
SOME DISCRETE DISTRIBUTIONS

Name Parameters Genesis / Usage p(x) = P[X = x]
and non-zero range

E[X] Var(X) Comments

Uniform (discrete) k ∈ N Set of k equally likely outcomes. p(x) = 1/k
x = 1, ..., k

k+1
2

k2−1
12 Fair dice roll with k = 6.

Bernoulli trial θ ∈ [0, 1] Experiment with two outcomes;
typically, success = 1, fail = 0.

p(x) = θx(1− θ)1−x

x = 0, 1
θ θ(1− θ)

Binomial n ∈ N
θ ∈ [0, 1]

Number of successes in n
i.i.d. Bernoulli trials.

p(x) =
(
n
x

)
θx(1−θ)n−x

x = 0, 1, 2, ..., n
nθ nθ(1− θ) Often written Bin(n, θ).

Bin(1, θ) ∼ Bernoulli(θ)

Geometric θ ∈ (0, 1] Number of failed i.i.d. Bernoulli tri-
als before the first success.

p(x) = θ(1− θ)x

x = 0, 1, 2, . . .

θ
1−θ

θ2

(1−θ)2
Alternative parametrisations:
swap θ and 1− θ,
or X ′ = X +1 to include the final trial.

Negative Binomial k ∈ N
θ ∈ (0, 1]

Number of failed i.i.d. Bernoulli tri-
als before the kth success.

p(x) =(
x+k−1

x

)
θk(1− θ)x

x = 0, 1, 2, . . .

k(1−θ)
θ

k(1−θ)
θ2

Many alternative parametrisations.
NegBin(1, θ) ∼ Geometric(θ).

Hypergeometric N ∈ N
k ∈ {0, . . . , N}
n ∈ {0, . . . , n}

Number of special objects in a ran-
dom sample of n objects, from a
population ofN objects with k spe-
cial objects.

p(x) =
(
k
x

)(
N−k
n−x

)
/
(
N
n

)
x = 0, ..., n

nk
N nN−n

N−1
k
N×

(1− k
N )

Poisson λ ∈ (0,∞) Counting events occurring uni-
formly at random within space or
time.

p(x) = e−λλx

x!
x = 0, 1, 2, ...

λ λ



SOME CONTINUOUS DISTRIBUTIONS

Name Parameters Genesis / Usage f(x) = p.d.f.
and non-zero range

E[X] Var(X) Comments

Uniform
(continu-
ous)

α, β ∈ R
with α < β

The uniform distribution for a
continuous interval.

f(x) = 1
β−α

x ∈ (α, β)

α+β
2

(β−α)2

12

Normal µ ∈ R
σ ∈ (0,∞)

Empirically and theoretically
(via CLT) a good model in
many situations.

f(x) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
x ∈ R

µ σ2 Often written N(µ, σ2).
Alternative parameter: τ = 1

σ2 .
aN(µ, σ2) + b ∼ N(aµ+ b, a2σ2)

Exponential λ ∈ (0,∞) Inter-arrival times of random
events.

f(x) = λe−λx

x ∈ (0,∞)

1
λ

1
λ2 Often written Exp(λ).

Alternative parameter: θ = 1
λ .

Gamma α ∈ (0,∞)
β ∈ (0,∞)

Lifetimes of ageing items, multi-
inter-arrival times.

f(x) = βα

Γ(α)x
α−1e−βx

x ∈ (0,∞)

α
β

α
β2 Often written Γ(α, β).

Alternative parameter: θ = 1
β .

Gamma(1, λ) ∼ Exp(λ)

Beta α ∈ (0,∞)
β ∈ (0,∞)

Quantities constrained to be
within intervals.

f(x) = 1
B(α,β)x

α−1(1− x)β−1

x ∈ [0, 1]

α
α+β

αβ
(α+β+1)(α+β)2

Beta(1, 1) ∼ Uniform(0, 1)

Cauchy a ∈ R
b ∈ (0,∞)

Heavy tailed, pathological ex-
amples.

f(x) = 1
πb

b2

(x−a)2+b2

x ∈ R
undefined undefined

Pareto α ∈ (0,∞)
β ∈ (0,∞)

Heavy tailed quantities. f(x) = αβα

xα+1

x ∈ (β,∞)

αβ
α−1

if α > 1

α2β
(α−1)2(α−2)

if α > 2

Sometimes written Pareto(β, α).

log
(Pareto(α,β)

β

)
∼ Exp(α)

Weibull k ∈ (0,∞)
β ∈ (0,∞)

Lifetimes, extreme values. f(x) = βkxk−1e−βxk

x ∈ (0,∞)

Γ(1+1/k)

β1/k

Γ(1+ 2
k
)+Γ(1+ 1

k
)2

β2/k Alternative parameter: λ = β−1/k

βWeibull(k, β)k ∼ Exp(1)

Log-Normal µ ∈ R
σ ∈ (0,∞)

Quantities related to exponen-
tial growth.

f(x) = 1
xσ

√
2π

exp
(
− (log x−µ)2√

2σ

)
x ∈ (0,∞)

eµ+
1
2
σ2

(eσ
2 − 1)

×e2µ+σ2
Often written LogN(µ, σ2).
log(LogN(µ, σ2)) ∼ N(µ, σ2)

Chi-squared n ∈ N Statistical testing. f(x) = 1
2n/2Γ(n/2)

xn/2−1e−x/2

x ∈ (0,∞)

n 2n Often written χ2
n.

