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Chapter 0

Introduction

0.1 Organization

0.1.1 Syllabus

These notes are for two courses: MAS364 and MAS61006. All of the material in these notes is
shared between both courses, but only MAS61006 students continue with the course next semester.
Students on MAS61006 have some extra computer sessions this semester in preparation for that,
and will do their project work next semester (and not this semester), but otherwise the teaching
this semester is identical.

Some parts of the notes are marked with a (�) symbol, which means they are off-syllabus, for
everyone. These cover some tangential material, technical proofs and other optional content that
is included purely for interest.

0.1.2 End-of-chapter questions and problem sheets

At the end of chapter of these notes there is a set of problems for you to solve. The questions are
marked with stars to indicate their rough level of difficulty:

I think (or rather, hope) that many people will find this question easy.?

I think this question is within the usual range of difficulty.? ?

For whatever reason, I think many people will find this question difficult.? ? ?

Most of the questions have two stars.
All of the solutions to the end-of-chapter questions within these notes are provided at the end

of the online version of the notes (and not in the paper version) in Appendix C. You should work
through these questions as we go through the chapters, and review your own solutions using the
typed solutions.

At two points during the semester, a problem sheet of additional exercises will be set. About
one week later, we will go through the questions in lectures, and you should self-mark your
solutions. These do not count towards your final mark.

4



©Nic Freeman, University of Sheffield, 2025.

0.1.3 Assessment

• Students taking MAS364: you will have a two hour exam in January. You also have a
project, involving R or Python (you may choose which), towards the end of the autumn
semester. Details of the project will be released part-way through the autumn. The exam
counts for 85% of your final mark, and the project for 15%.

• Students taking MAS61006: you will have a three hour exam in the summer, which will also
include questions from the second semester. You will do project work as part of the second
semester and you do not do the project this semester. The exam counts for 60% of your final
mark, and the project work in the second semester counts for 40%.

In both cases, all questions on the exams will be compulsory. Some advice on how to structure
your revision can be found in Appendix B of these notes.

0.1.4 Website

Further information, including the timetable, can be found on

https://nicfreeman1209.github.io/Website/MASx64/.
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0.2 Outline of the course

Bayesian learning is the process of using data to update statistical models. The key principle is
that

(a model)|{model = the data we observed}
d
= (a better model). (0.1)

where |{...} denotes conditioning, in the sense of conditional probability. The process of finding
the right hand side, given all the inputs on the left hand side, is known as a Bayesian update.
Performing one or more such updates in succession is known as Bayesian learning.

We begin our course with an introduction to conditional probability in Chapter 1. We intro-
duce Bayesian statistical models in Chapters 2 (for discrete data) and 3 (for continuous data).
These models are similar to those that you will already be familiar with, with the modification
that we treat the parameters of the model as random variables. The operation in (0.1) acts to
‘update’ these parameters, to make the model better fit the data. In Chapter 8 we introduce
a computational framework in which the operation (0.1) can be computed numerically, in full
generality.

Bayesian learning is the oldest form of statistical learning and is often traced back to work
of Laplace (1749-1827), but its modern treatment is very different to its history. Before the
advent of modern computers the general methods in Chapter 8 were not available, and it was
(consequently) not possible to perform Bayesian updates except in simple situations. This led to
a period of several decades where statisticians developed approximation theorems, and that theory
gave birth to most of the non-Bayesian statistical methods that are still widely used today – for
example, maximum likelihood estimators, p-values, confidence intervals, t-tests and so on. Because
these methods depend on approximation theorems, their results can be hard to interpret and their
accuracy depends upon complicated conditions that are difficult to check. For example, it is very
common to see p-values and confidence intervals misinterpreted, or to see misunderstandings of
the output of well-known statistical tests.

The Bayesian framework avoids most of these difficulties by working directly with conditional
probabilities. It has been growing in popularity ever since computers became widely available and
may, in time, supplant older methods entirely. The only trade off is that, except for some special
cases, it requires complex numerical methods to implement.

Returning to our own course; in Chapter 4 we study the cases in which Bayesian updates
can be performed without the aid of computers. We will use such cases mainly as a way to
better understand how Bayesian models behave. We then study the choice of ‘prior’ in Chapter 5.
This provides a framework for incorporating pre-existing beliefs, known as priors, into statistical
analysis. These beliefs may come in a convenient mathematical form, or may need to be elicited
from subject experts with (perhaps) little understanding of statistics. We study the related
framework of statistical testing in Chapter 7.

We discuss the relationship between Bayesian inference and other statistical methods in Chap-
ter 6. Broadly, we build up a picture which shows that many branches of statistics can be viewed
as simplifications of Bayesian methods. In that sense, Bayesian methods are the most natural
form of statistical inference.
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Chapter 1

Conditioning

1.1 Random variables

Let X be a random variable taking values in R. You should think of X as an object that takes
a random value, which is hopefully natural. Most of the things we interact with are random
e.g. when we buy a pair of shoes we do not know how long they will last for; when we walk home
later, we do not know how much rain will fall, and so on. In principle we might think of anything
as being random, but within this course we will restrict ourselves to random variables that take
values in Rd. We won’t use bold symbols for vectors in this course. Typically we will write x or
y for elements of Rd, and when we need to use coordinates we’ll write e.g. x = (x1, . . . xd) ∈ Rd,
where xi ∈ R.

We are interested in two particular types of random variable in this course, captured by the
following definition.

Definition 1.1.1 Let X be a random variable taking values in Rd.

1. We say that X is discrete if there exists a countable set A ⊆ Rd such that P[X ∈ A] = 1.

In the case d = 1, this will usually mean that either P [X ∈ N] or P[X ∈ Z] = 1. We use the
terminology ‘let X be random variable with values in N (or Z)’ for this case.

In this case the function pX(x) = P[X = x], defined for x ∈ Rd, is known as the probability
mass function or simply p.m.f. of X.

The range of X is the set RX = {x ∈ Rd ; P[X = x] > 0}.

2. We say that X is continuous if there exists a function fX : Rd → [0,∞) such that

P[X ∈ A] =

∫
A
fX(x) dx (1.1)

for all A ⊆ Rd.

In this case fX is known as the probability density function or simply p.d.f. of X. For d > 1

it is common to write X = (X1, . . . , Xd) and refer to fX(x) as the joint p.d.f. of the Xi.

The range of X is the set RX = {x ∈ Rd ; fX(x) > 0}.

Most random variables used in statistical inference are one of these two types. In this course
we will use reference sheets of named distributions, found in Appendix A, covering a very large
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range of examples. These reference sheets will be made available in the exam. You should be
familiar with relationships between named distributions that were discussed in earlier courses, for
example the relationship between Bernoulli trials and the Geometric and Binomial distributions.

Note that the integral in (1.1) is over a set A ⊆ Rd, with variable x ∈ Rd. We’ll generally use
this notation instead of writing out multiple integral signs (e.g.

∫ ∫ ∫
· · ·
∫
. . . dx1 dx2, . . . , dxd) in

this course.

Definition 1.1.2 Let X be a random variable taking values in Rd. We say that a random variable
X is deterministic if there exists x ∈ Rd such that P[X = x] = 1.

We will often view a constant, say a ∈ R, as an example of a deterministic random variable. This
is another slight abuse of terminology, but it is natural and it won’t cause any trouble. Note that
deterministic random variables are a special type of discrete random variable.

8
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1.1.1 (�) Technicalities

In this off-syllabus section we mention three technical points. They are aimed mainly at students
with more technical backgrounds in analysis and probability theory. We won’t discuss these points
in lectures.

1. More advanced textbooks use the term absolutely continuous for the class of random variables
that we have called continuous. The complication arises because there are random variables
for which FX is a continuous function but no p.d.f. fX exists. These random variables are
usually associated to random fractals and are rarely used within statistics, so in statistics it
is common to drop the word ‘absolutely’.

2. In this course we will use the convention that probability density functions must be contin-
uous (as functions) except where they are zero. You can check that all of the distributions
on the reference sheet in Appendix A are given in this form.

In fact, probability density functions fX(x) are only defined almost everywhere. The term
for almost all x is also commonly used. We cannot explain the precise meaning of it within
this course, and many (otherwise good) textbooks on Bayesian statistics fail to note that
this difficulty exists. Loosely, the same distribution can be defined using two (or more)
different probability density functions fX(x) and f ′

X(x), but it will always be the case that
fX(x) = f ′

X(x) for ‘almost all’ values of x. We will discuss the matter further in Section
1.2, Remarks 3.1.3 and 6.1.2.

3. In our definitions and results above, the sets A for which we evaluate P[X ∈ A] must be
Borel subsets of Rd. In practice this technicality does not restrict us at all and we will
continue to ignore this point for the remainder of the course.

Taking care of these issues rigorously requires some background on Lebesgue integration, but we
do not assume that background for this course.
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1.2 Equality in distribution

Let X be a random variable taking values in Rd. The law or distribution of X is the function
A 7→ P[X ∈ A], which tells us how likely the value of X is to be within the set A ⊆ Rd.

Definition 1.2.1 Let X and Y be random variables taking values in Rd. We say that X and Y

are equal in distribution if P[X ∈ A] = P[Y ∈ A] for all A ⊆ Rd. We write this relationship as
X

d
= Y .

In the case d = 1 we also have the cumulative distribution function FX(x) = P[X ≤ x] which
tells us how likely the value of X is to be less than or equal to x ∈ R. For random variables X

and Y taking values in R,
FX = FY if and only if X d

= Y. (1.2)

We won’t prove (1.2) within this course, although it is hopefully not surprising to you.

Example 1.2.2 It is important to understand that Definition 1.2.1 is not the same thing as
equality. For example, let X ∼ N(0, 1) and let Y = −X. Then

P[Y ≤ x] = P[−x ≤ X] =

∫ ∞

−x

1√
2π

e−y2/2 dy =

∫ x

−∞

1√
2π

e−z2/2 dz = P[X ≤ x],

where we have made the substitution z = −y. Hence FX = FY so from (1.2) we have X
d
= Y .

But X = Y only happens when X = Y = 0, which has probability zero.
A perhaps simpler example: if X and Y are independent N(0, 1) random variables then X

d
= Y ,

but P[X = Y ] = P[X − Y = 0] and X − Y ∼ N(0, 1 + 1)
d
= N(0, 2) so P[X = Y ] = 0.

Note that we have used the notation ∼ N(0, 1) in Example 1.2.2. We might wonder what the
difference between the symbols ∼ and d

= is. Formally, they have the same meaning, but we tend to
use ∼ when we are referring to a named distribution, and d

= when we are comparing two existing
random variables. That is a convention and not a rule, so you can use ∼ and d

= interchangeably
if you wish.
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1.2.1 Identifying distributions

In this section we give some results that help to identify the relationship X
d
= Y . Note that this

also helps us identify when random variables have named distributions. The discrete case is easily
dealt with.

Lemma 1.2.3 Suppose that X and Y are discrete random variables. Then X
d
= Y if and only if

pX = pY .

Note that the statement pX = pY means that the functions pX and pY are equal, that is pX(x) =

pY (x) for all x ∈ Rd. The proof is left for you in Problem 1.9.
The situation for continuous random variables is a bit more complicated. If X and Y are

continuous random variables with fX = fY , then it is clear from (1.1) that X
d
= Y , but it is

possible to have X
d
= Y and for fX and fY to be ‘different in an unimportant way’. You should

have already seen examples of this situation, like the following.

Example 1.2.4 The probability density functions

fX(x) =

{
1 for x ∈ (0, 1)

0 otherwise,
fY (y) =

{
1 for y ∈ [0, 1]

0 otherwise,

define random variables X and Y . Note that fX(x) = fY (x) for all x ∈ R except for x = 0

and x = 1, so fX and fY are different, but only very slightly! You might think of these as the
continuous uniform distributions X ∼ Uniform((0, 1)) and Y ∼ Uniform([0, 1]), but they are
really the same distribution because P[X = 0] = P[X = 1] = P[Y = 0] = P[Y = 1] = 0.

We need to handle this point carefully because, in this course, we don’t assume enough math-
ematical background to explain precisely what we mean by ‘different in an unimportant way’. We
do need to know the following facts, however:

• For a random variable X with range in R, changing the value of fX(x) on a finite set of
x ∈ R will not change the distribution of X (as in Example 1.2.4).

• For a random variable X with range in R2, the same is true, but we can also change the
value of fX(x) on a finite set of lines (in R2) without changing the distribution of X.

Similar things work in higher dimensions too, but we won’t need those.

We sometimes think of random variables as being defined by probability mass functions or
probability density functions. This is a slight abuse of terminology: as we have discussed above,
the p.m.f. and p.d.f. specify the distribution. If you are asked to ‘find’ the random variable X,
or to find the distribution of X, then a statement of the p.m.f. or p.d.f. will suffice. You should
always specify the range of values for which the p.m.f. of p.d.f. is non-zero.
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1.2.2 Normalizing constants

Often you will find that the p.m.f. or p.d.f of some random variable X appears in the form

P[X = x] =
1

Z
g(x) or fX(x) =

1

Z
g(x) (1.3)

where Z does not depend on x. In such cases Z is known as a normalizing constant. Its role is to
make sure that p.m.f. sums (over x ∈ RX) to one, and the p.d.f. integrates (again, over x ∈ RX) to
one. We have written 1

Z because normalizing constants often appear in a denominator e.g. 1√
2π

in
fN(0,1)(x) =

1√
2π
e−x2/2, but they don’t have to appear that way up e.g. λ in fExp(λ)(x) = λe−λx.

Lemma 1.2.5 Suppose that X and Y are random variables.

1. If X and Y are discrete, with probability mass functions in the form pX(x) = 1
Z g(x) and

pY (x) =
1
Z′ g(x) then X

d
= Y .

2. If X and Y are continuous, with probability density functions in the form fX(x) = 1
Z g(x)

and fY (x) =
1
Z′ g(x) then X

d
= Y .

Proof: (�) Note that in (1.3) the normalizing constant Z is determined by g(x); in the discrete
case we have Z =

∑
x∈R g(x) and in the continuous case we have Z =

∫
R g(x) dx. Hence in both

cases, the fact that X and Y are random variables implies that Z = Z ′. The lemma now follows
from Lemma 1.2.3 for the discrete case, and from our discussion below Lemma 1.2.3 for the
continuous case. �

Example 1.2.6 If X ∼ Gamma(α, β) then fX(x) = βα

Γ(a)x
α−1e−βx for x > 0, where Γ : (0,∞) →

(0,∞) is the Γ-function. By Lemma 1.2.5, if Y is any other random variable in the form fY (y) =

(constant)× xα−1e−βx, then we have Y ∼ Gamma(α, β).

When we have pX(x) = 1
Z g(x) and pY (x) =

1
Z′ g(x), as in part 1 of Lemma 1.2.5, it is common

to summarize this relationship as pX ∝ pY . In words, pX is proportional to pY . The same applies
to part 2 of Lemma 1.2.5. This notation can save time, but we will avoid using it while we are
focused on understanding conditioning and Bayesian models in Chapters 1-3. We will begin to
use it in Section 4.1, where it will become very helpful in keeping our calculations tidy, and we
will discuss it further at that point.
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1.3 Families of random variables

Definition 1.3.1 We use the term family (of distributions) with parameter space Π ⊆ Rd to
mean that each θ ∈ Π corresponds to a random variable Mθ, with parameters given by θ. We
require that all the random variables within a given family have the same range R, which we call
the range of the family.

For example:

• The Beta family refers to the distributions Beta(α, β) where the parameter θ = (α, β) takes
values in parameter space Π = (0,∞)2. It has range [0, 1].

• The Binomial family refers to the distributions Bin(n, p) where the parameter θ = (n, p)

takes values in parameter space Π = N× [0, 1]. It has range N.

We say that a family is discrete if it is made up of (exclusively) discrete random variables, and
continuous if is it made up of (exclusively) continuous random variables. So the Beta family is an
continuous family and the Binomial family is a discrete family.

We will use this term for statistical models, written (Mθ)θ∈Π with parameter θ. For this reason
we will often refer to (Mθ) as a model family.

Assumption 1.3.2 For our model families, we require that θ 7→ P[Mθ ∈ A] is a continuous
function, for all A ⊆ R.

The purpose of this assumption is that if we change θ slightly then we only change the distribution
of Mθ slightly. This will be necessary for our inference methods later on. This condition holds for
most common families of random variables, including all of those listed on the reference sheets in
Appendix A.

13
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1.4 Conditioning on location

Lemma 1.4.1 Let X be a random variable, and let A ⊆ R be such that P[X ∈ A] > 0. Then
there exists a random variable Y such that

1. P[Y ∈ A] = 1.

2. P[Y ∈ B] = P[X∈B]
P[X∈A] for all B ⊆ A. (1.4)

If Y ′ is any random variable satisfying these two conditions then Y
d
= Y ′.

Definition 1.4.2 The distribution of Y is known as the ‘conditional distribution of X given the
event {X ∈ A}’. We write this relationship in symbols as Y

d
= X|{X∈A}.

Note that we use d
= and not = in Definition 1.4.2. It is possible to make lots of different

random variables Y that satisfy properties 1 and 2 of Lemma 1.4.1, but they all have the same
distribution. Using d

= instead of = captures this fact. We will prove Lemma 1.4.2 shortly, but
let us first concentrate on getting the intuition right. Property 1 in Lemma 1.4.1 says that Y is
always inside the set A. Property 2 says that, inside A, Y behaves like X. (Taking B = A in
property 2 gives property 1, but it will be helpful to refer back to them separately.)

You might like to think of Y as what happens if the random variable X is forced to sit inside
the set A. It is still (in general) a random quantity, and it reflects exactly the random behaviour
of X inside the set A, but all the behaviour of X outside of A is forgotten. Another way to
understand Y is via rejection sampling: we could repeatedly take samples of X until we obtain a
sample of X that is inside the set A. The random quantity that we obtain from this procedure
has precisely the same behaviour as Y .

We will use the usual language of probability to rewrite the event {X ∈ A} when it is more
intuitive to do so. For example, if A = [a, b] then we might write X|{X∈[a,b]}, or if A = {a} then
we might write X|{X=a}.

Example 1.4.3 Suppose that X ∼ N(0, 1). The values taken by X are spread out across the real
line. The probability density function of X, given by fX(x) = 1√

2π
e−x2/2 allows us to visualize

the random location of X:

The random variable X is more likely to be in locations where fX(x) takes larger values, or more
precisely P[a ≤ X ≤ b] =

∫ b
a fX(x) dx, the area under the curve fX between a and b.

Let Y = X|{X∈[0,∞)}. We can use the properties given in Lemma 1.4.1 to find the distribution
of Y , where we take A = [0,∞). Firstly, note that property 1 gives P[Y ≤ 0] = 0, so P[Y ≤ y] = 0

for all y ≤ 0. For y > 0 we have

P[Y ≤ y] = P[Y ≤ 0] + P[0 ≤ Y ≤ y]

14



©Nic Freeman, University of Sheffield, 2025.

= 0 +
P[0 ≤ X ≤ y]

P[0 ≤ X < ∞]

=

∫ y
0 fX(x) dx

1/2
(1.5)

=

∫ y

0
2

1√
2π

e−x2/2 dx.

We therefore obtain that Y is a continuous random variable with p.d.f.

fY (y) =

0 for y ≤ 0√
2
πe

−y2/2 for y > 0.

Plotting fX and fY on the same axis we obtain

Note that fY (y) is zero for y ∈ (−∞, 0), and double the value of fX(y) on y ∈ [0,∞). This is
not a coincidence. It occurs precisely because Y retains the ‘same’ randomness as X inside the
set A = [0,∞), but Y can only take values inside the set A, so the p.d.f. within in that segment
must be scaled up to ensure that

∫
R fY (y) dy = 1. That fact that this scaling up is by a factor of

2, in this example, comes from (1.5) and in particular from P[X ∈ A] = 1
2 .

In Problem 1.7 you can explore Example 1.4.3 a bit further, and there is a more general version
in Problem 1.8. We will now give a proof of Lemma 1.4.1, based on the idea of rejection sampling
that we mentioned below Lemma 1.4.1.

Proof of Lemma 1.4.1: (�) We will discuss this proof in lectures, because Lemma 1.4.1 is
fundamental to the whole course and the key ideas of the proof are helpful to understand. The
details are less important to us: our focus is on becoming competent practitioners of Bayesian
statistics, rather than on becoming able to develop its theory.

Let X1, X2, . . . be a sequence of i.i.d. copies of the random variable X. Let N ∈ N be the
number of the first copy for which XN ∈ A. Let us write q = P[Xn ∈ A] > 0. The events
{Xn ∈ A} are a sequence of independent trials with success probability q, so the number of trials
until the first success is Geometric(q). In particular, since P[Geometric(q) < ∞] = 1, a success
will eventually happen. Let N = min{n ∈ N ; Xn ∈ A} be the number of trials until this first
success.

We claim that Y = XN satisfies the two properties required in the statement of the lemma.
By definition of N we have P[XN ∈ A] = 1, which shows the first property. To see the second,
for B ⊆ A we have

P[XN ∈ B] =

∞∑
n=1

P[XN ∈ B and N = n]

15
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=

∞∑
n=1

P[Xn ∈ B and Xn−1 /∈ A,Xn−2 /∈ A, . . . ,X1 /∈ A]

=

∞∑
n=1

P[Xn ∈ B]× P[Xn−1 /∈ A]× . . .× P[X1 /∈ A]

=

∞∑
n=1

P[Xn ∈ B](1− q)n−1

= P[X ∈ B]
1

1− q

∞∑
n=1

(1− q)n

= P[X ∈ B]
1

1− q

1− q

q

=
P[X ∈ B]

P[X ∈ A]
.

In the above we use independence of the Xn to deduce the third line. To deduce the fifth line we
use that Xn and X have the same distribution, hence P[Xn ∈ B] = P[X ∈ B], and to deduce the
final line we use this same fact with the definition of q. Hence, Y = XN satisfies the properties
required.

To prove the final part of the lemma, note that if Y and Y ′ both satisfy the two properties
then for any C ⊆ R we have

P[Y ∈ C] = P[Y ∈ C ∩ (R \A)] + P[Y ∈ C ∩A] = 0 +
P[X ∈ C ∩A]

P[X ∈ A]
(1.6)

and the same holds for Y ′. To deduce the last equality in (1.6) we have used property 1 for the
first term and property 2 for the second term. The right hand side of (1.6) only depends on X,
hence P[Y ∈ C] = P[Y ′ ∈ C]. Thus Y

d
= Y ′. �

Lemma 1.4.4 Let X be a random variable taking values in Rd.

