random variables and $\mathbb{P}[Y = y] = 0$ then it is sometimes possible to define the conditional distribution of $Z|_{\{Y=v\}}$ via taking the limit $\mathbb{P}\left[Z|_{\{|Y-y|\leq \epsilon\}} \in A\right] \to \mathbb{P}[Z|_{\{Y=y\}} \in A]$ as $\epsilon \to 0$.

Let (Y, Z) be a pair of continuous random variables. If the conditional distribution of $Z|_{\{Y=y\}}$ exists then it is given by

$$
f_{Z|_{\{Y=y\}}}(z) = \frac{f_{Y,Z}(y,z)}{f_Y(y)}
$$

.

For a discrete or continuous random variable X, the **likelihood function** of X is

$$
L_X(x) = \begin{cases} \mathbb{P}[X = x] & \text{if } X \text{ is discrete,} \\ f_X(X) & \text{if } X \text{ is continuous.} \end{cases}
$$

The general formula for **completing the square** as a function of $\theta \in \mathbb{R}$ is $A\theta^2 - 2\theta B + C = A\left(\theta - \frac{B}{A}\right)$ $\frac{B}{A}$)² + C – $\frac{B^2}{A}$ A

The **sample-mean-variance** identity states $\sum_{1}^{n}(x_i - \mu)^2 = ns^2 + n(\bar{x} - \mu)^2$ where $\bar{x} = \frac{1}{n}$ $\frac{1}{n}\sum_{1}^{n}x_{i}$ and $s^{2}=\frac{1}{n}$ $\frac{1}{n} \sum_{1}^{n} (x_i - \bar{x})^2$.

The **Beta and Gamma functions** are given by

$$
\mathcal{B}(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx, \qquad \Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.
$$

They are related by $\mathcal{B}(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. For $n \in \mathbb{N}$, $(n-1)! = \Gamma(n)$.

The **Normal-Gamma distribution** has p.d.f. given by

$$
f_{\text{NGamma}(m,p,a,b)}(\mu,\tau) = f_{\text{N}(m,\frac{1}{p\tau})}(\mu) f_{\text{Gamma}(a,b)}(\tau)
$$

$$
\propto \tau^{a-\frac{1}{2}} \exp\left(-\frac{p\tau}{2}(\mu-m)^2 - b\tau\right).
$$

for $\mu \in \mathbb{R}$ and $\tau > 0$, and zero otherwise. The parameters are $m \in \mathbb{R}$, $p \in (0,\infty), a \in (0,\infty)$ and $b \in (0,\infty)$. If $(U,T) \sim \text{NGamma}(m, p, a, b)$ then $T \sim \text{Gamma}(a, b)$ and $U|_{\{T = \tau\}} \sim \text{N}(m, \frac{1}{p\lambda})$.

The **Bayesian model** associated to the model family $(M_{\theta})_{\theta \in \Pi}$ and prior p.d.f. $f_{\Theta}(\theta)$ is the random variable $(X, \Theta) \in \mathbb{R}^n \times \mathbb{R}^d$ with distribution given by

$$
\mathbb{P}[X \in B, \Theta \in A] = \int_A \mathbb{P}[M_\theta \in B] f_{\Theta}(\theta) d\theta.
$$

The model family satisfies $X|_{\{\Theta=\theta\}} \stackrel{\text{d}}{=} M_{\theta}.$

The distribution of X is known as the **sampling distribution**, given by

$$
\mathbb{P}[X = x] = \int_{\mathbb{R}^d} \mathbb{P}[M_{\theta} = x] f_{\Theta}(\theta) d\theta \quad \text{if } (M_{\theta}) \text{ is a discrete family,}
$$

$$
f_X(x) = \int_{\mathbb{R}^d} f_{M_{\theta}}(x) f_{\Theta}(\theta) d\theta. \quad \text{if } (M_{\theta}) \text{ is a continuous family.}
$$