X2
n ∼ Gamma(n/2, 1/2)

Xi ∼ N(0, 1) i.i.d. ⇒
∑n

1 X
2
i ∼ χ2

n

Student t n ∈ N Statistical testing. f(x) =
Γ(n+1

2
)√

nπΓ(n
2
)
(1 + x2

n )−
n+1
2

x ∈ R
0 if n > 1 n

n−2 if n > 2 Often written tn.
Can allow n ∈ (0,∞).
t1 ≡ Cauchy(0, 1)

Inverse
Gamma

α ∈ (0,∞)
β ∈ (0,∞)

Quantities related to the
Gamma distribution.

f(x) = βα

Γ(α)x
−α−1 exp (−β/x)

x ∈ (0,∞)

β
α−1 if α > 1 β2

(α−1)2(α−2)

if α > 2

Often written IGamma(α, β).
IGamma(α, β) ∼ 1

Gamma(α,β)



SOME CONJUGATE PAIRS

Model family Prior family Data Posterior parameters

Bernoulli(θ)⊗n θ ∼ Beta(a, b) x ∈ {0, 1}n a∗ = a+
∑n

1 xi
b∗ = b+ n−

∑n
1 xi

Bin(m1, θ)⊗ . . .⊗ Bin(mn, θ)
with m1, . . .mn ∈ N fixed

θ ∼ Beta(a, b) x ∈ {0, 1, . . . , }n
where xi ∈ {0, . . . ,mi}

a∗ = a+
∑n

1 xi
b∗ = b+

∑n
1 mi −

∑n
1 xi

Geometric(θ)⊗n θ ∼ Beta(a, b) x ∈ {0, 1, . . . , }n a∗ = a+ n
b∗ = b+

∑n
1 xi

Poisson(θ)⊗n θ ∼ Gamma(a, b) x ∈ {0, 1, . . . , }n a∗ = a+
∑n

1 xi
b∗ = b+ n

Exp(λ)⊗n λ ∼ Gamma(a, b) x ∈ (0,∞)n a∗ = a+ n
b∗ = b+

∑n
1 xi

Weibull(k, θ)⊗n

with k ∈ (0,∞) fixed
θ ∼ Gamma(a, b) x ∈ (0,∞)n a∗ = a+ n

b∗ = b+
∑n

1 x
k
i

N(θ, σ2)⊗n

with σ ∈ (0,∞) fixed
θ ∼ N(u, s2) x ∈ Rn u∗ =

(
1
σ2

∑n
1 xi +

u
s2

)
/
(

n
σ2 + 1

s2

)
(s∗)2 = 1 /

(
n
σ2 + 1

s2

)
N(θ, 1τ )

⊗n

with τ ∈ (0,∞) fixed
θ ∼ N(u, 1t ) x ∈ Rn u∗ = (τ

∑n
1 xi + ut) / (τn+ t)

1
t∗ = 1 / (τn+ t)

N(µ, 1τ )
⊗n

with µ ∈ R fixed
τ ∼ Gamma(a, b) x ∈ Rn a∗ = a+ n

2
b∗ = b+ 1

2

∑n
1 (xi − µ)2

N(µ, 1τ )
⊗n (µ, τ) ∼ NGamma(m, p, a, b) x ∈ Rn m∗ = nx̄+mp

n+p
p∗ = n+ p
a∗ = a+ n

2

b∗ = b+ n
2

(
s2 + p

n+p (x̄−m)2
)

where x̄ = 1
n

∑n
1 xi and s2 = 1

n

∑n
1 (xi − x̄)2

See the sheet on conditional probability for the Normal-Gamma distribution.
For all other distributions, see the reference sheets of discrete and continuous distributions.



CONDITIONAL PROBABILITY AND RELATED FORMULAE

We say that a random variable X is discrete if there exists a countable set
A ⊆ Rd such that P[X ∈ A] = 1. In this case the function pX(x) = P[X = x],
defined for x ∈ Rd, is known as the probability mass function of X. The
range of X is the set RX = {x ∈ Rd ; P[X = x] > 0}.