1. Let a ∈ Rd be such that P[X = a] > 0. Then X|{X=a}
d
= a.

2. It holds that X|Rd
d
= X.

Proof: We should think of these two cases as (1) conditioning on ‘X is equal to a’ and (2)
conditioning on ‘X could be anywhere’. The results of doing so should not be a surprise in either
case!

To prove the part 1, if we put A = {a} in Lemma 1.4.1 then the first property gives
P[X|{X=a} = a] = 1. Therefore X|{X=a} and a are equal (with probability 1) which means
they have the same distribution.

To prove part 2, put A = Rd in Lemma 1.4.1, then the second property gives P[Y ∈ B] =
P[X∈B]
P[X∈Rd] =

P[X∈B]
1 = P[X ∈ B] for all B ⊆ Rd, which tells us that P[X|Rd ∈ B] = P[X ∈ B]. That

is, X|Rd and X have the same distribution. �

16



©Nic Freeman, University of Sheffield, 2025.

1.5 Conditioning and correlations

This section demonstrates the effect of taking a jointly distributed random variable (X,Y ) ∈
R2, and conditioning X to be within a particular location. If X and Y are independent then
conditioning X will have no effect on Y (see Exercise 1.10 for details), but if they are dependent
then conditioning on the location of X will change the distribution of the y coordinate. This is
because X and Y affect each other so, if we force X to do something, it will also have some effect
on Y .

Let us introduce some notation for these ideas.

• We write (X,Y )|{X∈A} as a shorthand for (X,Y )|{(X,Y )∈A×Rd}, where we restrict the location
of X (to be inside A) but we do not restrict the location of Y (because Y ∈ Rd is true
anyway).

• We write Y |{X∈A} for the y coordinate of (X,Y )|{X∈A}.

In this notation, we idea we described above is that, if X and Y are dependent, the random
variables Y and Y |{X∈A} will have different distributions.

Lemma 1.5.1 Let X and Y be random variables, with A ⊆ RX , B ⊆ RY and P[X ∈ A] > 0.
Then

P[Y |{X∈A} ∈ B] =
P[X ∈ A, Y ∈ B]

P[X ∈ A]
. (1.7)

Proof: From part 2 of Lemma 1.4.1,

P[(X,Y )|{X∈A} ∈ A×B] =
P[(X,Y ) ∈ A×B]

P[(X,Y ) ∈ A× Rd]
=

P[X ∈ A, Y ∈ B]

P[X ∈ A]
. (1.8)

Part 1 of Lemma 1.4.1 tells us that (X,Y )|{X∈A} has range A× RY . Hence X|{X∈A} has range
A, which means that P[Y |{X∈A} ∈ B] = P[(X,Y )|{X∈A} ∈ A × B]. Combining this fact with
(1.8) completes the proof. �

If X and Y are discrete then taking A = {x} and B = {y} gives us P[Y |{X=x} = y] =
P[X=x,Y=y]

P[X=x] . This formula, and more generally (1.7), should feel familiar. In earlier courses you
will probably have seen equations like P[Y = y |X = x] = P[X=x,Y=y]

P[X=x] , which has essentially the
same meaning but different notation. The reason for introducing Y |{X=A} is simply that it is
easier to understand probability when we can imagine random objects.

Example 1.5.2 Suppose that we roll a fair dice, with outcomes Z = 1, 2, . . . , 6. Define the
random variables

X =

{
1 if Z is odd,
0 if Z is even,

Y =

{
0 if Z ≤ 3,

1 if Z ≥ 4,

which are dependent. We can illustrate their joint distribution with a table of values:

Z 1 2 3 4 5 6
X 1 0 1 0 1 0
Y 0 0 0 1 1 1

P[column] 1
6

1
6

1
6

1
6

1
6

1
6
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Each column is a possible outcome, each of which has probability 1
6 . Conditioning on the event

X = 1 forces the outcome to be within the shaded columns.
The distribution of Y is easily found:

P[Y = 0] = P[Z ∈ {1, 2, 3}] = 1
6 + 1

6 + 1
6 = 1

2 ,

P[Y = 1] = P[Z ∈ {4, 5, 6}] = 1
6 + 1

6 + 1
6 = 1

2 .

By Lemma 1.5.1 we have

P[Y |{X=1} = 0] =
P[Y = 0, X = 1]

P[X = 1]
=

P[Z ∈ {1, 3}]
P[Z ∈ {1, 3, 5}]

=
1
6 + 1

6
1
6 + 1

6 + 1
6

=
2

3

and so P[Y |{X=1} = 1] = 1 − 2
3 = 1

3 . As we expected, the distributions of Y and Y |{X=1} are
different.

Compare the situation of Example 1.5.2 to that of a random variable (X,Y ) taking values
in Rn × Rd ≡ Rn+d. Here, X takes values in Rn and Y takes values in Rd. If X and Y are
dependent, then we should still expect that conditioning one affects the distribution of the other.
This is the key fact that we take away from this section.

Remark 1.5.3 In a multivariate situation, say (X,Y1, Y2), we could do something similar and
find the conditional distributions of (Y1, Y2)|{X∈A} as well as Y1|{X∈A} and Y2|{X∈A}. A slightly
subtle point is that

(Y1, Y2)|{X∈A}
d
=
(
Y1|{X∈A}, Y2|{X∈A}

)
.

In words, conditioning two coordinates on the same event, is equivalent to conditioning each
coordinate individually on that event – as we would intuitively expect.

We will use this fact later on when we work with multivariate situations, but we won’t include
a proof within our course. It isn’t difficult to check, but it wouldn’t help us understand anything
more than we already do.
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1.6 Conditioning on events with zero probability

Lemma 1.4.1 requires that the event A, on which we condition, has positive probability. Without
that condition equation (1.4) would become 0

0 , which is undefined. Despite this problem it is
often possible to make sense of the result of conditioning on an event of probability zero. The
mathematical theory here is much more complicated than we can cover, so instead we will explain
the key idea and focus on a small set of well-behaved situations.

We will take a random variable (Y, Z) and condition Z on the event {Y = y}, where Y is
continuous. In this case P[Y = y] = 0. The key idea is this: if there exists a random variable Z∗

such that
P
[
Z|{|Y−y|≤ε} ∈ A

]
→ P[Z∗ ∈ A] as ε → 0 (1.9)

for all A ⊆ Rn, then we extend Definition 1.4.2; we say that Z∗ is the conditional distribution of
Z given {Y = y}, written Z∗ d

= Z|{Y=y}. There are many examples of random variables (Y, Z)

for which the limit in (1.9) does not exist, or fails to behave like a conditional probability. There
are, also, many examples where (1.9) results in a random variable Y that behaves exactly like we
would expect, based on the intuition we have built up from Lemma 1.4.1.

Here is a case where it does work, that you’ve seen before. In earlier courses you may have
been told that (1.10) was the definition of a conditional p.d.f., but that is not entirely honest. It
is a consequence of (1.9) and it requires some conditions.

Lemma 1.6.1 Let (Y, Z) be continuous random variables, where Y takes values in Rn and Z

takes values in Rd. Suppose that fY (y) > 0 and that both fY (y) and fY,Z(y, z) are continuous
functions. Then Z|{Y=y} is a continuous random variable with p.d.f.

fZ|{Y =y}(z) =
fY,Z(y, z)

fY (y)
. (1.10)

Proof: (�) We will sketch an argument to show why the result holds, but we won’t include
a proof here. For simplicity, let us assume that Y and Z both takes values in R. From Lemma
1.5.1 we have

P[Z|{|Y−y|≤ε} ∈ B] =
P[|Y − y| ≤ ε, Z ∈ B]

P[|Y − y| ≤ ε]
=

∫
B

∫ y+ε
y−ε fY,Z(u, z) du dz∫ y+ε

y−ε fY (u) du
.

Our continuity assumptions mean that when ε is small and |u − y| ≤ ε, we can approximate
fY,Z(u, z) ≈ fY,Z(y, z) and fY (u) ≈ fY (y). Putting both these approximations in,

P[Z|{|Y−y|≤ε} ∈ B] ≈
∫
B

∫ y+ε
y−ε fY,Z(y, z) du dz∫ y+ε
y−ε fY (u) du

=
2ε
∫
B fY,Z(y, z) dz

2εfY (y)
=

∫
B

fY,Z(y, z)

fY (y)
dz. (1.11)

Because of our approximation the right hand side of (1.11) does not contain ε. This suggests
that letting ε → 0 should result in limε→0 P[Z|{|Y−y|≤ε} ∈ B] =

∫
B

fY,Z(y,z)
fY (y) dz. Combining this

formula with Definition 1.1.1 and (1.9) gives that Z|{Y=y} exists and is a continuous random
variable, with the p.d.f. as claimed. �

Example 1.6.2 Let (Y, Z) be a continuous random variable taking values in R2, with (joint)
probability density function

f(Y,Z)(y, z) =
1√
2π3

e−y2/2

1 + (z − y)2
. (1.12)
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for all y, z ∈ R. Note that this is a continuous function (or see the plot below). We can compute

fY (y) =

∫
R
fY,Z(y, z) dz =

1√
2π3

e−y2/2

∫ ∞

−∞

1

1 + (z − y)2
dz

=
1√
2π3

e−y2/2

∫ ∞

−∞

1

1 + z2
dz

=
1√
2π3

e−y2/2[arctan(z)]∞−∞

=
1√
2π3

e−y2/2

(
π

2
− −π

2

)
=

1√
2π

e−y2/2,

which we recognize as Y ∼ N(0, 1). We will condition on {Y = 1}. Clearly fY (1) > 0, so Lemma
1.6.1 applies, and we obtain

fZ|{Y =1}(y) =
fY,Z(1, z)

fY (1)
=

1√
2π3

e−1

1+(z−1)2

1√
2π
e−1

=
1

π

1

1 + (z − 1)2

which we recognize as Z|{Y=1} ∼ Cauchy(1, 1). We can plot fY,Z(y, z) and fZ|{Y =1} as follows:

The line on the left hand picture corresponds to y = 1. You can see that it has the shape of the
Cauchy(1, 1) p.d.f. in the right hand picture.

Remark 1.6.3 (�) It is possible to extend Lemma 1.6.1 to weaken the assumption of continuity.
This requires some care and we won’t explore the details here, although we will sometimes use
(1.10) in these cases. As a general rule it is dangerous to condition when fY,Z(y, z) features
discontinuities that might influence the conditioning.

Remark 1.6.4 Taking Y = Z in (1.9), a similar approximation argument to the proof of Lemma
1.6.1 shows that for a continuous random variable Y and y ∈ RY , we have Y |{Y=y}

d
= y. We

already knew this for discrete random variables, in Lemma 1.4.4, so it is hopefully easy to believe.
We record this fact because we will need it in Chapter 8.
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1.7 Families with random parameters

In this section we are interested to take a model family (Mθ)θ∈Π and treat the parameter θ as
a random variable, which will be denoted by a capital letter Θ. We think of first sampling the
value of Θ and then (using whatever value we obtain) taking a sample X from MΘ. The resulting
distribution is sometimes known as a compound or mixture distribution. We will have a detailed
discussion of how this idea becomes useful in Section 2.1. For now let us note that it increases
the range of models that we have available.

To make sense of the idea, let us state it more precisely. We want random variables X and Θ

such that X|{Θ=θ}
d
= Mθ. In this section we show that a pair (X,Θ) with this property is given

by the distribution
P[X ∈ A,Θ ∈ B] =

∫
B
P[Mθ ∈ A]fΘ(θ) dθ. (1.13)

where (Mθ) is a family of distributions with range R ⊆ Rn, as defined in Section 1.3, and fΘ is a
probability density function with range Π ⊆ Rd. This is a type of random variable you may not
have seen before. We will shortly show that the Θ part is a continuous random variable, but the
X part might be discrete or continuous, depending on (Mθ).

Our notation strongly suggests that we expect fΘ to be the (marginal) probability density
function of Θ, and we can confirm this by setting A = Rn, in which case equation (1.13) becomes
P[Θ ∈ B] =

∫
B fΘ(θ). We can also find the marginal distribution of X, by setting B = Rd, giving

P[X ∈ A] = P[X ∈ A,Θ ∈ Rd] =

∫
Rd

P[Mθ ∈ A]fΘ(θ) dθ,

but that formula doesn’t really explain what is going on here. The relationship that we are
interested in comes from the following lemma.

Lemma 1.7.1 Let (Mθ) and (X,Θ) have distribution given by (1.13). Suppose that fΘ(θ) > 0

and that t 7→ fΘ(t) is continuous at t = θ. Then X|{Θ=θ}
d
= Mθ.

Proof: (�) We give a sketch proof to illustrate the idea, in similar style to Lemma 1.6.1. From
Lemma 1.5.1, for A ∈ Rd we have

P[X|{|Θ−θ|≤ε} ∈ A] =
P[|Θ− θ| ≤ ε,X ∈ A]

P[|Θ− θ| ≤ ε]
=

∫ θ+ε
θ−ε P[Mt ∈ A]fΘ(t) dt∫ θ+ε

θ−ε fΘ(t) dt

The second equality follows from (1.13) with B = [θ − ε, θ + ε], for the numerator, and from
the fact that fΘ is the p.d.f. of Θ, for the denominator. Using continuity, from the statement of
the lemma and from Assumption 1.3.2, for |θ − t| ≤ ε we can approximate fΘ(t) ≈ fΘ(θ) and
P[Mt ∈ A] ≈ P[Mθ ∈ A]. This gives

P[X|{|Θ−θ|≤ε ∈ A] ≈
∫ θ+ε
θ−ε P[Mθ ∈ A]fΘ(θ) dt∫ θ+ε

θ−ε fΘ(θ) dt
=

2εfΘ(θ)P[Mθ ∈ A]

2εfΘ(θ)
= P[Mθ ∈ A].

Letting ε → 0 we have P[X|{|Θ−θ|≤ε ∈ A] → P[Mθ ∈ A], so by Definition 1.2.1 and (1.9) we have
that X|{Θ=θ} is well defined and X|{Θ=θ}

d
= Mθ. �
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1.8 Exercises on Chapter 1

1.1 (a) Consider a continuous random variable X with range RX = (−10, 10) and p.d.f. fX?

sketched as follows:

In words, explain which parts of RX are the most likely locations for a random sample
of X to be.

(b) Let θ > 1. Check that the function f : R → [0,∞) by f(x) =
{

(θ−1)x−θ for x≥1
0 otherwise is a

probability density function i.e. check that integrating over its range gives 1.

1.2 Let X ∼ N(0, 1) and let Y be given by P[Y = 0] = P[Y = 1] = 1
2 , independently of Z.?

Define a random variable

Z =

{
0 if Y = 0,

X if Y = 1.

Is Z a discrete random variable, a continuous random variable, or neither?

1.3 Let a < b < c, all elements of R. Suppose that U has the continuous uniform distribution? ?

on [a, c] and let U ′ d
= U |{U∈[a,b]}.

(a) Write out the meaning of U ′ d
= U |{U∈[a,b]}, in words.

(b) Show that U ′ has the continuous uniform distribution on [a, b].

(c) Plot the probability density functions of U and U ′ on the same axis, for the case a =

1, b = 2, c = 4.

1.4 Suppose that G has the Geometric(p) distribution, that is P[G = g] = pg(1 − p) for g ∈? ?

{0, 1, . . .}, where p ∈ [0, 1]. Let G′ d
= G|{G≥n}, where n ∈ N.

(a) Find the distribution of G′.

(b) Consider the following claim.

Recall that G represents the time of the first failure in a sequence of independent
trials, each of which has failure probability p. Conditioning G to be greater than
or equal to n has the effect of forcing the first n trials to be successful, without
changing the distribution of the remaining trials.

Do you agree with this statement? Give brief reasons for your answer.
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1.5 Let X ∼ Cauchy(0, 1) and let x ∈ R. In the files 1_rejection_sampling.ipynb and?

1_rejection_sampling.Rmd you can find a rejection sampling algorithm (as described in
our comments below Lemma 1.4.1 or within the proof of that lemma) that obtains samples
from X|{X≥k}.
Record the time it takes for the code to obtain some samples, for k = 2n for various values of
n ∈ {1, 2, . . .}. What do you notice? Repeat the experiment with some other distributions.

1.6 Let (X,Y ) be a discrete random variable with values in R2 (so n = d = 1) with distribution? ?

given by

P[(X,Y ) = (x, y)] =

{
2−xy(1− 2−y) for x, y ∈ N
0 otherwise.

(1.14)

Here is a plot of this function, with shading to indicate regions for which x ≥ 5 and/or
y = 5.

(a) Check that the function given in (1.14) is a probability mass function with range N2

i.e. check that summing over its range gives 1. Are X and Y independent?
(b) (i) Show that for y ∈ N we have P[Y = y] =

(
1
2

)y.
(ii) Show that for x ∈ N we have P[X|{Y=5} = x] =

(
1− 1

25

) (
1
25

)x−1
.

(iii) Show that for y ∈ N we have P[Y |{X≥5} = y] =
(
1− 1

25

) (
1
25

)y−1
.

1.7 Let X ∼ N(0, 1) and set A = [0,∞), as in Example 1.4.3. Let Y ′ = |X|. Show that? ?

Y ′ d
= X|{X∈A}.

1.8 Let X be a continuous random variable and let A ⊆ RX with P[X ∈ A] > 0. Show that? ? ?

X|{X∈A} is a continuous random variable with p.d.f.

fX|{X∈A}(x) =

{
fX(x)
P[X∈A] if x ∈ A

0 otherwise.

1.9 Prove Lemma 1.2.3.? ? ?

1.10 Suppose that X and Y are independent random variables, and that P[X ∈ A] > 0. Show? ? ?

that Y
d
= Y |{X∈A}.
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Chapter 2

Discrete Bayesian models

A model is a machine for simulating data. We hope that the data we simulate is a realistic, or
approximately realistic, copy of some part of the real world. In probability and statistics we use
random models, meaning that if we use the same model twice we won’t generate the same data.

The reason for using a random model is that we can express our level of certainty. We don’t
know exactly what will happen, so instead we create a model that includes a range of possibilities,
along with a description how likely these different possibilities are. If we have a high level of
certainty then we might choose a model in which the likely outcomes are very similar to each
other. If not, we might choose a model in which the likely outcomes span a wide range of
possibilities.

We usually allow our models to have parameters. Parameters are ‘input’ values that we can
use to control how a model behaves, and we try to choose them in a way that makes our model
best reflect reality.
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2.1 Models with random parameters

We are often confident in our choice of model, but we are almost never certain what the best
choice of parameters is. In that situation, we usually do have some degree of confidence in which
parameter values should be used. How should we communicate that information? One way is
to use random variables for the parameters, as we did in Section 1.7. If we have a high level of
certainty in which parameter values should be used, then we will choose a random variable in
which the likely outcomes are all very similar parameter values. If not then we choose a random
variable in which the likely outcomes span a wide range of different parameters. The ‘parameters’
become just another part of the random model.

Example 2.1.1 We want to model the random number X of successful experiments, out of a
sequence of 10 independent experiments, where each experiment has the same probability p ∈ [0, 1]

of success. A natural form for X is Bin(10, p), but we don’t know the value of p, so let us set
Mp ∼ Bin(10, p). Then (Mp) is a family of distributions. We hope that one of these distributions
will be a good model.

We are told (by a scientist colleague, say) that a reasonable estimate for p is p ≈ 1
5 , but they

don’t seem very confident and for now that is all we know. We decide that our model for p will
be a random variable P ∼ Beta(2, 8), which has E[P ] = 1

5 and probability density function

fP (p) =

{
72p(1− p)7 dp for p ∈ [0, 1]

0 otherwise.
(2.1)

The decision here to use Beta(2, 8) is a bit arbitrary – we will spend a large part of this course
thinking about how to make such choices well! It is only meant here as example of the type of
model that we will be interested in. We have chosen a distribution with range [0, 1], which is the
set of possible values for p, and with most of its mass within the region p ≈ 1

5 that was suggested
to us.

The random variable (X,P ) that results from this procedure is precisely the type we studied
in Section 1.7. We want X|{P=p} ∼ Bin(10, p) and (for now) our best guess for the parameter is
P ∼ Beta(2, 8). From Section 1.7 we know that the model we want is

P[X = x, P ∈ B] =

∫
B
P[Mp = x]fP (p) dp (2.2)

where x ∈ {0, . . . , 10} and B ⊆ R. In particular, Lemma 1.7.1 tells us that X|{P=p}
d
= Bin(10, p).

If we wanted to sample X, with the random parameter given by P , we can use a two-step
procedure. First, we sample the value of p according to P ∼ Beta(2, 8). Then, we sample
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Mp ∼ Bin(10, p), using whichever value of p we obtained. The result of this procedure is our
model, X, for the data. We’ll come back to this example shortly.

We are now ready to set up the set of type of models we are interested in. We will refer to
them as Bayesian models, for a reason that will become clear in the next section. They come in
two flavours: discrete data and continuous data. We will study the case of discrete data first, in
the next section. In this case the model will be a generalized version of (2.2), where we allow any
family of discrete random variables in place of (Mp) and any continuous random variable in place
of P . We will handle the case of continuous data later on, in Chapter 3.
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2.2 Discrete Bayesian models

We need two ingredients to construct the model:

1. Let (Mθ)θ∈Θ be a family of discrete random variables with range R ⊆ Rn and parameter
space Π ⊆ Rd.

2. Let fΘ : Rd → [0,∞) be a probability density function with range Π.

The family (Mθ) is often referred to in textbooks as ‘the’ model, but to avoid confusion we will
use the term model family instead. The possible values of θ for this family are given by the set
Π, known as parameter space of the model. From Definition 1.3.1, all elements Mθ of the model
family have the same range, which we call the range of the model.

The function fΘ is known as the prior or more precisely the prior probability density function,
for reasons that will be explained shortly. The distribution with p.d.f. fΘ is known as the prior
distribution. This is the distribution that we use to sample a random parameter from.

Definition 2.2.1 The discrete Bayesian model associated to (Mθ) and fΘ is the random variable
(X,Θ) ∈ Rn × Rd with distribution given by

P[X = x,Θ ∈ A] =

∫
A
P[Mθ = x]fΘ(θ) dθ. (2.3)

The random variable (X,Θ) is neither discrete nor continuous. The X part is discrete, and the Θ

part (as we will see below) is continuous. Equation (2.3) is (1.13) in the special cases of a discrete
model family. Let us unpack our notation in (2.3) a bit:

• θ ∈ Π is a particular choice of parameter;

• Θ is a random variable with range Π, the ‘random version’ of the parameter;

• X is the data sampled by the model, and x is a sample of this data.