The distribution of $\Theta|_{\{X=x\}}$ is known as the **posterior distribution** given the data x. **Bayes rule** states that

$$
f_{\Theta|_{\{X=x\}}}(\theta) = \frac{1}{Z} L_{M_{\theta}}(x) f_{\Theta}(\theta)
$$

where $L_{M_{\theta}}$ is the likelihood function of M_{θ} ; the p.d.f. in the absolutely continuous case and the p.m.f. in the discrete case. The normalizing constant Z is given by $Z = \int_{\Pi} L_{M_{\theta}}(x) f_{\Theta}(\theta) d\theta$, which is equal to $\mathbb{P}[X=x]$ in the discrete case and equal to $f_X(x)$ is the continuous case.

The **predictive distribution** is given by replacing f_{Θ} in (\star) with $f_{\Theta|_{\{X=x\}}}$.

If θ is a real valued parameter and $X \sim M_{\theta}$, the **reference prior** Θ associated to the model family (M_{θ}) has density function given by

$$
f_{\Theta}(\theta) \propto \mathbb{E}\left[\left(\frac{d}{d\theta}\log(L_{M_{\theta}}(X))\right)^{2}\right]^{1/2} \propto \mathbb{E}\left[-\frac{d^{2}}{d\theta^{2}}\log(L_{M_{\theta}}(X))\right]^{1/2}.
$$

Consider a Bayesian model with unknown parameter θ and data x. Let H_0 be the hypothesis that $\theta \in \Pi_0$, and H_1 be the hypothesis that $\theta \in \Pi_1$, where Π⁰ and Π¹ partition the parameter space Π. The **prior and posterior odds ratios** of H_0 against H_1 are

$$
\frac{\mathbb{P}[\Theta \in \Pi_0]}{\mathbb{P}[\Theta \in \Pi_1]} \quad \text{and} \quad \frac{\mathbb{P}[\Theta|_{\{X=x\}} \in \Pi_0]}{\mathbb{P}[\Theta|_{\{X=x\}} \in \Pi_1]}.
$$

The **Bayes factor** is $B = \frac{\text{posterior odds}}{\text{prior odds}}$. The following table provides a rough guide to interpreting the Bayes factor.

A **high posterior density region** is a subset $\Pi_0 \subseteq \Pi$ that is chosen to minimize the size of Π_0 and maximize $\mathbb{P}[\Theta|_{\{X=x\}} \in \Pi_0]$.

If $\Theta|_{\{X=x\}}$ has a distribution with a single peak then it is common to choose an **equally tailed** HPD region of the form $\Pi_0 = [a, b]$ where

$$
\mathbb{P}\left[\Theta|_{\{X=x\}} < a\right] = \mathbb{P}\left[\Theta|_{\{X=x\}} > b\right] = \frac{1-p}{2}
$$

and some value is picked for $p \in (0, 1)$.

If $Z \sim N(0, 1)$ then $\mathbb{P}[Z > 1.645] \approx 0.95$, $\mathbb{P}[Z > 1.96] \approx 0.975$ and $\mathbb{P}[Z > 1.645]$ $2.58 \approx 0.995$.

SOME USEFUL ALGORITHMS

The **Metropolis-Hastings** algorithm for simulating (approximate) samples from the distribution of Y is as follows. The key ingredient of the algorithm is a joint distribution (Y, Q) , where $Q|_{\{Y=u\}}$ and $Y|_{\{Q=u\}}$ are both well defined for all $y \in R_Y$, both with the same range as Y.

Let y_0 be a point within R_Y . Then, given y_m we define y_{m+1} as follows.

1. Generate a *proposal point* \tilde{y} from the distribution of $Q|_{\{Y=y_m\}}$.

2. Calculate the value of
$$
\alpha = \min \left\{ 1, \frac{f_{Y|_{\{Q=\tilde{y}\}}}(y_m) f_Y(\tilde{y})}{f_{Q|_{\{Y=y_m\}}}(\tilde{y}) f_Y(y_m)} \right\}.
$$

3. Then, set
$$
y_{m+1} = \begin{cases} \tilde{y} & \text{with probability } \alpha, \\ y_m & \text{with probability } 1 - \alpha. \end{cases}
$$

For sufficiently large m, the distribution of y_m is approximately that of Y.