We say that a random variable X is continuous if there exists a function
fX : Rd → [0,∞) such that P[X ∈ A] =

∫
A fX(x) dx for all A ⊆ Rd. In this

case fX is known as the probability density function of X. The range of
X is the set RX = {x ∈ Rd ; fX(x) > 0}.

If X and Y are discrete, and pX ∝ pY , then X
d
= Y .

If X and Y are continuous, and fX ∝ fY , then X
d
= Y .

If X is a random variable and P[X ∈ A] > 0 then the conditional distribu-
tion of X|{X∈A} satisfies P[X|{X∈A} ∈ A] = 1 and

P[X|{X∈A} ∈ B] =
P[X ∈ B]

P[X ∈ A]

for all B ⊆ A.

If X and Y are random variables, with A ⊆ RX , B ⊆ RY and P[X ∈ A] > 0,
then

P[Y |{X∈A} ∈ B] =
P[X ∈ A, Y ∈ B]

P[X ∈ A]
.

If (Y,Z) and random variables and P[Y = y] = 0 then it is sometimes pos-
sible to define the conditional distribution of Z|{Y=y} via taking the limit
P
[
Z|{|Y−y|≤ϵ} ∈ A

]
→ P[Z|{Y=y} ∈ A] as ϵ → 0.

Let (Y,Z) be a pair of continuous random variables. If the conditional distri-
bution of Z|{Y=y} exists then it is given by

fZ|{Y =y}(z) =
fY,Z(y, z)

fY (y)
.

For a discrete or continuous random variable X, the likelihood function of
X is

LX(x) =

{
P[X = x] if X is discrete,

fX(X) if X is continuous.

The general formula for completing the square as a function of θ ∈ R is

Aθ2 − 2θB + C = A
(
θ − B

A

)2
+ C − B2

A

The sample-mean-variance identity states
∑n

1 (xi − µ)2 = ns2 + n(x̄− µ)2

where x̄ = 1
n

∑n
1 xi and s2 = 1

n

∑n
1 (xi − x̄)2.

The Beta and Gamma functions are given by

B(a, b) =
∫ 1

0
xa−1(1− x)b−1 dx, Γ(x) =

∫ ∞

0
tx−1e−t dt.

They are related by B(a, b) = Γ(a)Γ(b)
Γ(a+b) . For n ∈ N, (n− 1)! = Γ(n).

The Normal-Gamma distribution has p.d.f. given by

fNGamma(m,p,a,b)(µ, τ) = fN(m, 1
pτ

)(µ) fGamma(a,b)(τ)

∝ τa−
1
2 exp

(
−pτ

2
(µ−m)2 − bτ

)
.

for µ ∈ R and τ > 0, and zero otherwise. The parameters are m ∈ R,
p ∈ (0,∞), a ∈ (0,∞) and b ∈ (0,∞). If (U, T ) ∼ NGamma(m, p, a, b) then
T ∼ Gamma(a, b) and U |{T=τ} ∼ N(m, 1

pλ).



BAYESIAN MODELS AND RELATED FORMULAE

The Bayesian model associated to the model family (Mθ)θ∈Π and prior
p.d.f. fΘ(θ) is the random variable (X,Θ) ∈ Rn × Rd with distribution given
by

P[X ∈ B,Θ ∈ A] =

∫
A
P[Mθ ∈ B]fΘ(θ) dθ.

The model family satisfies X|{Θ=θ}
d
= Mθ.

The distribution of X is known as the sampling distribution, given by

P[X = x] =

∫
Rd

P[Mθ = x]fΘ(θ) dθ if (Mθ) is a discrete family,

fX(x) =

∫
Rd

fMθ
(x)fΘ(θ) dθ. if (Mθ) is a continuous family.

(⋆)

The distribution of Θ|{X=x} is known as the posterior distribution given
the data x. Bayes rule states that

fΘ|{X=x}(θ) =
1

Z
LMθ

(x)fΘ(θ)

where LMθ
is the likelihood function of Mθ; the p.d.f. in the absolutely con-

tinuous case and the p.m.f. in the discrete case. The normalizing constant Z
is given by Z =

∫
Π LMθ

(x)fΘ(θ) dθ, which is equal to P[X = x] in the discrete
case and equal to fX(x) is the continuous case.

The predictive distribution is given by replacing fΘ in (⋆) with fΘ|{X=x} .

If θ is a real valued parameter and X ∼ Mθ, where Mθ models one or more
items of i.i.d. real valued data, then the reference prior Θ associated to the
model family (Mθ) has density function given by

fΘ(θ) ∝ E

[(
d

dθ
log(LMθ

(X))

)2
]1/2

∝ E
[
− d2

dθ2
log(LMθ

(X))

]1/2
.