From Section 1.7 and Lemma 1.7.1 we know that Θ has p.d.f. fΘ and that X|{Θ=θ} ∼ Mθ

whenever fΘ is continuous at θ. To find the (marginal) distribution of the data X we set A = Rd

in (2.3), giving the probability mass function

P[X = x] =

∫
Rd

P[Mθ = x]fΘ(θ) dθ. (2.4)

This is known as the sampling distribution of our Bayesian model.

Example 2.2.2 To fit Example 2.1.1 into this notation, take Mθ to be the Binomial family with
10 trials, that is Mp = Bin(10, p) where p = θ takes values in Π = [0, 1]. The prior chosen in
Example 2.1.1 was P = Θ ∼ Beta(2, 8), which takes values in [0, 1], and the p.d.f. we wrote down
in (2.1). From (2.3) we obtain a discrete Bayesian model (X,P ) with distribution given by

P[X = x, P ∈ A] = 72

(
10

x

)∫
A∩[0,1]

px(1− p)10−xp(1− p)7 dp

= 72

(
10

x

)∫
A∩[0,1]

p1+x(1− p)17−x dp. (2.5)

Equation (2.5) is precisely (2.2) with the binomial p.m.f. and beta p.d.f. from (2.1) filled in.
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Putting A = Rd in (2.5) gives the distribution of X, also known as the sampling distribution
of our model:

P[X = x] = 72

(
10

x

)∫ 1

0
p1+x(1− p)17−x dp. (2.6)

Equations (2.5) and (2.6) are not easy formulae. For the moment we will have to tolerate this
sort of thing, before we think of some ways to make our calculations easier in Chapter 4. We can
sketch P[X = x] numerically:
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2.3 The posterior distribution

There is one more important piece of terminology associated to (X,Θ).

Definition 2.3.1 Let (X,Θ) be a discrete Bayesian model. For x such that P[X = x] > 0, the
random variable Θ|{X=x} is known as the posterior of the model, and its distribution is known as
the posterior distribution.

It will take a bit of work to understand why Θ|{X=x} is important. Recall the prior Θ is a
random variable. The distribution of Θ, which we usually specify via its p.d.f. fΘ(θ), is chosen
based on our initial beliefs about where the true value of the unknown parameter θ might be.
We then obtain some data x, coming from reality. The key idea is that Θ|{X=x} will often be a
better choice for the distribution of θ than our original choice Θ was. This is because Θ|{X=x}
incorporates information from the data that we have. We can summarise this idea as:

(model parameters)|{model = the data we have} = (better model parameters). (2.7)

Here |{...} denotes conditioning. We will use the theory that we developed in Chapter 1 to make
sense of (2.7).

The ‘update’ of Θ to Θ|{X=x} is known as a Bayesian update, and the whole process is known
as Bayesian learning. The terms ‘prior’ and ‘posterior’ are loose synonyms for ‘before’ and ‘after’,
which is why they are used in Bayesian models.

All elements of the discrete family (Mθ) have the same range R, so P[Mθ = x] > 0 for all
x ∈ R. It follows that the range of Θ|{X=x} is the same as the range of Θ. Checking carefully
against the two ingredients at the top of Section 2.2, this means that we can form a new discrete
Bayesian model, with the same family (Mθ), the same parameter space Π, the same range R but
with a new prior given by the probability density function fΘ|{X=x} .

With our updated prior, we might want to use our new model to sample data (for whatever
purpose). For this we use the sampling p.d.f. (2.4), but now applied to the model with prior
fΘ|{X=x} . There is a special piece of terminology for this:

Definition 2.3.2 Let (X,Θ) be a discrete Bayesian model, with parameter space Π and model
family (Mθ)θ∈Π. Let x be an item of data. The predictive distribution is the distribution of X ′

where
P[X ′ = x′] =

∫
Rd

P[Mθ = x′]fΘ|{X=x}(θ) dθ. (2.8)

Here, X ′ has the same range as X.
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Example 2.3.3 Let us take the model from Example 2.1.1. We noted in Example 2.2.2 that this
model was a discrete Bayesian model. Recall that our model was intended to model the number
of successes from a set of 10 independent but identical experiments, where each experiment has
an unknown probability p of success.

The model family we used is Mp = Bin(10, p), with only one parameter p, so we take θ = p.
The range of this family is R = {0, 1, . . . , 10}. The parameter space is Π = [0, 1], and our prior
was Θ = P ∼ Beta(2, 8), which has p.d.f. fP (p) that we sketched in Example 2.1.1.

Suppose that we learn that a scientist has carried out the 10 experiments, and obtained x = 4

successes. We can use Lemma 1.5.1 to compute the posterior P |{X=4}, as follows. For B ⊆ R,

P
[
P |{X=4} ∈ B

]
=

P[X = 4, P ∈ B]

P[X = 4]

=
72
(
10
4

) ∫
B∩[0,1] p

1+4(1− p)17−4 dp

72
(
10
4

) ∫
[0,1] p

1+4(1− p)17−4 dp
(2.9)

=

∫
B∩[0,1] p

5(1− p)13 dp

B(6, 14)

=

∫
B∩[0,1]

1

B(6, 14)
p5(1− p)13 dp

=

∫
B
fBeta(6,14)(p) dp (2.10)

where B(α, β) =
∫ 1
0 xα−1(1−x)β−1 dx is the Beta function, which gives the normalizing constant

of the Beta(α, β) distribution. To deduce (2.9) we have used (2.5) for the top and (2.6) for the
bottom, with x = 4. Note that a factor of 72

(
10
4

)
cancels on the top and bottom.

From (2.10) we can recognize P |{X=4} ∼ Beta(6, 14) as the posterior distribution of (X,P ),
given the data x = 4. Plotting the density functions of P and P |{X=4} gives the following:

The effect of incorporating the datapoint x = 4 is visible here. Updating our prior p.d.f. fP to
the posterior p.d.f. fP |{X=4} has resulting in the mass (i.e. the area underneath the curve) moving
rightwards, towards the value p = 0.4 that corresponds to having 4/10 successful experiments.
The p.d.f. fP |{X=4} feels both the influence of the prior fP , as well as the Bayesian update from
our data.

Suppose that we are now given a second piece of data, which is that a second set of 10

experiments was done, with x = 5 successes. We can use the posterior Beta(6, 14) that we
obtained before as our new prior distribution, to incorporate our improved knowledge about the
parameter θ. We keep the rest of our model as before, and do another Bayesian update to find a
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new posterior distribution. Going through the same calculations (we’ll omit the details) it turns
out that the new posterior is Beta(11, 19). Including this into our plot we obtain:

We’ve labelled our new posterior as f(P |{X=4})|{X=5} , to reflect the fact that we’ve done two updates
(this is rather lazy notation!). We can see the influence of the new data: our second data point
x = 5 again corresponds to a higher rate of success than our (updated) model anticipated, which
again pulls the mass of the distribution rightwards.

Our model still feels the effect of our initial prior, in the sense that the mean of B(11, 19)

is 11/30 ≈ 0.37, which corresponds to a lower success rate than both of our data points. We
only have two data points, so it is perhaps best that the initial guess we were given has not been
forgotten.

We can also see that the distributions are becoming less spread out with each update. This
reflects our models becoming more confident (of the posterior distribution they suggest for θ)
as we feed them more data. More precisely we can measure the standard deviations becoming
smaller: from the reference sheet in Appendix A, Beta(α, β) has variance αβ

(α+β)2(1+α+β) , from
which the sequence of standard deviations comes out as 0.12, 0.10 and 0.087, each rounded to
two significant figures.

Putting our final posterior Beta(11, 19) back into the same model family, we obtain from (2.8)
that the predictive distribution given by our analysis is

P[X ′ = x′] =

∫ 1

0
fBin(10,p)(x

′)fBeta(11,19)(p) dp

=

∫ 1

0

(
10

x′

)
px

′
(1− p)10−x′ 1

B(11, 19)
p10(1− p)18 dp

=
1

B(11, 19)

(
10

x′

)∫ 1

0
p10+x′

(1− p)28−x′
dp.

for x′ = 0, 1, . . . , 10. Plotting this p.m.f. gives:
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We can compare this figure to the sampling p.d.f. in Example 2.2.2, from before we did any
Bayesian updates. As we would expect, our estimate of the number of successful experiments now
places more weight on larger values.

Calculating the distribution of P |{X=4} in Example 2.3.3 was a bit complicated. For practical
purposes we will need to find easier ways of doing Bayesian updates. We’ll do that in Chapter 4,
but first we’ll need to finish our development of the theory.

Once you become comfortable with Bayesian updates, it will be tempting to try and compare
this new method of statistical inference to things you already know, and to wonder ‘which is
better?’. We will think about this in Chapter 6, but there is no simple answer.

In Example 2.3.3 we’ve used several sketches to help us understand the distributions we came
across. Exercise 2.1 provides you with template code for doing so yourself. You will find that
code useful for several other exercises too.

32



©Nic Freeman, University of Sheffield, 2025.

2.4 Bayesian updates

We now write down a general version of the method in Example 2.3.3, in the form of a theorem
that we can apply once per update step. It is worth noting that in many practical situations only
one update step is actually needed. This would normally be the case if we receive all the relevant
data at the same time. If our data arrives gradually (e.g. once per year from an annual survey)
then we can provide on-going analysis by carrying out an update step whenever new data arrives.

In Example 2.3.3 we only had one parameter, so our parameter space was Π ⊆ R, and we only
had one piece of data (per update) so our model for the data was a random variable X taking
values in R. In general we will want some number d ∈ N of parameters, so we take Π ⊆ Rd, and
we will want to handle some number n ∈ N of datapoints at once, so we let X take values in Rn.

Theorem 2.4.1 (Bayesian updates for discrete data) Let (X,Θ) be a discrete Bayesian model,
with parameter space Π, prior p.d.f. fΘ, model family (Mθ) and range R. Suppose that x ∈ R.
Then the posterior Θ|{X=x} is a continuous random variable and has p.d.f.

fΘ|{X=x}(θ) =
1

Z
P[Mθ = x]fΘ(θ) (2.11)

where Z =
∫
Π P[Mθ = x]fΘ(θ) dθ. The range of Θ|{X=x} is Π, the same range as for Θ.

Proof of Theorem 2.4.1: Let (X,Θ) be a discrete Bayesian model as given and let x ∈ R.
Note that P[Mθ = x] > 0 for all θ because (Mθ) is a discrete model family, so from (2.4) we have
that P[X = x] > 0. By Lemma 1.5.1

P
[
Θ|{X=x} ∈ B

]
=

P[X = x,Θ ∈ B]

P[X = x]
=

∫
B P[Mθ = x]fΘ(θ) dθ∫
Rd P[Mθ = x]fΘ(θ) dθ

=

∫
B

1

Z
P[Mθ = x]fΘ(θ) dθ.

where Z =
∫
Rd P[Mθ = x]fΘ(θ) dθ. The denominator here comes from (2.4) and the numerator

from (2.3).
The definition of a discrete Bayesian model gives that the prior Θ has range Π, so we may

assume fΘ(θ) = 0 for θ /∈ Π. Hence Z =
∫
Π P[Mθ = x]fΘ(θ) dθ. It follows that Θ|{X=x} is a

continuous random variable with p.d.f. as in (2.11).
Also, fΘ|{X=x}(θ) > 0 if and only if θ ∈ Π, so Θ|{X=x} also has range Π. �

Now that we have Theorem 2.4.1, and in particular equation (2.11), we should use it to calculate
posterior densities – instead of falling back on Definition 1.4.2. For example, in Example 2.3.3 we
can go straight from our description of the model to writing down the p.d.f. of P |{X=4} as

fP |{X=4}(p) =
1

Z
P[Bin(10, p) = 4]fBeta(2,8)(p)

=

(
10
4

)
B(2, 8)
Z

p4(1− p)10−4p2−1(1− p)8−1

=
1

Z ′ p
5(1− p)13 (2.12)

for p ∈ [0, 1], and zero elsewhere. Note that we have written 1
Z′ =

(10
4
)B(2,8)
Z in the last line,

without having to do any computation. We only need to care about the part of the formula
that depends on p, because the rest will be a normalizing constant. From Lemma 1.2.5 we can
recognize (2.12) as the p.d.f. of the Beta(6, 14) distribution.
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2.4.1 Historical notes (�)

Equation (2.11) is often known as Bayes’ rule, after Thomas Bayes (1701-1761). Bayes was one of
the first mathematicians to study conditional probability, although he only became interested by
it in later life and did not publish his work. Instead, it was edited and published by Richard Price
(1723-1791) after Bayes’ death. Both Bayes and Price were primarily interested in philosophy –
statistics barely existed at the time and mathematics had only recently discovered calculus. In
fact, what Bayes discovered is much closer to Lemma 1.4.1 in the special case of discrete random
variables.

The concept of Bayesian inference first appears in work of Pierre-Simon Laplace (1749-1827).
It was originally known as ‘inverse probability’ and kept this name up until the 1950s, during
which the term ‘Bayesian’ became used instead. This makes Bayesian methods one of the oldest
parts of statistics. By comparison, techniques based on maximum likelihood estimators (MLEs)
were not introduced until the 1920s.

During the middle part of the 20th century, statistics was dominated by techniques based
on MLEs and Bayesian techniques fell out of fashion. They become popular again with the
development of modern computing power in the 1980s and 1990s, when it was realized (as we
will see in Chapter 8) that Bayesian updates could be performed numerically without relying on
families of well-known distributions. This provided the possibility of writing down highly complex
Bayesian models whilst still having them ‘learn’ from data.
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2.5 Exercises on Chapter 2

You can find formulae for named distributions in Appendix A.

2.1 This exercise provides template code for drawing several sketches of distributions, which you?

will find helpful in many later exercises.

Use a computer package of your choice to complete the following questions. You will need
the file 2_dist_sketching.ipynb if you use Python, or 2_dist_sketching.Rmd if you use
R.

(a) You will find code that produces a sketch of the probability density functions of the
Exp(3) and Exp(5) distributions. Modify this code to produce a sketch of the probability
density functions of the Gamma(4, 5) and Gamma(6, 7) distributions.

(b) You will find code that produces a sketch of the Geometric(12) distribution. Modify this
code to produce a sketch of the Bin(10, 23) distribution.

(c) In this question we look at distributions in the form of equation (2.4).
You will find code that produces a sketch of the discrete distribution with p.m.f.

P[X = x] =

∫ 1

0
P[Bin(10, p) = x]fBeta(2,3)(p) dp

for x ∈ {0, 1, . . . , 10}. Note that this distribution is the sampling distribution associated
to a discrete Bayesian model with model family Bin(10, p) and prior P ∼ Beta(2, 3).
Modify this code to produce a sketch of the discrete distribution with p.m.f.

P[X = x] =

∫ 1

0
P[Geometric(p) = x]fBeta( 1

2
, 1
2
)(p) dp

for x ∈ {0, 1, . . . , }.

2.2 Let (X,P ) be a discrete Bayesian model with model family Mp ∼ Geometric(p) where? ?

p ∈ [0, 1].

We regard Mp as a model for the number of times an experiment fails before the experiment
is successful. The probability of success on each try is p ∈ [0, 1], which is an unknown
parameter. We assume that the experiments are independent of each other.

(a) Write down the probability mass function P[Mp = n], and the range of this model.

(b) Take a prior P ∼ Uniform([0, 1]). Given the single data point x = 5, show that the
posterior distribution is given by P |{X=x} ∼ Beta(2, 6).

(c) Use a computer package of your choice to sketch the p.d.f. of this distribution, alongside
the prior distribution.

(d) A second Bayesian update is made using a new data point, x = 9. Find the new
posterior distribution and add it to your sketch from (c).

(e) Write down the p.m.f. of the predictive distribution, after the second update. Use a
computer package of your choice to sketch it.
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2.3 Let (X,Λ) be a discrete Bayesian model with model family Mλ ∼ Poisson(λ), where λ ∈? ?

(0,∞). Take the prior to be Λ ∼ Exp(5). Find the distribution of the posterior Λ|{x=7} and
write down the p.m.f. of the predictive distribution.

2.4 Let (X,Y ) be a random variable with distribution

P[X = n, Y ∈ A] =
1

Z

∫
A
e−yyn(1− y)2

1

n!
dy

for n ∈ {0, 1, 2, . . .} and A ⊆ (0, 1), and zero otherwise.

(a) Find the marginal p.d.f. of Y and hence find the value of Z.? ?

(b) Find the distribution of X|{Y=y}.? ? ?
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Chapter 3

Continuous Bayesian models

In this chapter we expand our results from Chapter 2 to also cover continuous data. This has
the consequence that we will make more use of probability density functions than in Chapter 2,
which causes some of the formulae to change and/or simplify. The key ideas do not change.
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3.1 Continuous Bayesian models

In this section we construct a version of the model from Section 2.2 that is suitable for continuous
data. We use a continuous family of random variables (Mθ), in place of the discrete family used
in Section 2.2. It will behave in much the same way, except that when we used the p.m.f. of the
discrete random variable Mθ, we will now use the p.d.f. of the continuous random variable Mθ.

We need two ingredients to construct the model:

1. Let (Mθ)θ∈Θ be a family of continuous variables with range R ⊆ Rn and parameter space
Π ⊆ Rd. Write fMθ

: Rn → [0,∞) for the p.d.f. of Mθ.

2. Let fΘ : Rd → [0,∞) be a probability density function with range Π.

We used the same terminology as in Section 2.2: we refer to the family (Mθ) as the model family,
and we will also use this term for (fMθ

). We say that Π is the parameter space of the model and
R is the range of the model. The random variable Θ, with p.d.f. fΘ, is known as the prior of the
model.

Definition 3.1.1 The continuous Bayesian model associated to (Mθ) and f is the random vari-
able (X,Θ) ∈ Rn × Rd with distribution given by

P[X ∈ A,Θ ∈ B] =

∫
B
P[Mθ ∈ A]fΘ(θ) dθ =

∫
B

∫
A
fMθ

(x)fΘ(θ) dx dθ. (3.1)

The random variable (X,Θ) is continuous, with p.d.f. fMθ
(x)fΘ(θ).

The symbols θ,Θ, x,X and have the same interpretations as listed in Section 2.2, and we won’t
repeat that list here. A warning: note that the p.d.f. fMθ

(x)fΘ(θ) in (3.1) is not in a factorized
form g(x)h(θ) because fMθ

(x) depends on both θ and x. Just as in Section 2.2, in general X and
Θ are dependent random variables.

As in the discrete case, from Section 1.7 and Lemma 1.7.1 we have that Θ has p.d.f. fΘ, and
that X|{Θ=θ}

d
= Mθ whenever fΘ is continuous at θ. To find the (marginal) p.d.f. of the data X

we must instead integrate out the θ variable from the joint p.d.f., giving

fX(x) =

∫
Rd

fMθ
(x)fΘ(θ) dθ. (3.2)

This is known as the sampling p.d.f. or sampling density of the model, and the distribution of X
is the sampling distribution.

The posterior of the model is Θ|{X=x}, which is defined using Lemma 1.6.1. For the same
reasons as in the discrete case, we can hope that using Θ|{X=x} in place of Θ will result in an
improved model. Let’s work out the distribution of the posterior (in general) before we do an
example with some data.

Theorem 3.1.2 (Bayesian updates for continuous data) Let (X,Θ) be a continuous Bayesian
model, with parameter space Π, prior p.d.f. fΘ, model family (Mθ) and range R. Write fMθ

for the
p.d.f. of Mθ. Suppose that x ∈ R. Then the posterior Θ|{X=x} is a continuous random variable
and has p.d.f.

fΘ|{X=x}(θ) =
1

Z
fMθ

(x)fΘ(θ) (3.3)

where Z =
∫
Π fMθ

(x)fΘ(θ) dθ. The range of Θ|{X=x} is Π, the same range as for Θ.
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Proof: The proof is similar to our proof of Theorem 2.4.1, except that we use Lemma 1.6.1 (in
place of Lemma 1.5.1) to find the p.d.f. of Θ|{X=x}.

A difficulty is that Lemma 1.6.1 requires continuity conditions, which are not always satisfied
in the situation here (although they are often are). For that reason, we will only give a proof
covering the special case where both fMθ

(x) and fΘ(θ) are continuous functions. In that case,
from Lemma 1.6.1 we have that

fΘ|{X=x}(θ) =
f(X,Θ)(x, θ)

fX(x)
=

fMθ
(x)fΘ(θ)

fX(x)
. (3.4)

We have used p.d.f. coming from Definition 3.1.1 in the numerator above. For the denominator,
we already found fX(x) in (3.2), which gives fX(x) = Z. This gives (3.3). The definition of a
continuous Bayesian model requires that the prior Θ has range Π, so fΘ(θ) > 0 if and only if
θ /∈ Π. Since x ∈ R we have fMθ

(x) > 0 for all θ ∈ Π. Hence the range of Θ|{X=x} is Π. �

Remark 3.1.3 (�) In fact equation (3.3) only holds for almost all x ∈ R, but it works for all x
when we have ‘enough continuity’ in some suitable sense. This is generally sufficient for practical
purposes and we won’t worry about this issue within these notes. To see a natural case where
(3.3) fails for a particular choice of x, take Θ ∼ Γ(14 , 1) and Mθ ∼ N(0, θ), with the data x = 0.
Then according to (3.3) we have fΘ|{X=0}(θ) = 1

Z
1√
2πθ

e−02/2θ 11/4

Γ(1/4)θ
1/4−1e−θ = 1

Z′ θ−5/4e−θ for
θ > 0. This does not define a p.d.f. since

∫∞
0 θ−5/4e−θ dθ = ∞. The problem stems from fact that

(x, θ) 7→ fMθ
(x) is discontinuous at (0, 0), which causes the continuity conditions mentioned in

the above proof to fail. In this case for any x 6= 0 we do obtain a posterior p.d.f. that integrates
to one.

Equation (3.3) is a ‘continuous data’ analogue of equation (2.11). Both equations are often
known as (versions of) Bayes’ rule, for the historical reasons that we discussed in Section 2.3. In
both cases Z is a normalizating constant, ensuring that the p.d.f. of Θ|{X=x} integrates to 1. The
only difference between (2.11) and (3.3) is that:

• (2.11) features the p.m.f. P[Mθ = x] of the (discrete) model family;

• (3.3) features the p.d.f. fMθ
(x) of the (continuous) model family.

Lastly, once we have obtained Θ|{X=x} we construct a new Bayesian model with Θ|{X=x} in place
of Θ. As before:

Definition 3.1.4 The predictive distribution is given by replacing the prior Θ with the posterior
Θ|{X=x}, inside the sampling distribution. Hence, from (3.2), the predictive distribution is of a
continuous random variable with p.d.f.

fX′(x′) =

∫
Rd

fMθ
(x′)fΘ|{X=x}(θ) dθ. (3.5)
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3.2 Notation: independent data

We often want to construct a Bayesian model where the data corresponds to n independent, iden-
tically distribution samples from some common distribution. That is, we want our model family
to be of the form X = (X1, . . . , Xn) where the Xi are independent with the same distribution. It
is helpful to have some notation for this.