The distribution $Q|_{\{Y=y\}}$ is called the *proposal* distribution, based on its role in steps 1 and 2. The two cases in step 3 are usually referred to as *acceptance* (when $y_{m+1} = \tilde{y}$) and *rejection* (when $y_{m+1} = y_m$).

The **Metropolis** algorithm is the special case

$$
f_{Q|_{\{Y=y\}}}(\tilde{y}) = f_{Y|_{\{Q=\tilde{y}\}}}(y),\tag{\dagger}
$$

in which case step 2 simplifies to $\alpha = \min\left\{1, \frac{f_Y(\tilde{y})}{f_Y(y)}\right\}$ $\frac{f_Y(y)}{f_Y(y_m)}\big\}.$

The **random walk Metropolis** algorithm is the choice $Q = Y + Z$, where Z is independent of Y and Q and satisfies $f_Z(z) = f_Z(-z)$ for all $z \in R_Z$. In this case

$$
Q|_{\{Y=y\}} \stackrel{\text{d}}{=} y + Z
$$
 and $Y|_{\{Q=\tilde{y}\}} \stackrel{\text{d}}{=} \tilde{y} + Z$,

which implies (†). A common choice is $Z \sim N(0, \sigma^2)$.

The **random walk MCMC algorithm** is obtained by applying the random walk Metroplis algorithm to find the posterior distribution of a Bayesian model. The algorithm is as follows. We start with a (discrete or continuous) Bayesian model (X, Θ) , where the parameter space is $\Pi = \mathbb{R}^d$. We want to obtain samples of $\Theta|_{\{X=x\}}$ and we know the p.d.f. $f_{\Theta|_{\{X=x\}}}$.

Choose an initial point $y_0 \in \Pi$. Choose a continuous distribution for Z satisfying $f_Z(z) = f_Z(-z)$ for all $z \in \mathbb{R}$. A common choice is $Z \sim N(0, \sigma^2)$.

Then, given y_m , we define y_{m+1} as follows.

\n- 1. Sample
$$
z
$$
 from Z and set $\tilde{y} = y_m + z$.
\n- 2. Calculate $\alpha = \min\left(1, \frac{f_{\Theta|_{\{X=x\}}(\tilde{y})}}{f_{\Theta|_{\{X=x\}}}(y_m)}\right)$.
\n- 3. Then, set $y_{m+1} = \begin{cases} \tilde{y} & \text{with probability } \alpha, \\ y_m & \text{with probability } 1 - \alpha. \end{cases}$
\n

The **Gibbs sampler** for $\theta = (\theta_1, \dots, \theta_d)$ is as follows. We first choose an initial point $y_0 = (\theta_1^{(0)})$ $\mathbf{1}_{1}^{(0)},\ldots,\mathbf{\theta}_{d}^{(0)}$ \in Π . Then, for each $i=1,\ldots,d$, sample \tilde{y} from $\Theta_{-i}|_{\{X=x\}}$ and set

$$
y_{m+1} = (\theta_1^{(m)}, \dots, \theta_{i-1}^{(m)}, \tilde{y}, \theta_{i+1}^{(m)}, \dots, \theta_d^{(m)}).
$$

Note that we increment the value of m each time that we increment i . When reach $i = d$, return to $i = 1$ and repeat. For sufficiently large m, the distribution of y_m is approximately that of $\Theta|_{\{X=x\}}$.

The distributions of $\Theta_i|_{\{\Theta_{-i}=\theta_{-i}, X=x\}}$, for $i=1,\ldots,d$, are known as the **full conditional distributions** of Θ. They satisfy

$$
f_{\Theta_i|_{\{\Theta_{-i} = \theta_{-i}, X = x\}}(\theta_i) \propto f_{\Theta|_{\{X = x\}}}(\theta)
$$

Here α treats θ_{-i} and x as constants, and the only variable is θ_i .