Consider a Bayesian model with unknown parameter θ and data x. Let H0

be the hypothesis that θ ∈ Π0, and H1 be the hypothesis that θ ∈ Π1, where
Π0 and Π1 partition the parameter space Π. The prior and posterior odds
ratios of H0 against H1 are

P[Θ ∈ Π0]

P[Θ ∈ Π1]
and

P[Θ|{X=x} ∈ Π0]

P[Θ|{X=x} ∈ Π1]
.

The Bayes factor is B = posterior odds
prior odds . The following table provides a rough

guide to interpreting the Bayes factor.

Bayes factor Interpretation: evidence in favour of H0 over H1

1 to 3.2 Indecisive / not worth more than a bare mention

3.2 to 10 Substantial

10 to 100 Strong

above 100 Decisive

A high posterior density region is a subset Π0 ⊆ Π that is chosen to
minimize the size of Π0 and maximize P[Θ|{X=x} ∈ Π0].

If Θ|{X=x} has a distribution with a single peak then it is common to choose
an equally tailed HPD region of the form Π0 = [a, b] where

P
[
Θ|{X=x} < a

]
= P

[
Θ|{X=x} > b

]
=

1− p

2

and some value is picked for p ∈ (0, 1).

If Z ∼ N(0, 1) then P[Z ≥ 1.645] ≈ 0.05, P[Z ≥ 1.96] ≈ 0.025 and P[Z ≥
2.58] ≈ 0.005.



SOME USEFUL ALGORITHMS

The Metropolis-Hastings algorithm for simulating (approximate) samples
from the distribution of Y is as follows. The key ingredient of the algorithm is
a joint distribution (Y,Q), where Q|{Y=y} and Y |{Q=y} are both well defined
for all y ∈ RY , both with the same range as Y .

Let y0 be a point within RY . Then, given ym we define ym+1 as follows.

1. Generate a proposal point ỹ from the distribution of Q|{Y=ym}.

2. Calculate the value of α = min

{
1,

fQ|{Y =ỹ}
(ym)fY (ỹ)

fQ|{Y =ym}
(ỹ)fY (ym)

}
.

3. Then, set ym+1 =

{
ỹ with probability α,

ym with probability 1− α.

For sufficiently large m, the distribution of ym is approximately that of Y .

The distribution Q|{Y=y} is called the proposal distribution, based on its role
in steps 1 and 2. The two cases in step 3 are usually referred to as acceptance
(when ym+1 = ỹ) and rejection (when ym+1 = ym).

The Metropolis algorithm is the special case

fQ|{Y =y}(ỹ) = fQ|{Y =ỹ}(y), (†)

in which case step 2 simplifies to α = min
{
1, fY (ỹ)

fY (ym)

}
.

The random walk Metropolis algorithm is the choice Q = Y +Z, where Z
is independent of Y and Q and satisfies fZ(z) = fZ(−z) for all z ∈ RZ . In this

case Q|{Y=y}
d
= y + Z which implies (†). A common choice is Z ∼ N(0, σ2).

The random walk MCMC algorithm is obtained by applying the random
walk Metroplis algorithm to find the posterior distribution of a Bayesian model.
The algorithm is as follows. We start with a (discrete or continuous) Bayesian
model (X,Θ), where the parameter space is Π = Rd. We want to obtain
samples of Θ|{X=x} and we know the p.d.f. fΘ|{X=x} .

Choose an initial point y0 ∈ Π. Choose a continuous distribution for Z satis-
fying fZ(z) = fZ(−z) for all z ∈ R. A common choice is Z ∼ N(0, σ2).

Then, given ym, we define ym+1 as follows.

1. Sample z from Z and set ỹ = ym + z.

2. Calculate α = min

(
1,

fΘ|{X=x}
(ỹ)

fΘ|{X=x}
(ym)

)
.

3. Then, set ym+1 =

{
ỹ with probability α,

ym with probability 1− α.

The Gibbs sampler for θ = (θ1, . . . , θd) is as follows. We first choose an

initial point y0 = (θ
(0)
1 , . . . , θ

(0)
d ) ∈ Π. Then, for each i = 1, . . . , d, sample ỹ

from Θ−i|{X=x} and set

ym+1 = (θ
(m)
1 , . . . , θ

(m)
i−1 , ỹ, θ

(m)
i+1 , . . . , θ

(m)
d ).

Note that we increment the value of m each time that we increment i. When
reach i = d, return to i = 1 and repeat. For sufficiently large m, the distribu-
tion of ym is approximately that of Θ|{X=x}.

The distributions of Θi|{Θ−i=θ−i, X=x}, for i = 1, . . . , d, are known as the full
conditional distributions of Θ. They satisfy

fΘi|{Θ−i=θ−i, X=x}(θi) ∝ fΘ|{X=x}(θ)

Here ∝ treats θ−i and x as constants, and the only variable is θi.