Given a pair of random variables Y and Z, we write Y ⊗ Z for the random variable (Y, Z)

formed of a copy of Y and a copy of Z that are independent of each other. We will tend to
use this notation in combination with named distributions. For example, X ∼ N(0, 1) ⊗ N(0, 1)

means that X = (X1, X2) is a pair of independent N(0, 1) random variables. When we want to
create n copies we will use a superscript ⊗n, so X ∼ N(0, 1)⊗n means that X = (X1, . . . , Xn) is
a sequence of n independent N(0, 1) random variables.

Note that if X has range R then X⊗n has range Rn.

Example 3.2.1 Recall that a Bernoulli trial is a random variable X ∼ Bernoulli(p), with dis-
tribution P[X = 1] = p and P[X = 0] = 1 − p. The standard relationship between Bernoulli
trials and the Binomial distribution can be written as follows: if (Xi)

n
i=1 ∼ Bernoulli(p)⊗n then∑n

i=1Xi ∼ Bin(n, p).

Example 3.2.2 Let M be a continuous random variable with p.d.f. fM and let X d
= M⊗n. Then

X has p.d.f.

fX(x) =

n∏
i=1

fM (xi),

where x = (x1, . . . , xn). A similar relationship applies in the case of discrete random variables,
to probability mass functions.
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Example 3.2.3 We are interested to model the duration of time that people spend on social
activities. We will use data from the 2015 American Time Use survey, corresponding to the
category ‘socializing and communicating with others’.

We decide to model the time spent on a single social activity as an exponential random variable
Exp(λ), where λ is an unknown parameter. This is a common model for time durations. Our
data consists of n = 50 independent responses, each of which tells us the duration that was spent
on a single social activity, in minutes. This gives us the model family

Mλ = Exp(λ)⊗50

which has p.d.f.

fMλ
(x) =

n∏
i=1

λe−λxi = λ50e−λ
∑50

1 xi . (3.6)

A single item of data has range (0,∞) so the range of our model is (0,∞)50.
We need to choose a prior for λ. As in Example 2.2.2 we will make a somewhat arbitrary

choice, because for now our focus is on understanding how Bayesian updates work. Our prior for
the duration of a social activity will be Λ ∼ Gamma(2, 60),

We can check that this prior sits roughly within the region of parameters that we would expect: it
has E[Λ] = 2

60 = 1
30 , which corresponds to an average social activity time of 30 minutes, because

E[Exp(λ)] = 1
λ .

We represent our data as a vector x = (x1, . . . , x50). A histogram of the data is as follows:

It satisfies
∑n

1 xi = 6638, which we can fill into (3.6).
We can find the posterior distribution Λ|{X=x} using Theorem 3.1.2. It has p.d.f.

fΛ|{X=x}(λ) =
1

Z
fMλ

(x)fGamma(2,60)(λ)
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=
1

Z
λ50e−6638λ 602

Γ(2)
λ2−1e−60λ

=
1

Z ′λ
51e−6698λ (3.7)

Note that here we have absorbed the factor 602

Γ(2) into the normalizing constant 1
Z to obtain a

new normalizing constant 1
Z′ . We know that (3.7) is a probability density function, so by Lemma

1.2.5 we have that Λ|{X=x} ∼ Gamma(52, 6698), and we know that 1
Z′ must be the normalizing

constant of the Γ(52, 6698) distribution.
Plotting the prior and posterior probability density functions together gives

Here we see that, even though our prior is spread out across a fairly wide range of values, the
posterior has focused very precisely on a small region. By comparison to Example 2.3.3, we have
a lot more data here, so our analysis here has produced a higher level of confidence in the best
choice of parameter values. Consequently our choice of prior has mattered less than it did in
Example 2.3.3.

It is sensible to compare the results of our analysis our the histogram of the data x. Our
model is for 50 independent samples, so technically the sampling and predictive distributions
of our model generate 50 real-valued samples, which is awkward to sketch. Instead we use the
sampling and predictive distributions for a single data point (i.e. the n = 1 case of our model).
This gives sampling and predictive distributions, from (3.2) and (3.5), with probability density
functions

fsampling(x1) =

∫
Rd

fExp(λ)(x1)fΓ(2,60)(λ) dλ,

fpredictive(x1) =

∫
Rd

fExp(λ)(x
′
1)fΓ(52,6698)(λ) dλ.

Comparing these to the data, we obtain

42



©Nic Freeman, University of Sheffield, 2025.

It is clear that the predictive distribution is a better match for the data than the sampling
distribution. To make the comparison we have scaled the total area of the histogram to be 1, to
match the fact the area under probability density functions is also 1.

Remark 3.2.4 In both Chapter 2 and 3 we have used continuous distributions for our random
parameters. In principle we could use discrete distributions instead i.e. Π would become a finite
set and Θ would only be allowed to take values in Π. We would need to slightly modify (2.11)
and (3.3) for such cases. There aren’t any families of common distributions where the parameters
spaces are discrete, and in practice we rarely have a reason to want models of this type. We won’t
study models of this type within our course.
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3.3 Exercises on Chapter 3

You can find formulae for named distributions in Appendix A.

3.1 This exercise continues Exercise 2.1. It provides template code for drawing several sketches?

of distributions, which you will find helpful in many later exercises.

Inside the files 2_dist_sketching.ipynb and 2_dist_sketching.Rmd, below the parts cor-
responding to Exercise 2.1, you will find the code for sketching

fX(x1) =

∫
Rd

fExp(λ)(x1)fGamma(2,60)(λ) dλ,

which is the p.d.f. of the sampling distribution (for a single item of data) in Example 3.2.3.

(a) Modify this code to sketch the p.d.f. of the sampling distribution of the continuous
Bayesian model (X,Θ) with model family Mθ = Γ(2, θ) and prior Θ ∼ Exp(1).

(b) Do the same as in (a), for the continuous Bayesian model (X,Θ) with model family
Mθ = N(θ, 1) and prior Θ ∼ N(0, 1).

3.2 Let Mθ ∼ Exp(θ), where θ takes values in the parameter space Π = (0,∞). Let (X,Θ) be? ?

the Bayesian model with this model family and prior Θ ∼ Gamma(2, 3).

(a) Given the single data point x = 2, show that the posterior Θ|{X=2} has the Gamma(3, 5)
distribution.

(b) (i) Show that the sampling distribution of the model has p.d.f.

fX(x) =

{
18

(x+3)3 for x > 0

0 otherwise.
(3.8)

Hint: Use that
∫∞
0 fGamma(3,x+3)(θ) dθ = 1 to help with the integral.

(ii) Find the predictive distribution in similar form to (3.8).

(c) Now consider the model Mθ ∼ (X1, . . . , Xn), where n ∈ N and the Xi are independent
Exp(θ) random variables. Use the same prior Θ ∼ Gamma(2, 3) and the data x =

(x1, . . . , xn), where xi ∈ (0,∞) for all i = 1, . . . , n. Show that the posterior distribution
has the Gamma(n+ 2, 3 + z) distribution, where z =

∑n
1 xi.

3.3 With a computer package of your choice, sketch the prior and posterior probability density?

functions from Exercise 3.2(a)/(b) on the same graph.

On a separate graph, use the explicit formula you found in Exercise 3.2(a)/(b) to sketch
the sampling and predictive distributions. Modify your code from Exercise 3.1 to sketch the
same functions, but without using your explicit formulae. Check that the results agree.

3.4 (a) Look at the left hand column of the reference sheet ‘Conditional Probability and Related?

Formulae’ in Appendix A. For each item listed there, identify which Section, Lemma,
equation, or other part of Chapter 1 it comes from.

(b) Do the same for the left hand column of the reference sheet ‘Bayesian Models and
Related Formulae’ (excluding the last item), with Chapters 2 and 3.
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3.5 Let Mθ ∼ Uniform([0, θ]) be the continuous uniform distribution on [0, θ]. Let (X,Θ) be a
Bayesian model with model family (Mθ)θ∈Π, with parameter space Π = (0,∞). Take the
prior to be Θ ∼ Pareto(3, 1).

(a) Suppose that we have the datapoint x = 1
2 . Show that the posterior Θ|{X= 1

2
} has? ?

distribution Pareto(4, 1).

(b) Suppose instead that we had the data point x = 5. Find the posterior distribution? ? ?

Θ|{X=5} and calculate the p.d.f. of the resulting predictive distribution.

3.6 Let (X,Θ) be a continuous Bayesian model with parameter space Π. Suppose that A ⊆ Π? ? ?

with P[Θ ∈ A] > 0. Show that X|{Θ∈A} is a continuous random variable with p.d.f.

fX|{Θ∈A}(x) =

∫
A
fMθ

(x)fΘ|{Θ∈A}(θ) dθ.

3.7 Let (X,Θ) be a continuous Bayesian model, with range RX ⊆ R and parameter space Π ⊆ R,? ? ?

and with model family (Mθ). Let fMθ
denote the p.d.f. of Mθ and let fΘ denote the p.d.f. of

Θ.

Consider a second continuous Bayesian model (X ′,Θ) with the same prior, the same range
and parameter space, but with model family (M ′

θ) given by

fM ′
θ
(x) =

∫
R
fMθ

(x− y)κ(y) dy. (3.9)

We require that κ : R → [0,∞) and
∫
R κ(y) dy = 1.

(a) Check that
∫
R fM ′

θ
(x) dx = 1.

(b) Show that the posterior density of (X ′,Θ) satisfies

fΘ|{X′=x}
(θ) ∝

∫
R
fΘ|{X=x−y}(θ)κ(y) dy. (3.10)

(c) The operation in (3.9) is known as the convolution of fMθ
with κ, and the function κ is

known as the kernel of the convolution.
Consider the case κ(y) = 1√

2π
e−y2/2. Investigate the connection between convolutions

and sums of random variables. Use what you discover to write down (in words) a
heuristic interpretation of the connection between Model 1 and Model 2, and also of
equation (3.10).
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Chapter 4

Conjugate priors

Recall that we define a Bayesian model (X,Θ) using a prior Θ and a model family (Mθ)θ∈Π. The
main result from Chapters 2 and 3 is that we can (at least, in principle) obtain the distribution of
the posterior Θ|{X=x}. If the prior and posterior are from the same family of distributions then
we say that this family of distributions is conjugate to the model family.

Note that the setup here involves two families of distributions: (1) the model family (Mθ) and
(2) the conjugate family, to which the prior and posterior both belong. The formal definition is a
bit of a mouthful:

Definition 4.0.1 Let (Mθ)θ∈Π and (Ta)a∈A be two model families, with parameter spaces Π and
A respectively. We say that (Mθ) and (Ta) are a conjugate pair if whenever (X,Θ) is a Bayesian
model with model family (Mθ) and prior Θ ∼ Ta, for all x ∈ RX there exists b ∈ A such that
Θ|{X=x} ∼ Tb. We say that the family (Ta) is a conjugate prior for (Mθ).

The point of using conjugate pairs is that, to specify a Bayesian update step, we only need
to describe how the parameters of the prior distribution should change, to obtain the posterior
distribution. This is in general much simpler than (2.11) and (3.3). We will describe a few
conjugate pairs in this chapter and discuss their limitations in Section 4.6.
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4.1 Notation: proportionality

In (2.12) and (3.7) we used 1
Z and 1

Z′ for normalizing constants. It was helpful not to worry about
exactly what the value of these constant were. In longer calculations we might need to use several
different normalizing constants in this way, and it is helpful to have some notation for doing so
(beyond simply 1

Z′′ ,
1

Z′′′ and so on).

Definition 4.1.1 Let f and g be functions within the same domain. We write f ∝ g if there
exists C ∈ (0,∞) such that f(x) = Cg(x) for all x. In words, f is said to be proportional to g.

The relation ∝ has several nice properties, which are easy to check and are left for you in
Exercise 4.9. For example, for any function f we have f ∝ f . Also, f ∝ g if and only if g ∝ f

and, lastly, if f ∝ g and g ∝ h then f ∝ h. We’ll use these properties frequently in calculations,
without further comment.

Example 4.1.2 Using the notation ∝, Lemma 1.2.5 says that for random variables X and Y :

• If X and Y are discrete and pX ∝ pY then X
d
= Y .

• If X and Y are continuous and fX ∝ fY then X
d
= Y .

We will often use Lemma 1.2.5 in this way from now on, including in the next example.

Example 4.1.3 The calculation in (2.12) can be written simply as

fP |{X=4}(p) ∝ P[Bin(10, p) = 4]fBeta(2,8)(p)

∝ p4(1− p)10−4p2−1(1− p)8−1

∝ p5(1− p)13.

It follows immediately from Lemma 1.2.5 that P |{X=4} ∼ Beta(6, 14).

Example 4.1.4 More generally, the key equations (2.11) and (3.3) from Theorems 2.4.1 and 3.1.2
can be written

fΘ|{X=x}(θ) ∝ pMθ
(x)fΘ(θ) for discrete Bayesian models,

fΘ|{X=x}(θ) ∝ fMθ
(x)fΘ(θ) for continuous Bayesian models.

We will often use Theorems 2.4.1 and 3.1.2 in this way from now on.

A complication of using ∝ is that the symbol does not explicitly specify which variables should
be treated as part of the proportionality, and which other variables can be treated as constants. For
our purposes there is a simple way to resolve this difficulty. We we use ∝ there will, in most cases,
be a function on the left of the first ∝ that appears within a calculation. The arguments of that
function (not including subscripts) are the variables that proportionality applies to; everything
else can be treated as constant in so far as ∝ is concerned.
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4.1.1 The Beta-Binomial pair

Here is our first example of a conjugate pair, which generalizes the calculations in Example
2.1.1-2.3.3.

Lemma 4.1.5 (Beta-Bernoulli conjugate pair) Let n ∈ N. Let (X,Θ) be a discrete Bayesian
model with model family Mθ ∼ Bernoulli(θ)⊗n and parameter θ ∈ [0, 1]. Suppose that the prior is
Θ ∼ Beta(a, b) and let x ∈ {0, 1}n. Then the posterior is Θ|{X=x} ∼ Beta(a+ k, b+n− k) where
k =

∑n
1 xi.

Proof: Note that k is the number of Bernoulli trials that generate a 1, and that we have n

trials in total. Under Mp, each trial has probability p of generating 1. From Theorem 2.4.1 we
have that for θ ∈ [0, 1]

fΘ|{X=x}(θ) ∝ P[Bernoulli(θ)⊗n = x]fBeta(a,b)(θ)

∝

(
n∏

i=1

P[Bernoulli(θ) = xi]

)
fBeta(a,b)(θ)

∝
(
θk(1− θ)n−k

)( 1

B(a, b)
θa−1(1− θ)b−1

)
∝ θa+k−1(1− θ)b+n−k−1.

By Lemma 1.2.5 we recognize this p.d.f. as Θ|{X=x} ∼ Beta(a+ k, b+ n− k). �

The value of k has an intuitive interpretation, because it is the number of successful trials
observed in our data x (here we take a trial to result in 1 if successful, and 0 if failed). Looking
back at Example 2.3.3, this allows us to do all of the Bayesian update calculations with one easy
piece of arithmetic.

More generally, we can use the Binomial distribution in place of the Bernoulli distribution, as
in the next lemma.

Lemma 4.1.6 (Beta-Binomial conjugate pair) Let n,mi ∈ N. Let (X,Θ) be a discrete
Bayesian model with model family

Mθ ∼ Bin(m1, θ)⊗ . . .⊗ Bin(mn, θ).

with the parameter θ ∈ Π = [0, 1]. Suppose that the prior is Θ ∼ Beta(a, b) and let x = (x1, . . . , xn)

where xi ∈ {0, . . . ,mi}. Then the posterior is Θ|{X=x} ∼ Beta (a+
∑n

1 xi, b+
∑n

1 mi −
∑n

1 xi).

Proof: From Theorem 2.4.1 we have that for θ ∈ [0, 1]

fΘ|{X=x}(θ) ∝

(
n∏

i=1

(
mi

xi

)
θxi(1− θ)mi−xi

)(
1

B(a, b)
θa−1(1− θ)b−1

)
∝ θa+

∑n
1 xi−1(1− θ)b+

∑n
1 mi−

∑n
1 xi−1.

By Lemma 1.2.5 we recognize this p.d.f. as Θ|{X=x} ∼ Beta (a+
∑n

1 xi, b+
∑n

1 mi −
∑n

1 xi). �

Remark 4.1.7 (�) There is a further generalization of this model to experiments that can have
many possible outcomes. It involves the Dirichlet and multinomial distributions. It is not much
more complicated, but we won’t cover it within this course.
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4.2 Two more examples of conjugate pairs

There are several examples of conjugate pairs in the exercises at the end of this chapter. We
include a couple more here, the first of which generalizes the calculations in Example 3.2.3.

Lemma 4.2.1 (Gamma-Exponential conjugate pair) Let n ∈ N. Let (X,Λ) be a continuous
Bayesian model with model family Mλ ∼ Exp(λ)⊗n and parameter λ ∈ (0,∞). Suppose that the
prior is Λ ∼ Gamma(α, β) and let x ∈ (0,∞)n. Then the posterior is Λ|{X=x} ∼ Gamma(α +

n, β +
∑n

1 xi).

Proof: From Theorem 3.1.2 we have that for λ ∈ (0,∞)

fΛ|{X=x}(λ) ∝ fExp(λ)⊗n(x)fGamma(α,β)(λ)

∝

(
n∏

i=1

λe−λxi

)(
βα

Γ(α)
λα−1e−βλ

)
∝ λne−λ

∑n
1 xiλα−1e−βλ.

∝ λα+n−1e−λ(β+
∑n

1 xi),

By Lemma 1.2.5 we recognize this p.d.f. as Θ|{X=x} ∼ Gamma(α+ n, β +
∑n

1 xi). �

We’ll now do a more complicated example in which the constant of proportionality would
change multiple times – if we were to write it in, which we won’t, thanks to ∝. In Section 4.5
we will look at Bayesian inference for the normal distribution where both µ and σ are unknown
parameters. For now we view σ as fixed, so the mean µ is the only parameter.

Lemma 4.2.2 (Normal-Normal conjugate pair) Let u ∈ R and σ, s > 0. Let (X,Θ) be a
continuous Bayesian model with model family Mθ ∼ N(θ, σ2)⊗n and parameter θ ∈ R. Suppose
that the prior is Θ ∼ N(u, s2) and let x ∈ Rn. Then

Θ|{X=x} ∼ N

(
1
σ2

∑n
1 xi +

u
s2

n
σ2 + 1

s2
,

1
n
σ2 + 1

s2

)
. (4.1)

Proof: From Theorem 3.1.2 we have that for θ ∈ R

fΘ|{X=x}(θ) ∝ fN(θ,σ2)⊗n(x)fN(u,s2)(θ)

∝

(
n∏

i=1

1√
2π

e−
(xi−θ)2

2σ2

)(
1√
2π

e−
(θ−u)2

2s2

)

∝ exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2 − 1

2s2
(θ − u)2

)
∝ exp

(
−Q(θ)

)
where

Q(θ) = θ2

A︷ ︸︸ ︷(
n

2σ2
+

1

2s2

)
−2θ

B︷ ︸︸ ︷(
1

2σ2

n∑
i=1

xi +
u

2s2

)
+

C︷ ︸︸ ︷(
1

2σ2

n∑
i=1

x2i +
u2

2s2

)
.
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Completing the square in Q(θ), using the general form of completing the square (which you can
find on the reference sheet in Appendix A), we have that

fΘ|{X=x}(θ) ∝ exp

(
−A

(
θ − B

A

)2

+ C − B2

A

)

∝ exp

(
− 1

2( 1
2A)

(
θ − B

A

)2)
.

By Lemma 1.2.5 we recognize this p.d.f. as Θ|{X=x} ∼ N
(
B
A ,

1
2A

)
. We have

B

A
=

1
σ2

∑n
i=1 xi +

u
s2

n
σ2 + 1

s2
and 1

2A
=

1
n
σ2 + 1

s2
,

as required. Note that in the first term we have cancelled a factor of 1
2 from both A and B. �

From (4.1) we can see that the variance will decrease as n → ∞, and that for large n it will
be ≈ σ2

n . This agrees with our experience in Example 4.2.4, in which case we had σ2 = s2 = 0.42,
giving variance 0.42

n . Recall that in our discussion at the end of Example 4.2.4 we noted that the
posterior variance had become very small after only 10 obserations, despite the prior having a
reasonably large variance.

In the formulae we obtained in (4.1) each time a variance appears, for both σ2 and s2, it
appears on the bottom of a fraction. This suggests that we might obtain nicer formulae if we
instead to parameterize the normal distribution as N(µ, 1τ ), where by by comparison to our usual
parametrization we have written τ = 1

σ2 . It is common to do this in Bayesian statistics and
the variable τ is then known as precision. We will do this, for example, in Exercise 4.4 which
considers the Normal distribution with fixed mean and unknown variance.

You can find a table of conjugate pairs on the reference sheets in Appendix A, below the tables
of named distributions. It contains all of the examples within this chapter; there is no need for
you to memorize the formulae.

Remark 4.2.3 You are now ready to start on all of the exercises for this chapter.

50



©Nic Freeman, University of Sheffield, 2025.

Example 4.2.4 Speed cameras are used to measure the speed of individual cars. They do so by
recording two images of a moving car, with the second image being captured a fixed time after
the first image. By analysing the two images the camera can tell how far the car has travelled
in that time, which gives an estimate of its speed. This is not an easy process and there is some
degree of error involved.

Suppose that we are trying to assess if the manufacturers description of the error is accurate.
The manufacturer claims that, if the true speed is 30 (miles per hour) then the speed recorded
by the camera can be modelled as a N(30, 0.16) random variable.

We construct an experiment to test this. We set up a camera and drive 10 cars past it, each
travelling at 30 miles per hour (let us assume this can be done accurately, which is not unrealistic
using modern cruise control). The camera records speeds of

30.9, 29.9, 30.1, 30.3, 29.7, 30.1, 30.1, 29.2, 30.6, 30.4. (4.2)

We record this data as x = (xi)
10
i=1.

We will come back to this example in future but for now let us assume, for simplicity, that we
believe the manufacturers claim that the data will have a normal distribution with variance 0.16.
We want to see if mean matches up with the figure claimed. We’ll use the model family

Mθ ∼ N(θ, 0.16)⊗10 d
= N(θ, 0.42)⊗10,

where the mean θ is an unknown parameter. The parameter space of this model is Π = R and
the range of the model is R10.

