SOME DISCRETE DISTRIBUTIONS

Name Parameters Genesis / Usage p(z) = P[X = 1] E[X] Var(X) | Comments
and non-zero range
Uniform (discrete) | k € N Set of k equally likely outcomes. p(z) =1/k k1 ktl Fair dice roll with k = 6.
r=1,..,k
Bernoulli trial 6 €10,1] Experiment with two outcomes; | p(x) = 6%(1 — )1~ 0 0(1—0)
typically, success = 1, fail = 0. x=0,1
Binomial neN Number of successes in n | p(z)=(1)0"(1—-0)""" | nf nf(1—0) | Often written Bin(n,#).
0 € [0,1] i.i.d. Bernoulli trials. r=0,1,2,....,n Bin(1,6) ~ Bernoulli(6)
Geometric 0 € (0,1] Number of failed i.i.d. Bernoulli tri- | p(z) = 0(1 — 0)* =5 (1%)2 Alternative parametrisations:
als before the first success. xr=0,1,2,... swap 6 and 1 — 0,
or X' = X +1 to include the final trial.
Negative Binomial | k € N Number of failed i.i.d. Bernoulli tri- | p(x) = k(le_ 9) k(;a) Many alternative parametrisations.
0 € (0,1] als before the k" success. (“H;*l)ﬁk(l —0)* NegBin(1,0) ~ Geometric(f).
z=0,1,2,...
. . . . ky (N—ky /(N -
Hypergeometric N eN Number of special objects in a ran- | p(x) = (I) (n_x)/(n) "—A]f nN_Tll % X
ke€{0,...,N} | dom sample of n objects, from a | z =0,...,n 1— %)
n € {0,...,n} | population of N objects with k spe-
cial objects.
Poisson A€ (0,00) Counting events occurring uni- | p(z) = 67:,!)‘1 A A
formly at random within space or | x =0,1,2,

time.




SOME CONTINUOUS DISTRIBUTIONS

Name Parameters Genesis / Usage f(z) = p.d.f. E[X] Var(X) Comments
and non-zero range
Uniform o, eR The uniform distribution for a | f(z) = B%a O‘Zﬂ 8 T Ik
(continu- with a < 8 continuous interval. z € (a,f)
ous)
Normal uweR Empirically and theoretically | f(z) = \/2;? exp (—( o g’z) 1 o? Often written N(u,o?).
o€ (0,00) (via CLT) a good model in | z ¢ R Alternative parameter: 7 = .
many situations. aN(p,0?) + b~ N(ap+ b, agcrz)
Exponential | A € (0,00) Inter-arrival times of random | f(x) = \e™* 3 = Often written Exp(\).
events. x € (0,00) Alternative parameter: 6 = 3.
Gamma a € (0,00) Lifetimes of ageing items, multi- | f(z) = F?Z)xafle*m 3 7 Often written I'(a, ).
B € (0,00) inter-arrival times. z € (0,00) Alternative parameter: 6 = -
Gamma(1, ) ~ Exp(})
Beta a € (0,00) Quantities constrained to be | f(x) = ﬁxo‘*l(l — )81 e W Beta(1,1) ~ Uniform(0, 1)
S € (0,00) within intervals. z e 0,1]
Cauchy a€R Heavy tailed, pathological ex- | f(z) = %m undefined undefined
b€ (0,00) amples. z€eR
Pareto a € (0,00) Heavy tailed quantities. f(z) = ;ffl ;“—_51 (a_la)z% Sometimes written Pareto(, o).
P )
ﬁ € (07 OO) LS (6a OO) ifa>1 ifoa>2 log (%(aﬁ)) ~ EXp(Oz)
Weibull k € (0,00) Lifetimes, extreme values. flz) = Bkak—1e—Pe" F(;T/lk/k) %W Alternative parameter: \ = f~/*
B € (0,00) z € (0, 00) B Weibull(k, 8)F ~ Exp(1)
Log-Normal | p € R Quantities related to exponen- | f(x) = ﬁ exp (—(1()%?72;“)2) et tao’ (e”" —1) Often written LogN(u, o?2).
o€ (0,00) tial growth. z € (0,00) x g2nto” log(LogN(p, 02)) ~ N(,0?)
Chi-squared | n € N Statistical testing. flx) = mx”ﬂ_leﬂ”ﬂ n 2n Often written y2.
z € (0,00) X5 ~ Gamma(n/2,1/2)
X; ~N(0,1)iid. = ST X2~ 2
ntl n
Student ¢ neN Statistical testing. flz) = \;7%13(%)) (1+ %2)_# 0ifn>1 5 if n > 2 | Often written t,.
zeR Can allow n € (0, 00).
t1 = Cauchy(0,1)
Inverse a € (0,00) Quantities related to the | f(z) = Fﬁ(a)x*afl exp (—f/x) % ifa>1 % Often written IGamma(a, 3).
Gamma B € (0,00) Gamma distribution. z € (0,00) ifa>2 IGamma(a, 5) ~ m