For our prior we will use Θ ∼ N(30, 52) which has p.d.f.

fΘ(θ) =
1

5
√
2π

e−(x−30)2/10.

We will study techniques for choosing the prior in Chapter 5. For now our motivation is that we
expect the true value for θ is about 30, but we don’t have a lot of confidence in that, so we pick
a fairly large value for the variance.

Remark 4.2.5 It is always sensible to think about what property of reality your ‘true’ parameter
value represents. In this case, the true value of θ is the average speed that would be recorded by
the camera, for a car that was travelling at exactly 30mph. We don’t know this value.

By Lemma 4.2.2 the posterior distribution is

Θ|{X=x} ∼ N

(
1

0.16

∑10
1 xi +

30
52

10
0.16 + 1

52

,
1

10
0.16 + 1

52

)
d
= N

(
30.13, 0.042

)
.

Here we fill in
∑10

1 xi = 301.4 and round the parameters to two decimal places. As in our previous
examples, let us compare the prior Θ to the posterior Θ|{X=x}.
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It is difficult to show them on the same axis, so we have had to miss out the top part of the
curve fΘ|{X=x} . The outcome is similar to Example 3.2.3, in that the posterior has focused in on
a small region. Given our data (4.2) this seems sensible. The influence of the prior has largely
been forgotten.

We were originally interested to compare the behaviour the manufacturer claimed that the
camera would have, with the results of our experiment. To do so we should compare N(30, 0.16),
which is what the manufacturer claimed our experiment should observe, with the predictive dis-
tribution from our data analysis. As in Example 3.2.3, what we want here is the predictive
distribution for a single data point (i.e. the case n = 1). For that, our model family is N(θ, 0.42),
and our posterior distribution for the unknown parameter θ is N(30.13, 0.042), which gives the
p.d.f. of the predictive distribution for a single datapoint as

fpredictive(x) =

∫
R
fN(θ,0.42)(x)fN(30.13,0.042)(θ) dθ

which we can evaluate numerically1. We obtain

They are quite similar. If our predictive distribution is a true reflection of the cameras behaviour,
it suggests that the camera may be overestimating speeds by a small amount. We would need to
do some statistical testing before saying anything more, based on the 10 datapoints that we have,
and we’ll have to wait until Chapter 7 for that.

We’ll return to this data again in Example 4.5.3, where will also treat the variance as an
unknown parameter.

1In fact, some further calculation would reveal that this is also the p.d.f. of a normal distribution.
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4.3 Conjugate pairs and the exponential family (�)

For continuous Bayesian models, a very general form of conjugacy is known. We’ll restrict here to
continuous models with one unknown parameter. We need to introduce the exponential family of
distributions. This term does not refer to the exponential distribution, but to a much wider class.
We say that a real valued random variable Y is from the exponential family of distributions with
parameter θ if it has a p.d.f. in the form

fY (y) = h(y)g(θ) exp (θT (y)) . (4.3)

Here h, g and T are arbitrary functions, with the restriction h ≥ 0. Many of the families of
distributions that you are familiar with can be fitted into this mould, including the normal,
exponential, gamma, chi-squared, and beta distributions.

Take a Bayesian model (X,Θ) with model family given by (4.3), where both X and Θ take
values in R. That is,

fMθ
(x) = h(x)g(θ) exp (θT (x)) (4.4)

for x, θ ∈ R. We’ll focus on the version of this model that takes n independent items of data,
x = (x1, . . . , xn) in which case

fMθ
(x) =

(
n∏

i=1

h(xi)

)
g(θ)n exp

(
θ

n∑
i=1

T (xi)

)
. (4.5)

The prior distribution that provides a conjugate pair to this model is given by

fΘ(θ) ∝ g(θ)a exp (bθ) , (4.6)

where a > 0 and b ∈ R are parameters Note that this distribution is a specialized version of the
form in (4.3), and that the function g must be the same as in (4.5). Theorem 3.1.2 allows us to
compute the posterior density

fΘ|{X=x}(θ) ∝ fMθ
(x)fΘ(θ)

∝ g(θ)n+a exp

[
θ

(
b+

n∑
i=1

T (xi)

)]
. (4.7)

Therefore the Bayesian update in this case, from the parameters in (4.6) to (4.7) is that

(a, b) 7→

(
a+ n, b+

n∑
i=1

T (xi)

)
.

Example 4.3.1 Taking h(x) = 1, g(θ) = θ and T (x) = x obtains the Exp(θ) in (4.4). Making
the same choice for g, along with a = α and b = −β, obtains that Gamma(α, β) distribution
in (4.6). Putting these choices for g and T into (4.7) and applying Lemma 1.2.5 gives that the
posterior is Gamma(α+ n, β +

∑n
1 xi), as we already knew from Lemma 4.2.1.

Remark 4.3.2 There is also a version of this framework for multiple parameters, in which θ and
b are row vectors and T is a column vector, and multiplication of these quantities is done via
the dot product. We won’t write down the details of that case here. There is also a version that
applies to discrete Bayesian models, but we won’t detail that either.
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4.4 What if?

In this section we do some numerical experiments to illustrate the sort of things that go wrong if,
for some reason, our model family or our prior is too unrealistic. We will first describe a situation
where the inference works as intended, and then we’ll do some things to break it.

Example 4.4.1 Let (X,Θ) be a continuous Bayesian model with model family Mλ ∼ Exp(λ)⊗n

and parameter λ ∈ (0,∞). Take the prior to be Θ ∼ Γ(α, β), where α, β ∈ (0,∞).
For now, we choose the prior with α = β = 1. We will feed our model data consisting of

i.i.d. samples from the Exp(1) distribution. This corresponds to a true value of the parameter
given by λ∗ = 1. In other words, if we set Θ = λ in our Bayesian model then the samples it would
produce for X would have exactly the same distribution as the data. So, we hope that Bayesian
updates based on this data will result in a posterior density with its mass near to 1.

The posterior densities that resulted from various amounts of data x, sampled from Exp(1)⊗n,
are as follows.

The Bayesian updates here were calculated using Lemma 4.2.1. As expected, although the mass
of our prior is not close to the true value, we can see the posterior densities becoming more and
more focused on the value 1. We can also see the corresponding predictive distributions (for a
single datapoint) converging towards Exp(1). The density functions look like:
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What if the model is wrong?

Example 4.4.2 Here we use the same model as in Example 4.4.1, but now we feed our model
data consisting of i.i.d. samples from the ChiSquared(2) distribution. In this case there is no
value of the parameter λ for which our model (X,Θ) is a good representation of the data. We
are interested to see what happens:

As before, it looks like our model is trying to focus in on one particular value for λ. This time
it looks to be homing in on a value a little below 0.5, although it not yet clear which. Note
that the convergence appearing here actually seems faster than in Example 4.4.1 i.e. the values
shown here for n are a bit smaller. Let us draw the probability density functions of the predictive
distributions that come from the posteriors above, and compare them to the true density function
from which our data was sampled:

The density functions of the predictive distributions also seem to be converging as n gets larger,
as we would expect from the convergence suggested in the previous graph. But what they are
converging towards is not much like the p.d.f. from which the data was actually generated (shown
as the black dotted line). It puts far too much weight on small values, for example. If we hadn’t
looked at these graphs we might not have noticed that anything was wrong.

In other situations, where we choose a model that is not able to represent the data well, the
posterior distributions won’t converge at all as n → ∞. In such cases the predictive distributions
tend to be wildly wrong by comparison to the data.
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What if the prior excludes the true value?

Example 4.4.3 We’ll use the model Example 4.4.1 again, but we’ll change the prior, to be
Θ ∼ Uniform([2, 3]), the continuous uniform distribution with range [2, 3]. We’ll feed the model
data consisting of i.i.d. samples from the Exp(1) distribution, corresponding (as in Example 4.4.1)
to a true value λ∗ = 1 for the parameter. The key point is that in this case the true value is
outside of the range of the prior. Let’s examine what happens now:

The posteriors are focusing on the value λ = 2, but the most conspicuous feature is that the
posterior distributions place no weight at all outside of [2, 3]. In fact we knew this in advance,
because Theorems 2.4.1 and 3.1.2 both include the fact that the range of Θ|{X=x} is equal to the
range of Θ, in this case [2, 3]. This means that, no matter how much data we give to our model,
it will never converge towards the true value λ∗ = 1. It is trying to do the next best thing, and
get as close as possible. We won’t draw the predictive distributions for this case, but the same
story applies there.

There is an important message to take away from this example. When we assign zero prior
probability to some region of the parameter space, our model interprets it as an instruction that
we do not ever want to consider parameters in that region, even if it later turns out that the
data fits that region better. If we chose to do this based on our own (or our expert colleagues)
opinions, and it turns out that we are wrong, then we have made a serious error.

To avoid that situation, it is generally agreed that the range of the prior should include all
values of the parameter that are physically possible, with a view to the situation that we are
trying to model. This is known as Cromwell’s rule, based on the quotation

I beseech you, in the bowels of Christ, think it possible that you may be mistaken!

which Oliver Cromwell famously wrote in a letter to the council of the Church of Scotland in
1650, in an attempt to persuade them not to support an invasion of England. Cromwell failed
to persuade them and shortly afterwards Scotland did invade England. Cromwell’s own forces
decisively won the resulting battle for the English side.

We have followed Cromwell’s rule in Example 2.3.3, where the parameter p represented a
probability and our prior had range [0, 1]. Similarly, in Example 4.2.4 the parameter θ represented
a speed and our prior had range R. In the context of that example we would hope that negative
values of the parameter would not be plausible (or the speed camera is seriously malfunctioning!)
but we still allowed, in our prior, a small probability that this might occur.
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4.5 The normal distribution with unknown mean and variance

We’ve considered the normal distribution with a fixed variance, but with unknown mean, in
Lemma 4.2.2 and Example 4.2.4. The situation of fixed mean and unknown variance is treated
in Exercise 4.4. We’ll deal here with the case where both the mean and variance are unknown
parameters.

In the formulae obtained in Lemma 4.2.2, both variables relating the variance (σ2 and s2) only
appeared as 1

σ2 and 1
s2 . This suggests that we would obtain neater formulae if we parameterized

the variance part as τ = 1
σ2 . The parameter τ is known as precision. We will use this form in the

next lemma, and also in Exercise 4.4.
The conjugate prior in this case is complicated. It is the Normal-Gamma distribution, written

NGamma(m, p, a, b) with p.d.f.

fNGamma(m,p,a,b)(µ, τ) = fN(m, 1

pτ
)(µ) fGamma(a,b)(τ) (4.8)

=

√
pτ

2π
exp

(
−pτ

2
(µ−m)2

) ba

Γ(a)
τa−1e−bτ

∝ τa−
1

2 exp
(
−pτ

2
(µ−m)2 − bτ

)
. (4.9)

You can find this p.d.f. on the reference sheets in Appendix A. Note that it is a two-dimensional
distribution, which we will use to construct random versions of the parameters µ and τ in N(µ, 1τ ).
The restrictions on the NGamma parameters are that m ∈ R and p, a, b > 0. The range is µ ∈ R
and τ > 0. Here’s a contour plot of the p.d.f. of NGamma(2, 1, 3, 2) to give some idea of what is
going on here:
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Let us note a couple of facts about the NGamma(m, p, a, b) distribution before we proceed
further. If (U, T ) ∼ NGamma(m, p, a, b) then:

• The marginal distribution of T is Gamma(a, b).

This follows easily from (4.8). Integrating out µ will remove the term fN(m, 1

pτ
)(µ), which is

a p.d.f. and integrates to 1, leaving only term fGamma(a,b)(τ).

• The conditional distribution of U |{T=τ} is N(m, 1
pτ ).

This also follows from (4.8), by applying Lemma 1.6.1. We already know that fT (t) =

fGamma(a,b)(τ), so

fU |{T=τ}(µ) =
fN(m, 1

pτ
)(µ) fT (τ)

fT (τ)
= fN(m, 1

pτ
)(µ).

Note that we are using U as a capital µ and T as a capital τ , to preserve our usual relationship
between random variables and the arguments of their probability density functions. These two
facts won’t be used in our proof of conjugacy, but hopefully they help explain the formula (4.8)
and the picture below it.

Our next goal is to state the conjugacy between NGamma and the Normal distribution. We
will need the sample-mean-variance identity, which states that for all x ∈ Rn

n∑
i=1

(xi − µ)2 = ns2 + n(x̄− µ)2 (4.10)

where x̄ = 1
n

∑n
1 xi and s2 = 1

n

∑n
1 (xi − x̄)2.

Remark 4.5.1 (�) To deduce (4.10), let Z be a random variable with the uniform distribution
on {x1, . . . , xn}. Note that E[Z] = x̄ and var(Z) = s2. The identity follows from the fact that
var(Z) = var(Z − µ) = E[(Z − µ)2]− E[Z − µ]2.

Lemma 4.5.2 (Normal-NGamma conjugate pair) Let (X,Θ) be a continuous Bayesian model
with model family Mµ,τ ∼ N(µ, 1τ )

⊗n, with parameters µ ∈ R and τ > 0. Suppose that the prior
is Θ = (U, T ) ∼ NGamma(m, p, a, b) and let x ∈ Rn. Then Θ|{X=x} ∼ NGamma (m∗, p∗, a∗, b∗)

where
m∗ =

nx̄+mp

n+ p
p∗ = n+ p

a∗ = a+
n

2
b∗ = b+

n

2

(
s2 +

p

n+ p
(x̄−m)2

)
,

where x̄ = 1
n

∑n
1 xi and s2 = 1

n

∑n
1 (xi − x̄)2.

Proof: (�) From Theorem 3.1.2 we have that for all µ ∈ R and τ > 0,

f(U,T )|{X=x}(µ, τ) ∝

(
n∏

i=1

√
τ

2π
exp

(
−τ(µ− xi)

2

2

))
τa−

1

2 exp
(
−pτ

2
(µ−m)2 − bτ

)
∝ τ

n

2
+a− 1

2 exp

[
−τ

2

(
n∑

i=1

(µ− xi)
2 + p(µ−m)2 + 2b

)]
∝ τ

n

2
+a− 1

2 exp
[
−τ

2

(
ns2 + n(µ− x̄)2 + p(µ−m)2 + 2b

)]
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∝ τ
n

2
+a− 1

2 exp
[
−τ

2
Q(µ)

]
To deduce the third line we have used (4.10). We have

Q(µ) = µ2

A︷ ︸︸ ︷
(n+ p) −2µ

B︷ ︸︸ ︷
(nx̄+mp) +

C︷ ︸︸ ︷(
ns2 + nx̄2 + pm2 + 2b

)
.

Completing the square (with the help of the reference sheet) we obtain Q(µ) = A(µ−B
A )

2+C−B2

A

and hence

f(U,T )|{X=x}(µ, τ) ∝ τ
n

2
+a− 1

2 exp

[
−τ

2
A

(
µ− B

A

)2

− τ
1

2

(
C − B2

A

)]
.

The right hand side is above in the form of (4.9) and we can now extract the posterior NGamma
parameters. From the exponent of τ we have a∗ = a + n

2 . From the term (µ − . . .)2 we have
m∗ = B

A = nx̄+mp
n+p and from the coefficient of this term we have p∗ = A = n+ p. This leaves only

b∗ =
1

2

(
C − B2

A

)
=

1

2

[
ns2 + nx̄2 + pm2 + 2b− 1

n+ p
(nx̄+mp)2

]
= b+

ns2

2
+

1

n+ p

[
(n+ p)nx̄2 + (n+ p)pm2 − n2x̄2 + 2mpnx̄−m2p2

]
= b+

ns2

2
+

1

n+ p

[
pnx̄2 + npm2 + 2mpnx̄

]
= b+

ns2

2
+

np

n+ p
(x̄−m)2,

which completes the proof. �

Example 4.5.3 Coming back to Example 4.2.4, regarding testing a speed camera, we can now
do a Bayesian update where both the mean and variance are unknown parameters.
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On the left we’ve taken an NGamma(30, 1
102 , 1,

1
5) prior. Note that p = 1

102 corresponds to
standard deviation = 10, so our prior is well spread out about its mean m = µ = 30 on the
µ-axis. The values chosen for a and b ensure that the prior is also well spread out on the τ -axis.
On the right we have the resulting NGamma(30.14, 10.01, 6.00, 1.24) posterior. These posterior
parameters were computing using Lemma 4.5.2 and with the same ten datapoints as in Example
4.2.4. As we would expect from Example 4.2.4, the mass of the posterior has focused close to
µ ≈ 30. The parameter τ has focused on a wide range of fairly large values, but remember that
τ = 1

σ2 so the range of likely values for the standard deviation σ will in fact be a small range of
small numbers.

Comparing the predictive densities gives:

Our new predictive distribution is still broadly similar to the manufacturers N(30, 0.16) claim,
but it now looks more spread out and the mean remains slightly higher than the manufacturers
claim. A point that might worry us is that our new predictive p.d.f. is not close to zero at 31mph,
whereas the manufacturer claims that it should be; our data suggests that the camera is more
likely to overestimate speeds than the manufacturer has claimed. We can’t reasonably say more
without statistical testing, which we’ll study in Chapter 7.

Think for a moment about how much numerical work has been done to produce a graph of the
predictive pdf here. According to (3.5), for each point x′ on the graph, to obtain fpred(x

′) we need
to integrate fN(µ, 1

τ
)(x

′)fNGamma(30.14,10.01,6.00,1.24)(µ, τ) with respect to both µ and τ , over a region
of R2 that includes the spike visible on the posterior density. Numerical integration over R2 is
expensive – doing it once is not very noticeable, but doing it repeatedly usually is. The graph was
made using 30 x-axis values and took 255 seconds to create, using scipy.integrate.dblquad
for the integration. If we had three unknown parameters then we would have to integrate in
R3, which is even worse. In fact, problems of this type with several parameters quickly become
computationally infeasible via direct numerical integration. They need a more subtle numerical
technique, which we’ll introduce in Chapter 8.
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4.6 The limitations of conjugate pairs

The main advantage of conjugate priors is that, when we can use them, Bayesian updates are
simple to perform. Their main disadvantage is that, in many cases, we cannot use them. This
can occur in two main ways:

• Our chosen model family does not have any conjugate priors.

• Our chosen model family does have conjugate priors, but there are no choices of prior pa-
rameters that result in a conjugate prior that matches our prior beliefs.

This case is particularly likely to happen if we use a prior based on expert opinions or on
earlier experimental work.

For that reason the modern approach to Bayesian learning largely relies on the computational
techniques introduced in Chapter 8.

Exercise 6.6 shows that mixtures of conjugate priors can be handled with similar ease to
conjugate priors. This can help if we need to manufacture a prior distribution to reflect particular
properties, but it only provides enough help in a small fraction of situations.
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4.7 Exercises on Chapter 4

You can find formulae for named distributions in Appendix A.

4.1 (a) Consider the Bayesian model (X,Θ) with model family Mθ ∼ N(θ, 22)⊗3 and prior?

Θ ∼ N(0, 1).

(i) Use Lemma 4.2.2 to find the posterior distribution given the data x = (3.88, 2.34, 7.86),
which satisfies

∑3
1 xi = 14.08.

(ii) Write down the probability density functions of the sampling and predictive distri-
butions given by this model for a single data point. Give your answers in the form∫
R fN(·,·)(·)fN(·,·)(·) d(·).

(b) Inside the files 2_dist_sketching.ipynb and 2_dist_sketching.Rmd, below the part
corresponding to Exercise 3.1, you will find code for sketching the sampling p.d.f. of the
Bayesian model (X,Θ) from Example 3.2.3, with model family Mθ ∼ Exp(λ) and prior
Λ ∼ Γ(2, 60). Modify the code given to sketch the sampling and predictive distributions
from (a), on the same graph.

4.2 Let α, β > 0. Let (X,Θ) be a discrete Bayesian model with model family Mθ ∼ Geometric(θ)⊗n? ?

and parameter θ ∈ [0, 1]. Suppose that the prior is Θ ∼ Beta(α, β) and let x = (x1, . . . , xn)

where xi ∈ {0, 1, . . . , }. Show that the posterior is

Θ|{X=x} ∼ Beta

(
α+ n, β +

n∑
i=1

xi

)
.

4.3 Let α, β > 0. Let (X,Θ) be a discrete Bayesian model with model family Mθ ∼ Poisson(θ)⊗n? ?

and parameter θ ∈ (0,∞). Suppose that the prior is Θ ∼ Gamma(α, β) and let x =

(x1, . . . , xn) where xi ∈ {0, 1, . . . , }. Show that the posterior is

Θ|{X=x} ∼ Gamma

(
α+

n∑
i=1

xi, β + n

)
.

4.4 Let µ ∈ R and α, β > 0. Let (X,T ) be a discrete Bayesian model with model family? ?

Mθ ∼ N(µ, 1τ )
⊗n and parameter τ ∈ (0,∞). Suppose that the prior is T ∼ Gamma(α, β)

and let x = (x1, . . . , xn) where xi ∈ (0,∞). Show that the posterior is

T |{X=x} ∼ Gamma

(
α+

n

2
, β +

1

2

n∑
i=1

(xi − µ)2

)
.

4.5 Using the model from Exercise 4.4, with µ = 0 and prior Gamma(2, 2), use a computer?

package of your choice to produce a graph of the prior and posterior density functions, given
the data

x = (0.22, −0.17, 1.22, −0.13, 0.05, 0.79, −0.45, −0.30, 0.09, −0.16).

This data satisfies
∑10

1 x2i = 2.53. Then, draw a second graph of the sampling and predictive
density functions for a single data point.
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4.6 Let u ∈ R. Let (X,Θ) be a continuous Bayesian model with model family Mθ ∼ N(θ, 22)⊗10

and parameter θ ∈ R. Suppose that the prior is Θ ∼ N(0, 22), and that we have data

x = (5.29, 1.20, 2.94, 6.72, 5.60, −2.93, 2.85, −0.45, −0.31, 1.23).

This data satisfies
∑10

1 xi = 133.19.

(a) Use Lemma 4.2.2 to find the posterior distribution Θ|{X=x}.?

(b) Using a computer package of your choice, implement the Bayesian update given by?

Lemma 4.2.2 with n = 1, and use it to perform 10 Bayesian update steps, one for each
xi, on the model (X ′,Θ) with model family Mθ ∼ N(θ, 2). Write down the resulting
posterior distribution.

(c) What do you notice? Investigate this as you vary the data and prior parameters. Would? ?

the same thing happen with the other families of conjugate pairs in this chapter?

4.7 Let a, b, k > 0. Let (X,Θ) be a discrete Bayesian model with model family Mθ ∼ Weibull(k, θ)⊗n? ?

and parameter θ ∈ (0,∞). Suppose that the prior is Θ ∼ Gamma(a, b) and let x =

(x1, . . . , xn) where xi ∈ {0, 1, . . . , }. Show that the posterior is

Θ|{X=x} ∼ Gamma

(
a+ n, b+

n∑
i=1

xki

)
.

4.8 Match each of Lemmas 4.1.5, 4.1.6, 4.2.1, 4.5.2 and Exercises 4.2, 4.3, 4.4, 4.7 to their?

corresponding rows on the reference sheet of conjugate pairs given in Appendix A

4.9 Recall the relation ∝ from Definition 4.1.1. Let f, g, h be functions with the same domain.?

Explain briefly why (a) f ∝ f ; (b) if f ∝ g then g ∝ f ; (c) if f ∝ g and g ∝ h then f ∝ h.

(�) Remark: These three properties are the definition of an equivalence relation.
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Chapter 5

The prior

We’ve spent most of our energy in Chapters 2-4 on understanding Bayesian models and performing
the Bayesian update step. In Chapter 4 we focused on techniques for choosing the prior in a way
that would make calculations straightforward to perform. In this chapter we maintain our focus
on the prior, but with the opposite goal. Our interest here is in choosing a prior that best reflects
a set of beliefs.

There are two parts to this chapter. Section 5.1 focuses on techniques for choosing a prior based
on the opinions on experts. We are interested to quantify these opinions, in order to combine
them with data, and we hope that by doing so we will produce more accurate results than could
be obtained from the data alone. Sections 5.2 and 5.3 are concerned with the opposite situation
where we want to focus solely on the data, and carry out our analysis with as few preconceptions
as is possible.

Neither of these situations gives conjugate priors, in general. Consequently they lead to
Bayesian updates that require computational methods, which we will study in Chapter 8. In
both cases we must continue to abide by Cromwell’s rule from Section 4.4: the chosen prior
should allow a non-zero probability for all parameter values that are physically possible.
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5.1 Elicitation

Elicitation is the process of extracting an individuals beliefs about some unknown quantity, and
representing those beliefs via probabilities. It is a difficult and inexact process. People often strug-
gle to turn their thoughts into probabilities and are susceptible to many different psychological
biases. There is no reason to expect that a single persons beliefs will be self-consistent. We will
discuss psychological biases in Section 5.1.1. For now let us focus on the process of elicitation.

The first question we need to answer is whose prior we actually want. For example, if we are
trying to determine the effectiveness of a drug, should we use the prior beliefs of the pharmaceutical
company, or perhaps the regulators, perhaps even the patients? As a general rule, the prior should
represent the beliefs held by the person(s) who decides what actions should be taken in response to
the statistical analysis. They should, ideally, be the same person(s) as will face the consequences
of a poor or incorrect decision. They are known as the elicitee for the duration of the process.

Eliciting probabilities

We have a limited capacity to think in terms of probabilities. For example, no elicitee can use
their personal experience to judge the difference between probability 0.5 and 0.5001. When
people are prepared to state the probability of some event exactly, it is usually based on some
sort of symmetry. For example most people will tell you that for a fair six sided dice we have
P[throw a 6] = 1

6 . In reality the probability is not exactly 1
6 , because the dice is not perfectly

symmetric, but it is close enough for most practical purposes.
Except for symmetrical cases, elicitees estimating probabilities will generally rely on a mixture

of their intuition and memory. We can help to understand their beliefs by choosing our questions
carefully. It is good practice to focus on quantities that are meaningful to the elicitee, which
usually means asking about quantities they have actually observed, or about relationships between
quantities that they have expert knowledge of. In a complex model we may have to avoid asking
directly about the parameters, because the elicitee may not understand what these parameters
represent, even though our goal is to choose a prior distribution.

Eliciting distributions

We now consider how to elicit a whole distribution. Whole distributions are complicated objects
and we can never claim that a certain distribution will perfectly represent someone’s beliefs about
an unknown quantity. The best we can hope for a is a reasonable representation.

We generally concentrate on two aspects of the distribution:

• Location represents the value, or range of values, where the unknown quantity is most likely
to be. It might be a guess for a mode, median or mean.

• Dispersal represents the level of certainty that the parameter falls within its most likely
range of values. It might be represented using a variance.

Non-statisticians will often have difficulty dealing directly with concepts like mode, median, mean
and variance. Instead of asking directly, a common strategy is to choose a family of distributions
and then elicit probabilities to determine appropriate parameters. We might start this process
by asking the elicitiee to draw the rough shape of the distribution representing their beliefs, and
choose a family able to reproduce that shape.
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It is usually easier to elicit estimates of location than it is to elicit estimates of dispersal. An
elicitee with a good understand of probability might be willing to specify percentiles directly, for
example to state values of q such that P[Θ ≤ q] = 0.95 and P[q ≤ Θ] = 0.95, but many people
will find this difficult, particularly for probabilities that are close to zero or one.

The following scheme is known as the bisection method. It focuses on events of equal probability
that (according to the elicitee) have a good chance of occurring. It seeks to elicit information
about a single unknown real parameter θ.

1. The elicitee is first asked to give a value m such that the events θ ∈ (−∞,m] and θ ∈ [m,∞)

are equally likely.

2. Next, the elicitee is asked to give a value l such that the events θ ∈ (−∞, l] and θ ∈ [l,m]

are equally likely.

3. Lastly, the elicitee is asked to give a value u such that the events θ ∈ [m,u] and θ ∈ [u,∞)

are equally likely.

In more statistical language, the elicitee provides their estimate for the 25th percentile l, the
median of 50th percentile m and the 75th percentile u. We could extend the process by splitting
up further into more intervals of equal probability, or by using other percentiles, but we should
be wary that increasing the complexity of the questions will also increase the risk that the elicitee
fails to communicate their beliefs accurately.

We use the quantities l,m, u obtained to deduce the parameters, within our chosen family of
possible prior distributions. It is helpful that we tend to have three quantities and (for named
distributions) only one or two parameters, because this allows us to check up on how well we have
represented the individuals prior beliefs.

Example 5.1.1 Suppose that we have carried out the bisection method and obtained m =

0.7, l = 0.5, u = 0.8, and the elicitee has sketched a distribution for a parameter θ ∈ [0, 1]

that looks like this:

We decide to try and represent this information with a Beta(α, β) distribution. We solve the
equations

P[Beta(α, β) ≤ 0.3] = 0.25, P[Beta(α, β) ≥ 0.8] = 0.25

numerically to obtain α = 3.04 and β = 1.71. The median of the Beta(3.04, 1.71) distribution is
0.66, also obtained numerically. This is close to the elicitees value for m = 0.7. The distribution
we have obtained is:
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It is a reasonable match for what the elicitee has drawn. It also accounts for Cromwell’s rule by
putting a small amount of probability on θ close to zero, which the elicitee did not think possible.

As part of the elicitation process we usually need to decide how strongly the prior should
focus the values taken by θ into a particular region. A prior that strongly focuses θ on one (or
occasionally more) small regions is known as a strongly informative prior. A prior that does not is
generally known as a weakly informative prior. These are not mathematical definitions but they
are very commonly used terms. You will often see them shortened to simply ‘strong’ and ‘weak’.
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5.1.1 Psychological biases

People often take decisions using heuristics, which are shortcuts that are used to make quick and
effective guesses. For example people will often assume that a more expensive product will be
of better quality, and may base their purchasing decisions partly on this idea; it is often, but
not always, true. These sorts of heuristics can introduce biases into the elicitation process, when
heuristics struggle to capture the reality of a complex situation. Some pitfalls to be aware of
during elicitation:

1. Availability bias. This is where an elicitee overestimates the probability of an event because
it is easy to remember (or notice) that event, or because it has recently occurred.

For example, after hearing news of a plane crash, people are more susceptible to overestimate
the frequency of plane crashes.

2. Anchoring. This is where an elicitee relies too heavily on a single piece of information.

3. Hindsight bias. This is when an elicitee falsely believes that they would have predicted an
event, after that event has happened. This behaviour risks underestimating the probabilities
of other outcomes.

4. Overconfidence. This is the tendency to give too much probability to events that are
believed to be likely, and consequently underestimate the probability of unlikely events.

For example, in many studies where people were asked to provide 95% intervals for various
unknown quantities, the true value lay outside of the estimated intervals as much as 20-30%
of the time.

There are many other ways in which the heuristics we rely on in everyday life can lead to errors
and biases. It is never possible to eradicate them all, but it is clear that experience and training
in making probabilistic statements, as well as making elicitees aware of potential sources of bias,
tends to result in more accurate estimation.
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5.2 Uninformative priors

If we are able to construct a prior distribution based on the opinions of experts, or on earlier
research, then it will often be helpful to do so. It is not always possible, particularly if we are
dealing with a situation in which very little is known, or if (for whatever reason) we wish to test
how well expert opinions agree with the available data. In this section we discuss how to choose
a prior that contains little presumption about what the best parameter values are. The general
term for such priors is uninformative. Let us detail some approaches based on this idea.

Approach 1: uniform priors. Often, the best trick available here is the most obvious one.
If the parameter space Π is a finite interval (for each parameter) then we can simply choose the
uniform distribution. This makes our random choice Θ of the parameter equally likely to be
anywhere within the parameter space Π. It is sometimes known as the ‘principle of indifference’,
a term introduced by the economist Maynard Keynes in 1921.

There is a distinction to make here between the concepts of ‘no preference’ and ‘equal preference
for all outcomes’. We will argue in Section 5.2.1 that the latter perspective is more helpful.

Approach 2: improper priors. If the parameter space is an infinite interval, we cannot
choose the uniform distribution, because there is no uniform distribution on an infinite interval!
See Exercise 5.6. We need a new definition to understand this situation.

Definition 5.2.1 Let Π ⊆ Rd be the parameter space of a Bayesian model. A function f : Π →
[0,∞) such that

∫
Π f(x) dx = ∞ is known as an improper prior, or more strictly an improper

prior density function.

We use the term proper prior density function for the probability density functions of random
variables that we could use for the prior. Note that if

∫
Π f(x) dx < ∞ then we can define

f̃(x) = 1∫
Π
f(y) dy

f(x) and then f̃ is a proper prior density function with f ∝ f̃ . Definition 5.2.1
captures the situation that we cannot turn f into a proper prior by including a normalizing
constant. We use the same proper vs. improper terminology for posterior density functions, and
for density functions in general.

For example, the functions

g(θ) =

{
1 for θ ∈ [0,∞),

0 otherwise,
and h(θ) =

{
1
θ for θ ∈ (0, 1],

0 otherwise,

are both improper density functions. You can check that
∫
R g(θ) dθ =

∫
R h(θ) dθ = ∞.

When Π is an infinite interval, a common approach is to use an improper prior fΘ(θ) and use
Bayes rule anyway, in which case we obtain

fΘ|{X=x}(θ) ∝ LMθ
(x)fΘ(θ)

as usual. There are good theoretical reasons for doing so but they are beyond what we can cover
in this course. We will still refer to Theorems 2.4.1 and 3.1.2 for these cases.

If
∫
Π LMθ

(x)fΘ(θ) dθ is finite then we can normalize to obtain f̃Θ|{X=x}(θ), which is still a
p.d.f. corresponding to some random variable, and we can use that as our posterior. That situation
does happen, but it is also possible that

∫
Π LMθ

(x)fΘ(θ) dθ = ∞. In this case we could take our
improper posterior and use it as another improper prior in a future Bayesian update, and so on
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– but if we do not eventually reach a proper posterior density function (after some number of
Bayesian update steps) then we will find it difficult to interpret the results of our analysis.

Approach 3: use a weak prior. To avoid getting involved with improper priors, a common
technique is to choose a weak (but proper) prior distribution that is very well spread out across
all plausible regions of the parameter space. We did this in Example 4.2.4, where we took Θ ∼
N(30, 52) a normal distribution with a variance so large that it contained very little information
about where the value of Θ ≈ 30 would be. A prior with infinite variance, such as the Cauchy
distribution, is also an effective way to implement this idea. Note, however, that in many cases
choosing a prior with this property will take us outside of the conjugate pairs from Chapter 4,
and when that happens we will have to use numerical techniques (to be introduced in Chapter 8)
to perform the Bayesian updates.

5.2.1 The philosophy of not knowing anything

Various philosophical arguments have been explored to try and make sense of the idea that a
particular choice of prior corresponds to ‘knowing nothing’. For example, consider the following
argument:

A uniform prior Θ ∼ Uniform(0, 1) supposedly contains no preference for any value of
θ ∈ (0, 1), but if we use a different parametrization of our model family, say λ = θ2

then our prior becomes Λ = Θ2 with p.d.f.

fΛ(λ) =

 1
2
√
λ

for λ ∈ (0, 1)

0 otherwise,

and this is biased towards smaller values in [0, 1]. If a prior really corresponds to having
no preference for any value, then re-parametrization should not change that fact.

This argument is non-mathematical and exploits the fact that its reader has no clear understanding
of what ‘no preference’ means. If we consider more aggressive re-parametrizations too, say λ = θN

for large N , then it doesn’t really matter what continuous prior we start with, if Λ ∈ [0, 1] then
samples of Λ = ΘN will mostly be very close to zero i.e. nearly deterministic.

What we should take away from this is that Approach 1 and Approach 3 (from Section 5.2)
are actually very similar. A slight re-parametrization of our model family will turn one approach
into the other, and if we have no strong feeling about which prior is best then we won’t have a
strong feeling for which parametrization is best either. This is fine – re-parametrizing our model
family slightly won’t change the outcomes of our analysis much either.
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I suggest using the (philosophical) viewpoint that the concept of ‘no preference’ does not really
exist. The only way to genuinely have no preference about something is to never have thought
about it; as soon as you think about it you immediately have a preference, including when that
preference is to prefer all outcomes equally.

You will sometimes find that people use ‘no preference’ as a way of disowning (a share of)
responsibility for which outcome actually happens. Doing that is a matter of morals and ethics;
it will not help us choose an uninformative prior.

Remark 5.2.2 (�) To give a mathematical treatment of the argument above, the concept of en-
tropy becomes important. Loosely, entropy measures how different one distribution is to another,
but it is only well-defined as a relative concept – of one distribution to another. The argument
above fails to account for the fact that all entropy is a relative entropy; we can make sense of the
difference between two sets of preferences, and some preferences are stronger than others, but the
concept of ‘no preference’ does not really exist.

The terminology is unfortunately clouded by the fact that the term ‘entropy’ is widely used as
a shorthand for the relative entropy to the uniform distribution on an interval of R (or uniform
measure, more generally).
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5.3 Reference priors

An interesting response to the argument in Section 5.2.1 was given by the statistician Harold
Jeffreys in 1946. It leads to a particular suggestion for the choice of prior. Suppose that two
different people, Alice and Bob, construct a Bayesian model, with one parameter. Alice uses the
model family (Mθ)θ∈Π and Bob use the model family (Mϕ)ϕ∈Π, where θ and ϕ are related by
some function h(θ) = ϕ, where h : Π → Π with Π ⊆ R and h is strictly monotone increasing and
differentiable. That is, they use the ‘same’ model family, but parametrize it differently.

Alice will choose a prior p.d.f. f1 and Bob will choose a prior p.d.f. f2. This means that Alice
constructs a model with sampling distribution

fX1
(x) =

∫
Π
fMθ

(x)f1(θ) dθ

and Bob constructs a model with sampling distribution

fX2
(x) =

∫
Π
fMh(θ)

(x)f2(θ) dθ.

Alice and Bob have never met each other, and in fact they do not even know that each other
exists. Neither of them knows the function h.

This is where we come in. We write the statistics textbook, that both Alice and Bob will both
read. They will choose their prior based on our instructions – the same instructions, for both
people. Can we provide Alice and Bob with a way to choose their individual priors that will make
their models equal i.e. so that fX1

(x) = fX2
(x)?

Remark 5.3.1 If Alice and Bob did meet each other, then Alice could tell Bob what her prior
Θ was and by comparing notes they could work out the function h. Bob could then choose his
prior to be the p.d.f. of h(Θ), where Θ is Alice’s prior. This choice makes fX1

(x) = fX2
(x), see

Exercise 5.7.

Returning to the situation where Alice and Bob do not meet, the surprising answer to the
problem is: yes, this is possible. The solution is that we should tell them both to use the prior

f(θ) ∝ E

[(
d

dλ
log(LMλ

(X))

)2
]1/2

where (Mλ) is their chosen model family and X ∼ Mλ.

(5.1)
Let us not worry about how Jeffreys found this solution, and let us just show that it really works.

Proof that the solution works: (�) Alice writes down her prior f1(θ) ∝ E[( d
dθ log(LMθ

(X)))2]1/2

and Bob writes down his prior, f2(ϕ) ∝ E[( d
dϕ log(LMϕ

(X)))2]1/2. Then Alice’s model is

fX1
(x) ∝

∫
Π
fMθ

(x)f1(θ) dθ.

Alice doesn’t know the function h, but substituting θ = h(λ), her model is equal to

fX1
(x) ∝

∫
Π
fMh(λ)

(x)f1(h(λ))h
′(λ) dλ

∝
∫
Π
fMh(λ)

(x)f1(h(λ))h
′(λ) dλ
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∝
∫
Π
fMh(θ)

(x)f1(h(θ))h
′(θ) dθ.

In the last line we have simply changed notation by replacing λs with θs. Meanwhile, Bob’s model
is equal to

fX1
(x) ∝

∫
Π
fMh(θ)

(x)f2(θ) dθ.

It follows that fX1
(x) = fX2

(x) if we have f2(θ) ∝ f1(h(θ))h
′(θ). We will now show that this

equation holds, for any strictly monotone function h. Bob’s parameter is ϕ = h(θ), so we have

f2(θ)
2 ∝ E

[(
d

dϕ
log(LMϕ

(X))

)2
]

∝ E

[(
d

dθ
log(LMϕ

(X))× dϕ

dθ

)2
]

∝ E

[(
d

dθ
log(LMh(θ)

(X))× h′(θ)

)2
]

= f1(h(θ))
2h′(θ)2.

To reach the second line we use the chain rule. Taking square roots, we obtain that fX1
(x) =

fX2
(x) as required. �

In the earlier half of the 20th the argument in Section 5.2.1 was taken quite seriously, and treated
as a major philosophical reason to question the reliability of Bayesian statistics. In particular,
the objection was that if both Alice and Bob tried to use the same uninformative prior but used
models that were parametrized differently then they would obtain different results, despite having
the same intentions and, from their own perspectives, the same methodology. Jeffreys showed
that this difficulty could be entirely avoided with a particular choice of prior.

These arguments took place before modern computers, when it was difficult to test how well
Bayesian methods worked in practice (except for conjugate priors). We are now better able to test
how much different modelling errors matter. Statisticians today no longer attach much weight to
this objection.

Starting from the ideas above and those in Remark 5.2.2, there is a modern branch of statistics
that investigates uninformative priors with particular theoretical properties. A modern approach
is to use a prior that tries to maximise the difference (in some sense) between the prior and
posterior distribution, essentially seeking to maximise the influence of the data. Priors with this
property are known as reference priors. Their theory is beyond what we can cover here, but it
turns out that if we have only one parameter and we model our data as i.i.d. samples then the
reference prior is the same as the prior proposed by Jeffreys – in more complicated cases, they
are different. Let us investigate what the reference prior looks like for some particular choices of
one-parameter model.

Definition 5.3.2 Suppose that (Mθ) is a family of distributions with parameter space Π ⊆ R.
The reference prior Θ associated (Mθ) has density function given by

fΘ(θ) ∝ E

[(
d

dθ
log(LMθ

(X))

)2
]1/2

(5.2)
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∝ E
[
− d2

dθ2
log(LMθ

(X))

]1/2
. (5.3)

where X ∼ Mθ. Both forms (5.2) and (5.3) are included on the reference sheets in Appendix A.
Equation (5.3) is often easier to work with because it does not include a (·)2 term.

There are some caveats to this definition. The reference prior might be an improper prior, or
if the expectation in (5.2)/(5.3) is not finite then the reference prior may not exist.

Remark 5.3.3 (�) Equations (5.2) and (5.3) are equivalent. To deduce (5.3) from (5.2), use
the partial differentiation identity ∂2

∂θ2 log f(x, θ) = 1
f(x,θ)

∂2

∂θ2 f(x, θ) −
(

∂
∂θ log f(x, θ)

)2 and that
E
[

1
f(X;θ)

∂2

∂θ2 f(X, θ)
∣∣ θ] = ∂2

∂θ2

∫
R f(x, θ) dx = 0. We omit the details.

Example 5.3.4 For the Bernoulli model family (Mp)p∈[0,1] where Mp ∼ Bernoulli(p), the likeli-
hood is

LMp
(x) =


p for x = 0 and p ∈ [0, 1]

1− p for x = 1 and p ∈ [0, 1]

0 otherwise

=

{
px(1− p)1−x for p ∈ [0, 1]

0 otherwise

for x ∈ {0, 1}. For the non-zero case, d
dp log(LMp

(x)) = d
dp(x log p+ (1− x) log(1− p)) = x

p −
1−x
1−p

and so
d2

dp2
log(LMp

)(x) =
−p

x2
− 1− x

(1− p)2
.

Hence, from (5.3), for p ∈ [0, 1] the density function of the reference prior P is given by

fP (p) ∝ E
[
− d2

dp2
log(LMp

(X))

]1/2
∝ E

[
X

p2
+

1−X

(1− p)2

]1/2
∝
(
E[X]

p2
+

1− E[X]

(1− p)2

)1/2

∝
(

p

p2
+

1− p

(1− p)2

)1/2

∝
(
1

p
+

1

1− p

)1/2

∝ p−1/2(1− p)−1/2.

Using Lemma 1.2.5 we recognize that P ∼ Beta(12 ,
1
2).

A useful fact is that the reference prior for Mθ and M⊗n
θ are identical, in the sense that they

are ∝ to each other. This is shown in Exercise 5.8.

74



©Nic Freeman, University of Sheffield, 2025.

5.4 Exercises on Chapter 5

5.1 (a) Let X be the age in years of a person sampled uniformly at random from the UK?

population. Write down your best guess at P[X ≥ x] for the values

x = 10, 20, 30, 40, 50, 60, 70, 80, 90.

(b) Sketch the distribution that you obtained in (a) as a histogram, of P[X = x] for the
values of x above. Does the histogram accurately represent your prior beliefs about the
UK population? If not, make changes until you think it does.