SOME CONJUGATE PAIRS

Model family Prior family Data Posterior parameters
Bernoulli(6)®" 6 ~ Beta(a,b) x e {0,1}" at=a+> "z
b*=b+n-—>"1uz
Bin(m1,0) ® ... ® Bin(m,,0) | 6 ~ Beta(a,b) x e {0,1,...,}" at=a+)
with mq,...m, € N fixed where z; € {0,...,m;} bV =0+ mi— >
Geometric(6)®" 0 ~ Beta(a, b) z e {0,1,...,}" a*=a+n
b*=0b+ Z? xT;
Poisson(6)®" ¢ ~ Gamma(a, b) ze{0,1,....}" a*=a+3)
b*=b+n
EXp()‘)®n A~ Gamma(a,b) x € (0,00)n a*=a+n
b*=1b + 2711 Xy
Weibull(k, 6)©™ 0 ~ Gamma(a, b) x € (0,00)" a*=a+n
with k& € (0, 00) fixed b*=b+> 7k
NG, 0~ N, ) w " w = (h i+ %)/ (2 + %)
with o € (0, 00) fixed s =1/(%+ ?I:
N(#, %)‘8” 6 ~ N(u, %) x € R" u* = (7Y Txi+ut)/(tn+1t)
with 7 € (0, 00) fixed E=1/(tn+t)
N(u, %)‘m 7 ~ Gammay(a, b) x e R af=a+%
with p € R fixed b* =b+ 1>z — p)?
N(u, %)‘8” (u, 7) ~ NGamma(m, p, a,b) z e R m* = ”f:rgm
pr=n+p
a*=a+3

b =b+ 5 (4 L (@ —m)?)

where Z = 2 3 z; and s = 1 3" (z; — )?

See the sheet on conditional probability for the Normal-Gamma distribution.
For all other distributions, see the reference sheets of discrete and continuous distributions.




CONDITIONAL PROBABILITY AND RELATED FORMULAE

We say that a random variable X is discrete if there exists a countable set
A C R% such that P[X € A] = 1. In this case the function px (z) = P[X = ],
defined for z € R?, is known as the probability mass function of X. The
range of X is the set Ry = {z € R?; P[X = 2] > 0}.

We say that a random variable X is continuous if there exists a function
fx : R4 — [0,00) such that P[X € A] = [, fx(z)dz for all A C R%. In this
case fx is known as the probability density function of X. The range of
X is the set Ry = {z € R?; fx(x) > 0}.

If X and Y are discrete, and px o« py, then X dy.
If X and Y are continuous, and fx « fy, then X 4y,

If X is a random variable and P[X € A] > 0 then the conditional distribu-
tion of X|;xca) satisfies P[X|;xcay € A] = 1 and

P[X € B

P[X|ixea € B] = m

for all B C A.

If X and Y are random variables, with A C Rx, B C Ry and P[X € A] > 0,

then
X €AY € B]

P[X € A]

P
P[Y]xes; € B] = 1L

If (Y,Z) and random variables and P[Y = y] = 0 then it is sometimes pos-
sible to define the conditional distribution of Z|;y—,y via taking the limit
P [Z|{|Y—y|§e} € A] — P[Z‘{y:y} € Al as e — 0.

Let (Y, Z) be a pair of continuous random variables. If the conditional distri-
bution of Z|gy_,, exists then it is given by

_ friz(y, 2)
A e

For a discrete or continuous random variable X, the likelihood function of

X is
PX =2z if X is discrete,
L(e) = { X = 2]

if X is continuous.

fx(X)

The general formula for completing the square as a function of 8 € R is
A2 —20B+C=A(0-8)}+c-E

The sample-mean-variance identity states Y 7 (z; — p)? = ns? + n(z — p)?

where z = 2 Y z; and 5% = 2 Y1 (z; — 7).

The Beta and Gamma functions are given by

1 00
B(a,b) = / 21— z) e, I'(z) = / t*te=t dt.
0 0

They are related by B(a,b) = FF(EQEES)‘ Forn e N, (n— 1) =T(n).

The Normal-Gamma distribution has p.d.f. given by

fNGamrna(m,p,a,b) (/~L7 T) = fN(m,pLT) (M) fGarnma(a,b) (T)
1
2

for 4 € R and 7 > 0, and zero otherwise. The parameters are m € R,
p € (0,00), a € (0,00) and b € (0,00). If (U,T) ~ NGamma(m, p,a,b) then
T ~ Gamma(a, b) and Ul;p—ry ~ N(m, p%\)



BAYESIAN MODELS AND RELATED FORMULAE

The Bayesian model associated to the model family (Mpy)gerr and prior
p.d.f. fo(#) is the random variable (X,0) € R" x R? with distribution given
by

PX € B,®c Al = / P[My € B]fe(0)db.
A

The model family satisfies X|;g—_g} 4 My.