(c) In the solutions to this question you will find a table of these statistics, obtained in the
UK Census 2021. For each value of x, calculate the value of your estimate

census value (for example, if
this value is 2, your estimate was twice the true value). For which values of x was your
prior distribution least accurate?

5.2 Let τ denote the maximum temperature that will occur outdoors in Sheffield tomorrow.? ?

(a) Sketch your prior density for τ .
(b) (i) Perform the bisection method on yourself (or do this question with a friend) to elicit

your 50th, 25th and 75th percentiles for τ . Use the 25th and 75th percentiles to
construct a Normal distribution N(µ, σ2) representing your beliefs. How close is µ

to your 50th percentile?
To help with this, the code used in Example 5.1.1 can be found within 5_elicitation_
example.ipynb and 5_elicitation_example.Rmd.

(ii) Without using your answer to (i), write down your estimation of the 5th and 95th
percentiles for τ .

(iii) Compare your answers to (ii) to the implied probabilities of the distribution you
found in (i). Is the Gaussian distribution a good fit for you beliefs?

(c) Repeat part (b) using the Cauchy distribution instead of the Normal distribution.
Which family of distributions better fits your beliefs?

5.3 Let (Mλ)λ∈(0,∞) be the Poisson model family, in which Mλ ∼ Poisson(λ). Show that the? ?

reference prior of this model family is given by

fΛ(λ) ∝

{
λ−1/2 for λ > 0

0 otherwise.

Does this define a proper prior or an improper prior?

5.4 We will model the monthly occurrence of fires within a nameless small town using the? ?

Poisson(λ) model family. As very little is known prior to the data collection, we will use the
reference prior Λ obtained in Exercise 5.3.

The number of fires recorded during the past 12 months is x = (x1, . . . , x12) ∈ {0, 1, . . . , }12.

(a) Suppose that x = (0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0). Find and sketch the distribution of the
posterior Λ|{X=x}.

(b) Show that Λ|{X=x} is a proper distribution for all possible values of x.
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5.5 Let (X,Θ) be a Bayesian model with model family Mθ ∼ Uniform(0, θ), the continuous? ?

uniform distribution on (0, θ).

(a) Given the prior Θ ∼ Exp(1), find the posterior density function fΘ|{X=x}(θ).
You should discover that fΘ|{X=x}(θ) = 0 for θ < x. Can you explain (without reference
to your calculations) why this has happened?

(b) Instead, let us now use the prior Θ ∼ Uniform(1, 2), and suppose that our data is x = 3.
Is the posterior distribution well defined? What has gone wrong here?

5.6 We say that a random variable U is uniformly distributed on an interval I if, for all a < b and? ? ?

c > 0 such that both [a, b] ⊆ I and [a+c, b+c] ⊆ I, we have P[U ∈ [a, b]] = P[U ∈ [a+c, b+c]].

Show that there is no random variable U that is uniformly distributed on [0,∞).

5.7 Prove the claim in Remark 5.3.1. You should start by finding an expression for the p.d.f. of? ? ?

h(Θ), where Θ has p.d.f. f1.

5.8 Let (Mθ) be a family of distributions and let n ∈ N. Let fMθ
(θ) denote its reference prior and? ? ?

let fM⊗n
θ

(θ) denote the reference prior of the family (M⊗n
θ ). Show that fMθ

(θ) ∝ fM⊗n
θ

(θ).
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Chapter 6

Discussion

We have now understood enough about Bayesian inference to discuss how it compares to other
techniques. We will do so in Section 6.2. We first give an outline of the various different notations
that are used for the Bayesian framework, most of which are more condensed than the notation
we have used in Chapters 1-5.
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6.1 Bayesian shorthand notation

Recall that for a random variable Y we define the likelihood function LY by

LY (y) =

{
pY (y) where pY is the p.m.f. and Y is discrete,
fY (y) where fY is the p.d.f. and Y is continuous.

(6.1)

We continue with our convention of denoting probability density functions by f and probability
mass functions by p.

This notation allows us to write the key equation from Theorems 2.4.1 and 3.1.2, for the
distribution of the posterior, in a single form. If (X,Θ) is a (discrete or continuous) Bayesian
model, where Θ is a continuous random variable with p.d.f. fΘ(θ), and the model family (Mθ)

has likelihood function LMθ
, then the posterior distribution of Θ given the data x has p.d.f.

fΘ|{X=x}(θ) =
LMθ

(x)fΘ(θ)

LX(x)
(6.2)

where Z = LX(x) is the normalizing constant, or equivalently fΘ|{X=x}(θ) ∝ LMθ
(x)fΘ(θ). In

both Sections 2.2 and 3.1 we noted that Mθ
d
= X|{Θ=θ}, which leads to

fΘ|{X=x}(θ) ∝ LX|{Θ=θ}(x)fΘ(θ). (6.3)

The term LX|{Θ=θ}(X) is often known as the likelihood function of the Bayesian model and equa-
tion 6.2 is yet another version of Bayes’ rule. It is the most general version of the Bayes’ rule that
we will encounter within this course, and it is the basis for most practical applications of Bayesian
inference.

Some textbooks, and many practitioners, prefer to use a more condensed notation for equations
(6.2) and (6.3). They write simply f(y) for the likelihood function of Y , and f(x) for the likelihood
function of X. Conditioning is written as f(y|x) for the likelihood function of Y given the event
{X = x}. This notation requires that we must only ever write x for samples of X and y for
samples of Y , or else we would not be able to infer which random variables were involved. In this
notation (6.2) becomes

f(θ|x) = f(x|θ)f(θ)
f(x)

, (6.4)

which is easy to remember! It bears a close similarly to P[A|B] = P[B|A]P[B]
P[A] , which is Bayes’

rule for events. Note that in (6.4) the ‘function’ f is really representing four different functions,
dependent upon which variable(s) are fed into it – that part of the notation can easily become
awkward and/or confusing if you are not familiar with it.

There are many variations on the notation in (6.4).

1. Some textbooks prefer to denote likelihood by p(·) instead of f(·), giving p(θ|x) = p(x|θ)p(θ)
p(x) .

Some use a different symbol for likelihood functions connected to Θ and those connected to
X, for example p(θ|X) = l(x|θ)p(θ)

l(x) where p denotes prior and posterior and l denotes the
likelihood of the model family.

2. Sometimes the likelihood is omitted entirely, by writing e.g. θ|x to denote the distribution
of the posterior Θ|{X=x}. Here lower case letters are used to blur the distinction between
random variables and data. For example, you might see a Bayesian model with Binomial
model family and a Beta prior defined by writing simply θ ∼ Beta(a, b) and x|θ ∼ Bin(n, θ).
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3. Some textbooks use subscripts to indicate which random variables are conditioned on, as we
have done, but in a slightly different way e.g. fX|Y (x, y) instead of fX|{Y =y}(x).

In this course we refer to all these various notations as Bayesian shorthand, or simply shorthand.
Using shorthand can make Bayesian statistics very confusing to learn, so we have avoided it so

far within this course. We will sometimes use it from now on, when it is convenient and clear in
meaning. This includes several of the exercises at the end of this chapter. For those of you taking
MAS61006, Bayesian shorthand will be used extensively in the second semester of your course.
Hopefully, by that point you will be familiar enough with the underlying theory that they will
save you time rather than cause confusion.

Remark 6.1.1 You should write your answers to questions in the same style of notation as the
question uses, unless you are explicitly asked to do otherwise.
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6.1.1 A technical remark

Remark 6.1.2 (�) The underlying reason for most of the troubles with notation is that, from a
purely mathematical point of view, there is no need to restrict to the two special cases of discrete
and continuous distributions. It is more natural to think of both Theorems 2.4.1 and 3.1.2 as
statements of the form ‘we start with a distribution (the prior) and we perform an operation to turn
it into another distribution (the posterior)’. The operation involved here (the Bayesian update)
can be made sense of in a consistent way for all distributions, but it requires the disintegration
theorem which takes some time to understand.

At present, the strategy chosen by most statisticians is to simply not study disintegration. This
is partly for historical reasons. It was clear how to do the continuous case several decades before the
disintegration theorem was proved, and the discrete case was understood two centuries before that.
Based on these two special cases statisticians developed the idea of a likelihood function, split into
two cases as in (6.1). The use of likelihood functions then became well established within statistics,
before disintegrations of general distributions were understood by mathematicians. Consequently
statistics generally restricts itself to the discrete and continuous cases that we have described in
this course.

There are advantages and disadvantages to this choice. It still gives us enough flexibility to
write down most of the Bayesian models that we might want to use in data analysis – although
we would struggle to handle a model family that uses e.g. the random variable of mixed type in
Exercise 1.2. Very occasionally it makes things actually go wrong, as we noted in Remark 3.1.3.
The main downside is that we often have to treat the discrete and continuous separately, as we did
in Chapters 2 and 3. That consumes a bit of time and it leaves us with a weaker understanding
of what is going on.
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6.2 The connection to maximum likelihood

You have already seen maximum likelihood based methods for parameter inference in previous
courses. They rely on the idea that, if we wish to estimate the parameter θ, we can use that value

θ̂ = arg max
θ∈Π

LMθ
(x) (6.5)

Here (Mθ) is a family of models and x is data, and we believe that for some value(s) of the
parameter the model Mθ is reasonably similar to whatever physical process generated our data.

The value of θ̂, which is usually uniquely specified by (6.5), is known as the maximum likeli-
hood estimator of θ, given the data x and model family (Mθ). Graphically, it is the value of θ
corresponding to the highest point on the graph θ 7→ LMθ

(x). Heuristically, it is the value of θ
that produces a model Mθ that has the highest probability (within our chosen model family) to
generate the data that we actually saw.

Recall that, for a discrete random variable Y , the mode is most likely single value for Y to
take, or arg maxy∈ RY

P[Y = y] in symbols. You may be familiar with the following definition
already, but we are about to need it, so we recall:

Definition 6.2.1 Let Y be a continuous random variable with range RY . The mode of Y is the
value y ∈ RY that maximises the p.d.f. fY (y), given by arg maxy∈RY

fY (x).

Example 6.2.2 For continuous random variables, P[Y = y] = 0 for all y. The idea here is that in
this case the concept of ‘most likely value’ is best represented by the maximum of the probability
density function. Let Y ∼ Gamma(3, 4), with p.d.f.

fY (y) =

{
32y2e−3y for y > 0,

0 otherwise.

The mode is shown at its value y = 1
2 . This value can be found by solving the equation

dfY (y)
dy = 32

(
2ye−4y + y2(−4e−4y)

)
= 32ye−4y(2− 4y) = 0 and checking that the solution y = 1

2

corresponds to a local maxima.
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From Bayes’ rule we have
fΘ|{X=x}(θ) ∝ LMθ

(x)fΘ(θ).

Comparing this equation to (6.3), we can extract a clear connection between MLEs and Bayesian
inference. More precisely, the MLE approach can be viewed as a simplification of the Bayesian
approach. There are two steps to this simplification:

1. Fix the prior to be a uniform distribution (or an improper flat prior, if necessary).

With this choice, for θ ∈ Π we obtain the posterior density

fΘ|{X=x}(θ) ∝ LMθ
(x). (6.6)

2. Then, instead of considering the posterior distribution as a random variable, we approximate
the posterior distribution with a point estimate: its mode.

Comparing (6.6) to (6.5), this mode is precisely the maximum likelihood estimator θ̂.

In principle we might make either one of these simplifications without the other one, but they
are commonly made together. When they are made together the methods (based on MLEs) that
result are often known as ‘frequentist’ or ‘classical’ methods. We are now able to discuss how the
two approaches compare:

• We’ve seen in many examples that, as the amount of data that we have grows, the posterior
distribution tends to become more and more concentrated around a single value. In such
a case, the MLE becomes a very good approximation for the posterior. This situation is
common when we have plenty of data – see Section 6.2.1 for a more rigorous (but off-syllabus)
discussion.

• If we do not have lots of data then the approximation in step 2 will be less precise and the
influence of the prior will matter. In this case a well chosen prior can lead to significantly
more accurate analysis.

• MLE methods produce a point estimate for the known parameters, which is easier to commu-
nicate but is also more open to misinterpretation. We will discuss these issues in more detail
in Section 7.4, once we have seen the Bayesian version of hypothesis testing and interval
estimates.

• If our model is not a reasonable reflection of reality, or if having more data does not help
us infer parameters more accurately, then both methods become unreliable – no matter how
much data we have.

You will sometimes find that statisticians describe themselves as ‘Bayesian’ or ‘frequentist’,
carrying the implication that they prefer to use one family of methods over the other. This may
come from greater experience with one set of methods or from a preference due to the specifics of
a particular model.

To a great extent this distinction is historical. During the middle of the 20th century MLE
based methods dominated statistics, because they could be implemented for complex models
without the need for modern computers. Once it was realized that modern computers made
Bayesian methods possible, the community that investigated these techniques needed a name
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and an identity, to distinguish itself as something new. The concept of identifying as ‘Bayesian’
or ‘frequentist’ is essentially a relic of that social process, rather than anything with a clear
mathematical foundation.

Modern statistics makes use of both posterior distributions and (MLE or otherwise) simplifi-
cations of the posterior distribution. Sometimes it mixes the two approaches together, or chooses
between them for model-specific reasons. We do need to divide things up in order to learn them,
so will only study Bayesian models within this course – but in general you should maintain an
understanding of other approaches too.
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6.2.1 Making the connection precise (�)

Several theorems are known which actually prove, under wide ranging conditions, that when we
have plenty of data the MLE and Bayesian approaches become essentially equivalent. These
theorems are complicated to state, but let us give a brief explanation of what is known here.

Take a model family (Mθ)θ∈Π and define a Bayesian model (X,Θ) with model family M⊗n
θ .

This model family represents n i.i.d. samples from Mθ. Fix some value θ∗ ∈ Π, which we think
of as the true value of the parameter θ. Let x be a sample from M⊗n

θ∗ . We write the posterior
Θ|{X=x} as usual.

Let θ̂ be the MLE associated to the model family M⊗n
θ given the data x, that is θ̂ =

arg maxθ∈Π LM⊗n
θ

(x). Then as n → ∞ it holds that

Θ|{X=x}
d
≈ N

(
θ∗,

1

n
I(θ∗)−1

)
(6.7)

where I(θ) is the Fisher information matrix defined by I(θ)ij = E[ ∂2

∂θiθj
log fM⊗n

θ
(X)]. The key

point is that (6.7) says that the posterior Θ|{X=x} and the MLE θ∗ are in fact very similar, for
large n, because of the factor 1

n in the variance.
Equation (6.7) is known as Laplace approximation. The mathematically precise form of this

approximation, which replaces d
≈ in (6.7) by the concept of convergence is distribution, is known

as the Bernstein von-Mises theorem. The first rigorous proof was given by Doob in 1949 for the
special case of finite sample spaces. It has since been extended under more general assumptions,
notably to cover countable state spaces, but the general case (and whatever conditions it may
need) is still unknown. From these results we do know that various conditions are required for
(6.7) to hold. We can also identify cases in which (6.7) will fail: for example if Mθ ∼ Cauchy(θ, 1)
then all of the terms in I(θ) will be undefined.
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6.3 Exercises on Chapter 6

6.1 Show that the mode of the Gamma(α, β) distribution is α−1
β , where α ≥ 1. What about?

α ∈ (0, 1)?

6.2 The following equations, written in Bayesian shorthand, are the key conclusions from results? ?

in earlier chapters of these notes. Which results are they from?

(a) f(x|y) = f(y,x)
f(y) .

(b) If θ ∼ Beta(α, β) and x|θ ∼ Bernoulli(θ)⊗n then θ|x ∼ Beta(α + k, β + n − k), where
x = (xi)

n
1 and k =

∑n
1 xi.

Write the following results in Bayesian shorthand, using similar notation to that in parts (a)
and (b).

(c) Lemma 4.2.1.

(d) From Section 4.5, the two facts above Lemma 4.5.2 concerning marginal and conditional
distributions of the NGamma distribution.

6.3 The following results are written in Bayesian shorthand.? ?

(a) If x ∼ N(0, 1) then x|{x > 0} ∼ |x|.

(b) If x and y are independent then x|y ∼ x.

In each case, write a version of the results in precise mathematical notation. Which parts of
Chapter 1 are they closely related to?

6.4 Suppose that we model x|θ ∼ NegBin(m, θ)⊗n, where m ∈ N is fixed and θ ∈ (0, 1) is an? ?

unknown parameter.

(a) Show that f(x|θ) ∝ θmn(1− θ)
∑n

1 xi .

(b) Show that the prior θ ∼ Beta(α, β) is conjugate to NegBin(m, θ)⊗n, and find the pos-
terior parameters.

(c) (i) Show that the reference prior for θ is given by f(θ) ∝ θ−1(1− θ)−1/2.
(ii) Does f(θ) define a proper distribution?
(iii) Find the posterior density f(θ|x) arising from this prior.

Hint: The setup given is a Bayesian model with model family Mθ ∼ NegBin(m, θ)⊗n.

6.5 Suppose that we model x|µ, τ ∼ N(µ, 1τ )
⊗n, where both µ and τ are unknown parameters.

We use the improper prior f(µ, τ) ∝ 1
τ for τ > 0, and f(τ) = 0 elsewhere.

(a) Show that for µ ∈ R and τ > 0 the posterior distribution satisfies? ?

f(µ, τ |x) ∝ τ
n

2
−1 exp

(
−τ

2

n∑
i=1

(xi − µ)2

)
.

(b) Find the marginal p.d.f of τ |x. Show that (µ, τ)|x is a proper distribution if and only? ? ?

if n ≥ 2.
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Hint: The setup given is a Bayesian model with model family Mµ,τ ∼ N(µ, 1τ )
⊗n. For part

(b) use the sample-mean-variance identity (4.10).

6.6 Let (Mθ)θ∈Π be a continuous family of distributions. For i = 1, 2, let Θi be a continuous? ?

random variable with p.d.f. fΘi
, both taking values in Rd. Let α, β ∈ (0, 1) be such that

α+ β = 1.

(a) Show that fΘ(θ) = αfΘ1
(θ) + βfΘ2

(θ) is a probability density function.

(b) Consider Bayesian models (X1,Θ1) and (X2,Θ2), with the same model family (Mθ) and
different prior distributions. Consider also a third Bayesian model (X,Θ) with model
family (Mθ) and prior Θ with p.d.f. fΘ(θ) = αfΘ1

(θ) + βfΘ2
(θ).

Show that the posterior distributions of these three models satisfy

fΘ|{X=x}(θ) = α′fΘ1|{X1=x}(θ) + β′fΘ2|{X2=x}(θ)

where α′ = αZ1

αZ1+βZ2
and β′ = βZ2

αZ1+βZ2
. Here Z1 and Z2 are the normalizing constants

given in Theorem 3.1.2 for the posterior distributions of (X1,Θ1) and (X2,Θ2).

(c) Outline briefly how to modify your argument in (c) to also cover the case of discrete
Bayesian models.

6.7 This question explores the idea in Exercise 4.6 further, but except for (a)(ii) it does not? ? ?

depend on having completed that exercise.

(a) Let (Mθ) be a discrete or absolutely continuous family with range R. Let (X,Θ) be a
Bayesian model with model family M⊗n

θ . Let x ∈ Rn and write x(1) = (x1, . . . , xn1
),

x(2) = (xn1+1, . . . , xn). Let (X1,Θ) and (X2,Θ|{X1=x(1)}) be Bayesian models with
model families M⊗n1

θ and M⊗n2

θ , where n1 + n2 = n.

(i) Show that
(Θ1|{X1=x(1)})|{X2=x(2)}

d
= Θ|{X=x}.

Use likelihood functions to write your argument in a way that covers both the
discrete and absolutely continuous cases.

(ii) What is the connection between this fact and Exercise 4.6?

(b) Rewrite your solution to (a)(i) in a Bayesian shorthand notation of your choice.
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Chapter 7

Testing and parameter estimation

In this chapter we discuss aspects of statistical testing and parameter inference, using the Bayesian
models set up in earlier chapters. Throughout this chapter we work in the situation of a discrete
or absolutely continuous Bayesian model (X,Θ), where we have data x and posterior Θ|{X=x}.
We keep all of our usual notation: the parameter space is Π, the model family is (Mθ)θ∈Π, and
the range of the model is R. Note that Mθ could have the form Mθ ∼ (Yθ)

⊗n for some random
variable Yθ with parameter θ, corresponding to n i.i.d. data points.

We have noted in Chapter 5 that an well chosen prior distribution can lead to a more accu-
rate posterior distribution. Statistical testing is often used in situations where multiple different
perspectives are involved and this makes the specification of prior beliefs more complicated. For
example, trials of medical treatments involve patients, pharmaceutical companies and regulators,
all of whom have different levels of trust in each other as wel as potentially different prior beliefs.
It is common practice to check how much the results of statistical tests depend upon the choice
of prior, often by varying the prior or comparing to a weakly informative prior.
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7.1 Hypothesis testing

Hypothesis testing is surprisingly simple within the Bayesian framework. We first need to intro-
duce the way to present the results.

Definition 7.1.1 Let A and B be events such that P[A∪B] = 1 and A∩B = ∅. The odds ratio
of A against B is

OA,B =
P[A]

P[B]
.

It expresses how much more likely A is than B. For example, OA,B = 2 means that A is twice as
likely to occur than B; if OA,B = 1 then A and B are equally likely.

Take a Bayesian model (X,Θ) with parameter space Π. We split the parameter space into two
pieces: Π = Π0 ∪Π1 where Π0 ∩Π1 = ∅. We consider two competing hypothesis:

H0 : that θ ∈ Π0,

H1 : that θ ∈ Π1,

where θ represents the true value of the parameter i.e. the value for which our model should (at
least, as a good approximation) match up with reality.

Definition 7.1.2 The prior odds of H0 against H1 is defined to be

P[Θ ∈ Π0]

P[Θ ∈ Π1]
. (7.1)

Given the data x, the posterior odds of H0 against H1 is defined to be

P[Θ|{X=x} ∈ Π0]

P[Θ|{X=x} ∈ Π1]
. (7.2)

We might also refer to (7.1) as the ‘prior odds of Π0 against Π1’, and similarly for (7.2).

Note that the prior odds involve the prior Θ, and the posterior odds involve the posterior
Θ|{X=x}, but otherwise the formulae are identical. We assume implicitly that P[Θ ∈ Π0] and
P[Θ ∈ Π1] are both non-zero, which by Theorems 2.4.1 and 3.1.2 implies that the same is true for
Θ|{X=x}. Note also that the prior and posterior odds are only well defined for proper prior and
posterior distributions, or else we cannot make sense of the probabilities above.