The distribution of X is known as the sampling distribution, given by

PX =z] = / P[My = z|fo(0) do if (Mpy) is a discrete family,
. (*)
fx(z) = / fu,(x) fo(8)de. if (Mp) is a continuous family.
Rd
The distribution of ©|;x—_,} is known as the posterior distribution given
the data x. Bayes rule states that

ol xny (6) = Lty (2)fo(0)

where Ly, is the likelihood function of Mpy; the p.d.f. in the absolutely con-
tinuous case and the p.m.f. in the discrete case. The normalizing constant Z
is given by Z = [i; L, () fo(0) df, which is equal to P[X = z] in the discrete
case and equal to fx(x) is the continuous case.

The predictive distribution is given by replacing fe in (x) with fg, (X}

If 0 is a real valued parameter and X ~ My, where My models one or more
items of i.i.d. real valued data, then the reference prior © associated to the
model family (Mp) has density function given by

1/2 o 1/2

fo(0) xE xE [—d log(Laz, (X))

do?

(jelog(LMg(X))>2]

Consider a Bayesian model with unknown parameter 6 and data x. Let Hy
be the hypothesis that 6 € 11y, and H; be the hypothesis that 6 € I, where
[Ty and II; partition the parameter space II. The prior and posterior odds
ratios of Hy against H; are

]P)[@ S Hg]
P[@ S Hl]

P[O|(x=a} € o]

and .
]P)[@|{X:x} € Hl]

The Bayes factor is B = %. The following table provides a rough

guide to interpreting the Bayes factor.

Bayes factor | Interpretation: evidence in favour of Hy over Hj
1to 3.2 Indecisive / not worth more than a bare mention
3.2 to 10 Substantial
10 to 100 Strong

above 100 | Decisive

A high posterior density region is a subset Il C II that is chosen to
minimize the size of 1y and maximize P[O|;x_, € Io].

If @|{X:$} has a distribution with a single peak then it is common to choose
an equally tailed HPD region of the form Iy = [a, b] where

1—
P [O(x=s) < a] =B [Ol(x=py > b] = —+

and some value is picked for p € (0, 1).

If Z ~ N(0,1) then P[Z > 1.645] ~ 0.05, P[Z > 1.96] ~ 0.025 and P[Z >
2.58] ~ 0.005.



SOME USEFUL ALGORITHMS

The Metropolis-Hastings algorithm for simulating (approximate) samples
from the distribution of Y is as follows. The key ingredient of the algorithm is
a joint distribution (Y, Q), where Q[(y—,y and Y[;g—,) are both well defined
for all y € Ry, both with the same range as Y.

Let 4o be a point within Ry. Then, given y,, we define 4,41 as follows.

1. Generate a proposal point §j from the distribution of Q\{y:ym}.

fQlpy _gy Um) fy (9)
) fQ\{Y:ym} @) fy (ym) [~

2. Calculate the value of @ = min {1

g ith probabilit
3. Then, set ym+1 = Y W? proba 11 Y
Ym  with probability 1 — a.

For sufficiently large m, the distribution of y,, is approximately that of Y.

The distribution Q|{y:y} is called the proposal distribution, based on its role
in steps 1 and 2. The two cases in step 3 are usually referred to as acceptance
(when yp,41 = 7) and rejection (when Y1 = Ym).

The Metropolis algorithm is the special case

fala—n @) = iy W), (1)

. . . . fy (@)
in which case step 2 simplifies to o = min {1, v o) }

The random walk Metropolis algorithm is the choice Q =Y + Z, where Z
is independent of Y and @ and satisfies f7(z) = fz(—z) for all z € Rz. In this

case Q|{y—y} 4 y + Z which implies (). A common choice is Z ~ N(0, 0%).

The random walk MCMC algorithm is obtained by applying the random
walk Metroplis algorithm to find the posterior distribution of a Bayesian model.
The algorithm is as follows. We start with a (discrete or continuous) Bayesian
model (X,0), where the parameter space is II = R?. We want to obtain
samples of O[;x_,} and we know the p.d.f. f@|{X=x}.

Choose an initial point yg € II. Choose a continuous distribution for Z satis-
fying fz(z) = fz(—z) for all z € R. A common choice is Z ~ N(0,0?).

Then, given y,,, we define y,,,+1 as follows.

1. Sample z from Z and set § = y,, + 2.

o f@\{X:x} )
2. Calculate o = min (1, Tolix—pyWm) )"

0] ith probabilit
3. Then, set g g =40 Dot
Ym  with probability 1 — a.

The Gibbs sampler for § = (0,...,0;) is as follows. We first choose an
initial point yo = (950), .. .,0((10)) € II. Then, for each ¢ = 1,...,d, sample g
from ®*i|{X:z} and set

79(7”) ~ 9(7”) 79(({”))

ym—l-l:(ggm)a"' 1717y7 i+10c e

Note that we increment the value of m each time that we increment i. When
reach 7 = d, return to ¢ = 1 and repeat. For sufficiently large m, the distribu-
tion of yn, is approximately that of ©|x_z-

The distributions of @i\{@%:th:x}, fori=1,...,d, are known as the full
conditional distributions of ©. They satisfy

f®i|{@, =0_;, X=x} (63) o f9|{x:w} (0)

3

Here x treats 6_; and x as constants, and the only variable is 6;.