It is often helpful to get a feel for how much the data has influenced the result of the test. For
these purposes we also define the Bayes factor

B =
posterior odds

prior odds . (7.3)

Our next lemma shows why B is important. It is equal to the ratio of the likelihoods of the
event {X = x}, i.e. of the data that we have, conditional on Θ ∈ Π0 and Θ ∈ Π1. In other words,
B is the ratio of the likelihood of H0 compared to H1.

Lemma 7.1.3 In the notation above, the Bayes factor satisfies B =
LX|{Θ∈Π0} (x)

LX|{Θ∈Π1} (x)
where L denotes

the likelihood function.
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Proof: We split the proof into two cases, depending on whether the Bayesian model is discrete
or absolutely continuous. In the discrete case we have

B =
P[Θ|{X=x} ∈ Π0]P[Θ ∈ H1]

P[Θ|{X=x} ∈ Π1]P[Θ ∈ H0]
=

P[Θ∈Π0,X=x]
P[X=x] P[Θ ∈ H1]

P[Θ∈Π1,X=x]
P[X=x] P[Θ ∈ H0]

=

P[Θ∈Π0,X=x]
P[θ∈Π0]

P[Θ∈Π1,X=x]
P[θ∈Π1]

=
P[X|{Θ∈Π0} = x]

P[X|{Θ∈Π1} = x]
.

We have used equation (1.4) from Lemma 1.4.1 several times here. The continuous case is left for
you, in Exercise 7.7 �

As a rough guide to interpreting the Bayes factor, the following table1 is often used:

Bayes factor Interpretation: evidence in favour of H0 over H1

1 to 3.2 Indecisive / not worth more than a bare mention
3.2 to 10 Substantial
10 to 100 Strong
above 100 Decisive

Note that a high value of B only says that H0 should be preferred over H1. It does not tell us
anything objective about how good our model (Mθ) is; it only tells us that X|{Θ∈Π0} is a better
fit for x than X|{Θ∈Π1} is.

Values of the Bayes factor below 1 suggest evidence in favour of H1 over H0. In such a case
we can swap the roles of H0 and H1, which corresponds to the Bayes factor changing from B to
1/B, and we can then use the same table to discuss the weight of evidence in favour of H1 over
H0.

1From Kass & Raftery (1995).
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Example 7.1.4 Returning to Example 4.5.3, suppose that we wished to test the hypothesis that
the speed camera is, on average, overestimating the speed to cars. Recall that in this example:

• Our model was the N(µ, 1τ ), for the speed recorded by the camera when a car travels at
exactly 30mph.

• We used a weak prior (µ, τ) ∼ NGamma(30, 1
102 , 1,

1
5).

• We found the posterior (µ, τ) ∼ NGamma(30.14, 10.01, 6.00, 1.24).

Both the posterior and prior density functions are plotted in Example 4.5.3.
Recall that if (µ, τ) ∼ NGamma(m, p, a, b) then µ|τ ∼ N(m, 1

pτ ), so the marginal mean of µ is
m. Hence, the speed camera on average overestimates the speed when µ > 30, and underestimates
on average when µ < 30. The probability that µ is exactly 30 is zero, because our posterior
NGamma is a continuous distribution, so we will simply ignore that possibility. We don’t care
about the location of τ here so we simply allow it to take any value τ ∈ (0,∞). This gives us
hypothesis

H0 : that (µ, τ) ∈ Π0 = (30,∞)× (0,∞),

H1 : that (µ, τ) ∈ Π1 = (−∞, 30)× (0,∞).

We want to compute the Bayes factor B. We’ll start with the posterior odds ratio. We have

P[(µ, τ) ∈ Π0] =

∫ ∞

30

∫ ∞

0
fNGamma(30.14,10.01,6.00,1.24)(µ, τ) dτ dµ ≈ 0.82,

computed numerically and rounded to two decimal places. Note that P[(µ, τ) ∈ Π1] = 1 −
P[(µ, τ) ∈ Π0], which gives a posterior odds ratio of

P[Θ|{X=x} ∈ H0]

P[Θ|{X=x} ∈ H1]
=

0.82

1− 0.82
= 4.56

again rounded to two decimal places. The prior odds ratio, calculated via the same procedure, is
exactly 1. This occurs because of the symmetry of the prior NGamma(30, 1

102 , 1,
1
5) distribution

(this symmetry is visible in the sketch in Example 4.5.3) gives that P[NGamma(30, 1
102 , 1,

1
5) ∈

Π1] = P[NGamma(30, 1
102 , 1,

1
5) ∈ Π0] =

1
2 . Hence the Bayes factor for this hypothesis test is

B =
4.56

1.00
= 4.56. (7.4)

Based on our table above, we have substantial evidence that the speed camera is overestimating
speeds.

A potential problem with our test is that we have not cared about how much the camera is
overestimating speeds. The (marginal) mean of µ in our posterior distribution is 30.14, which is
only slightly larger than the true speed 30, and this suggests that the error is fairly small. We
would need to be careful about communicating the result of our test, to avoid giving the wrong
impression.

Note that we have used a small amount of Bayesian shorthand in this example, by writing µ

and τ for both random variables and samples of these random variables.
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7.2 High posterior density regions

In this section we look at ways to report interval estimates for the unknown parameter θ. The
key term used in the Bayesian framework is the following definition.

Definition 7.2.1 A high posterior density region is a subset Π0 ⊆ Π that is chosen to minimize
the size of Π0 and maximize P[Θ|{X=x} ∈ Π0].

This is a practical definition rather than a mathematical one: we must choose how to balance
the minimization of Π0 against maximization of P[Θ|{X=x} ∈ Π0] as best we can, and in some
situations there is no single right answer. We write HPD region, for short. They are also commonly
known as HDRs or credible intervals.

Example 7.2.2 Suppose that our posterior has come out as Θ|{X=x} ∼ N(0, 1.52).

We choose our HPD region to be [−5, 5]. This region is much smaller than the range of Θ, which
is the whole of R. The probability that it contains Θ|{X=x} is given by P[−5 ≤ N(0, 1.52) ≤ 5] =

0.97 to 2 decimal places.

More generally, if we are dealing with a continuous distribution with a single peak then it is
common to choose a HPD region of the form Π0 = [a, b] where

P
[
Θ|{X=x} < a

]
= P

[
Θ|{X=x} > b

]
=

1− p

2
(7.5)

and some value is picked for p ∈ (0, 1). HPD intervals of this type are said to be equally tailed.
They always contain the mode of Θ|{X=x}, and from (7.5) we have P[Θ|{X=x} ∈ [a, b]] = p. By
symmetry the HPD region in Example 7.2.2 is equally tailed, and we will give an asymmetric case
in Example 7.2.3.

A value of p close to 1 gives a wide interval and a high value for P[Θ|{X=x} ∈ [a, b]], whilst
a value of p close to 0 gives a thinner interval but a lower value for P[Θ|{X=x} ∈ [a, b]]. As in
Example 7.2.2, we want to choose p ∈ (0, 1) to make [a, b] thin and make P[Θ|{X=x} ∈ [a, b]]

large, if possible.
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Example 7.2.3 Suppose that our posterior has come out as Θ|{X=x} ∼ Gamma(4, 3). We want
an equally tailed HPD region [a, b] such that P[Θ|{X=x} ∈ [a, b]] = 0.8.

The region is chosen by finding a such that P[Θ|{X=x} < a] = 1−0.8
2 = 0.1 and b such that

P[Θ|{X=x} > b] = 1−0.8
2 = 0.1. These values were found numerically to be a = 0.58 and b = 2.23,

to two decimal places. You can find the code that generated this example as part of Exercise 7.4.

Remark 7.2.4 (�) It is possible to construct a form of hypothesis testing based on HPDs. For
example, we might by choose an HPD Π0 with a 95% probability of containing Θ|{X=x}, and then
we then reject the hypothesis θ = θ0 if and only if θ0 /∈ Π0. This approach is known as Lindley’s
method.

Remark 7.2.5 (�) We can define high prior density regions in the same ways as detailed above,
with Θ in place of Θ|{X=x}. These are less useful for parameter estimation although they can
be useful for prior elicitation. We implicitly used equally tailed regions of this type in Example
5.1.1, when we asked an elicitee to estimate their 25th and 75th percentiles.
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7.3 Point estimates

If, for some reason, it is necessary to give a point estimate θ0 for the unknown parameter θ, then
we can obtain one in various different ways from the posterior Θ|{X=x}. Common choices are:

1. The mean θ0 = E[Θ|{X=x}].

2. The median θ0 such that P[Θ|{X=x} ≤ θ0] = P[Θ|{X=x} ≥ θ0] =
1
2 .

3. The mode θ0 = arg maxθ∈Π LΘ|{X=x}(θ).

When doing so, we should be wary that θ0 contains much less information than the full posterior
distribution Θ|{X=x}. If Θ is close to θ0 with high probability then we can hope it provides a rea-
sonable approximation, but there is no guarantee in any case, and we should plot the distribution
of Θ|{X=x} (and, ideally, the corresponding sampling distributions) to assess this.

Note that some or all of these point estimates may fail to be well defined, dependent upon
the distribution of X. For example the Cauchy distributions does not have a well-defined mean.
Formulae for means and variances are listed on the reference sheets in Appendix A; modes can
usually be obtained (for continuous distribution) via differentiation; medians are usually obtained
either via symmetry or numerically.

Example 7.3.1 In Example 7.2.2 the mean, median and mode of Θ|{X=x} ∼ N(0, 1.52) are
all equal to zero, due to the symmetry of the normal distribution. In Example 7.2.3, in which
Θ|{X=x} ∼ Gamma(3, 4), they are

All of these are reasonable point estimates for Gamma(0, 1.52). The distribution of Gamma(0, 1.52)
spreads out across a range of parameters, and we should make this clear in our analysis, perhaps
by giving an HPD interval alongside the point estimate.

Lastly, consider if we had obtained a posterior distribution with the p.d.f. from Exercise 1.1:

There is no reasonable way to summarize this distribution with a point estimate. In a case like
this we should decline to give a point estimate, even if we are asked for one.
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7.4 Comparison to classical methods

You will have seen a different method of carrying out a hypothesis test before, looking something
like this.

Definition 7.4.1 The classical hypothesis test is the following procedure:

1. Choose a model family (Mθ)θ∈Π, choose a value θ0 ∈ Π and define H0 to be the model Mθ0 .
This is often written in shorthand as H0 : θ = θ0.

2. Calculate a value p as follows. Assume that H0 is true i.e. use the model Mθ0 and using this
model, calculate p to be the probability of observing data that is (in some chosen sense) ‘at
least as extreme’ as the data x that we actually observed.

If p is sufficiently small (in some chosen sense) then reject H0.

There is no need for an ‘alternative hypothesis’ here. More specifically, rejecting H0 means
that we think it is unlikely that our chosen model Mθ0 would generate the data x, so consequently
we think it is unlikely that Mθ0 is a good model.

There is nothing else to say here! Rejecting H0 does not mean that the ‘alternative hypothesis’
H1 that θ 6= θ0 is accepted (or true). If p turns out to be small it means that either (i) Mθ0 is a
good model and our data x was unlikely to have occurred or, (ii) Mθ0 is a bad model for our data.
Neither statement tells us what a good model might look like. Unfortunately hypothesis testing
is very often misunderstood, and rejection of H0 is incorrectly treated as though it implies that
H1 is true.

If we do not reject H0, then it means that the model Mθ0 is reasonably likely to generate
the data we have. This leaves open the possibility that there may be lots of other models, not
necessarily within our chosen model family, that are also reasonably likely to generate the data
we have. This point is sometimes misunderstood too.

Example 7.4.2 A famous example of these mistakes comes from the ‘clever Hans’ effect. Hans
was a horse who appeared to be able to do arithmetic, owned by a mathematics teacher Wilhelm
von Osten. Von Osten would ask Hans (by speaking out loud) to answer to various questions
and Hans would reply by tapping his hoof. The number of taps was interpreted as a numerical
answer. Hans answered the vast majority of questions correctly.

To construct a hypothesis test using Definition 7.4.1, take a model family Mθ ∼ Bernoulli(θ)⊗n,
where the data x = (x1, . . . , xn) corresponds to xi = 1 for solving the nth question correctly, and
xi = 0 for incorrectly. We don’t know exactly how hard the arithmetic questions were, so let us
suppose that the probability of Hans solving a question correctly by guessing at random is θ = 1

2

(this is clearly a very generous assumption for arithmetic). So, take

H0 : that θ = 1/2× (0,∞) i.e. the horse solves the questions at random

and then the model we wish to test is M 1

2
. The horse is asked n = 10 questions, and it answers

them all correctly. Our model M 1

2
says the probability of this is (12)

10 ≈ 0.001 = p. We reject
H0. Taking any value θ ≤ 1

2 will lead to the same conclusion.
So, we expect that our model Mθ is a bad description of reality, for each θ ≤ 1

2 . This does not
mean that we must accept H1 and believe the horse is doing arithmetic i.e. that some alternative
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model Mθ is correct for some larger value of θ. In fact, what is going on here is that Hans has
learnt to read the body language of Wilhelm von Osten, who leans in forwards whilst Hans is
tapping his hoof and leans back upright as soon as the correct number of taps has been reached.
This was established by the psychologist Oskar Pfungst, who tested Hans and von Osten under
several different conditions in a laboratory.

In short, our model that the horse ‘solves’ questions is a bad choice. The horse answers
questions correctly but it does not solve questions. To distinguish between these two situations
we need a better model than (Mθ), as Pfungst did in his laboratory. His model included (amongst
other things) an extra variable for whether Hans could see von Osten.

After the investigations by Pfungst were done, von Osten refused to believe what Pfungst had
discovered, and continued to show Hans around Germany. They attracted large and enthusiastic
crowds, and made a substantial amount of money from doing so – many in his audience wondered
if they should accept H1.

The point of including this example in our course – in which we focus on Bayesian methods
– is to note that errors in interpretation are less common when using Bayesian approaches. The
reason is simply that the Bayesian approach uses the framework of conditional probability, so we
state our results in terms of conditional probabilities and odds ratios. This makes our assumptions
and conclusions clear.

By contrast, the p-value from Definition 7.4.1 is not a conditional probability because con-
ditioning the model (Mθ) on the event {Θ = θ0} is only possible if we have a random variable
Θ that we can condition on the event {Θ = θ0}, and Definition 7.4.1 does not include this ran-
dom variable. However, if we take Θ to be a uniform prior and (Mθ) is well-behaved enough
(e.g. Assumption 1.3.2) then MΘ|{Θ=θ0}

d
= Mθ0 can be shown. In that situation the p-value is the

conditional probability, given {Θ = θ0}, of observing data that is (in some chosen sense) at least
as extreme as what we did observe. Calculating p is often difficult and instead it is common to
use approximation theorems. These theorems2 tend to contain complicated assumptions that are
difficult to state correctly, particularly when data points may not be fully independent of each
other. The combined result is that Definition 7.4.1 gives a procedure with many potential sources
of error.

Remark 7.4.3 I do not mean to imply that using the Bayesian framework would certainly have
avoided making the mistake detailed in Example 7.4.2. Only that, because the framework would
make us state our assumptions and conclusions more clearly, we can then more easily question
which of our assumptions was incorrect.

When a horse claims to do arithmetic we are naturally suspicious. In more subtle situations
it is harder to find mistakes.

Similar considerations apply to the comparison between HPDs and confidence intervals. For
example, a 95% confidence [a, b] intervals is often incorrectly treated as a statement that the
‘event’ θ ∈ [a, b] has 95% probability. An HPD actually is a statement to that effect, about the
posterior distribution Θ|{X=x}, which makes it much easier to interpret.

2(�) E.g. Central limit theorems, Wilks’ theorem.
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Figure 7.1: Hans the horse in 1904, correctly answering arithmetic questions set by his owner Wilhem
von Osten.
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7.5 Exercises on Chapter 7

7.1 Consider the following sketch of three probability density functions. In each case, discuss?

whether you think it would reasonable to approximate the distribution with a point estimate.
If so, would you prefer the mean, median or mode?

7.2 In the situation of Example 2.3.3, the experiments test the success of a medical treatment.? ?

Each trial is expensive, so it is decided by the regulator that further trials of the treatment
will be carried out if and only if there is substantial evidence that p > 0.2.

(a) Using the original prior Beta(2, 8) and the posterior Beta(11, 19) odds obtained after
the second round of trials, find the prior and posterior odds ratios of p > 0.2, and find
the associated Bayes factor.

(b) Show that the reference prior for the Binomial distribution, with a fixed number of
trials and unknown success probability p ∈ (0, 1), is P ∼ Beta(12 ,

1
2) (this generalizes

Example 5.3.4).
How much does using this prior change the results of your analysis in (a)?

(c) Discuss briefly whether the regulator would be interested to see the results in (a), or
(b), or both, when making their decision as to whether the trials should proceed further.

7.3 Inside the file 7_earthquakes_japan.csv you will find a dataset listing the number of? ?

earthquakes, of magnitude 7.5 or higher, that occurred in Japan during the years 1984-2023.
We model the occurrence of earthquakes in a particular year as Poisson(λ), independently
for each year, and we consider the hypothesis H0 : λ ≥ 2.

(a) In Exercise 5.3 we found that the reference prior for the Poisson distribution was

f(λ) ∝

{
λ−1/2 for λ > 0

0 otherwise.

Are the prior odds for H0 defined, with respect to this prior?
(b) Recall from Exercise 4.3 that the Gamma distribution provides a conjugate prior to

the Poisson model family. Using the data given and the weakly informative prior λ ∼
Gamma(54 ,

1
5), find the posterior distribution for λ, and find the prior and posterior

odds ratios of the evidence in favour of H0 over H1. Calculate the associated Bayes
factor and comment on the evidence for H0.

(c) Repeat part (b) for H0 : λ ≥ 3.
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7.4 Inside the files 7_hpd_example.ipynb and 7_hpd_example.Rmd you will find code to generate?

the figure in Exercise 7.2.3. Modify this code (using either file) to construct an equally tailed
HPD region [a, b] for the ChiSquared(3) distribution, such that P[ChiSquared(3) ∈ [a, b]] =

0.7.

7.5 In this question we model the number of hurricanes per year making landfall in the United? ?

States of America using the Poisson(θ) distribution. We will assume that each year is
independent and we will use a prior θ ∼ Exp(λ).

(a) Perform an elicitation method of your choice from Section 5.1, either alone or with a
parter, to choose the value of λ that best expresses your prior beliefs about the number
of hurricanes per year that make landfall in the USA.

(b) Inside the file 7_hurricane_landfalls_usa.csv you will find a dataset corresponding
to the years 2015-2022. Use the result of Exercise 4.3 to find the posterior distribution
resulting from your prior and this dataset.
Hint: Recall that Exp(λ) ∼ Gamma(1, λ).

(c) Plot an equally tailed 95% HPD region for θ.

7.6 In this question we consider HPD intervals for the mean, using the model N(µ, φ)⊗n family,
with both parameters unknown. We will use the reference prior for this family, which is an
improper prior with density function

f(µ, φ) =

{
1
φ for φ > 0 and µ ∈ R
0 otherwise.

Write x̄ =
∑n

1 xi and S2 = 1
n−1

∑n
1 (xi − x̄)2. It is known that, for this model and reference

prior, the variable t|x = (µ|x)−x̄
S/

√
n

has distribution t|x ∼ Student-t(n− 1).

(a) Inside the file 7_wheat_yields_uk.csv you will find a dataset of the UK wheat yields,? ?

measured in tonnes per hectare of farmland, for the years 1983-2022. You may assume
that the model N(µ, φ)⊗40 is appropriate for this data. Plot an equally tailed 95% HPD
region for t, and hence give a 95% HPD region for µ.

(b) Find the posterior density function f(µ, φ), for the model N(µ, φ)⊗n with the given? ? ?

reference prior. Hence, verify that the distribution of t|x is indeed Student-t(n− 1).

7.7 Prove the continuous case of Lemma 7.1.3. You should use Theorem 3.1.2 along with Exer-? ? ?

cises 1.8 and 3.6 to justify your calculations.
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Chapter 8

Computational methods

We noted at several points that conjugate pairs, from Chapter 4, do not provide enough flexibility
for many practical situations. Instead, Bayesian statistics is heavily reliant on a family of com-
putational techniques, introduced within this chapter. They generate samples from the posterior
distribution and have a moderate computational cost. With simple model families of the kind we
have worked with throughout the course it is reasonable to use desktop machines. More complex
model families can require larger machines.

Throughout this chapter we assume the same setup as in Chapter 7, which we repeat here
for convenience. We work with a discrete or continuous Bayesian model (X,Θ), where we have
data x and posterior Θ|{X=x}. We keep all of our usual notation: the parameter space is Π, the
model family is (Mθ)θ∈Π, and the range of the model is R. Note that Mθ could have the form
Mθ ∼ (Yθ)

⊗n for some random variable Yθ with parameter θ, corresponding to n i.i.d. data points.
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8.1 Approximate Bayesian computation (�)

In this section we describe a numerical method for calculating the posterior Θ|{X=x} that is based
on rejection sampling. Recall that we used rejection sampling in Section 1.4 to prove Lemma
1.4.1, and also to give some intuition for our first examples of conditioning.

The algorithm we study here is known as Approximate Bayesian Computation, or ABC for
short. We will describe it first for discrete data, in the situation where the prior (and, consequently,
the posterior) are also discrete distributions. We haven’t studied this case in any of our previous
chapters, so let us first introduce it here.

Definition 8.1.1 (Bayesian model with discrete parameters and discrete data) Take a
prior with p.m.f. pΘ(θ) and a discrete model family (Mθ)θ∈Π where Π is a finite or countable set.
The Bayesian model (X,Θ) has the law

P[X = x,Θ = θ] = P[Mθ = x]pΘ(θ).

It is straightforward to sum over x and obtain the prior distribution P[Θ = θ] = pΘ(θ), and also
to sum over θ and obtain the sampling distribution P[X = x] =

∑
θ∈Π P[Mθ = x]pΘ(θ). For

x ∈ RX we have P[X = x] > 0 and thus the posterior Θ|{X=x} is defined via Lemma 1.4.1. Also
using Lemma 1.4.1, the conditional distribution X|{Θ=θ} satisfies

P[X|{Θ=θ} = x] =
P[X = x,Θ = θ]

P[Θ = θ]
=

P[Mθ = x]pΘ(θ)

pΘ(θ)
= P[Mθ = x]

so X|{Θ=θ}
d
= Mθ.

In the context of Definition 8.1.1 the ABC algorithm for generating samples from Θ|{X=x} is
the following:

1. Sample θ0 from the discrete distribution Θ.

2. Sample x0 from the discrete distribution Mθ
d
= X|{Θ=θ}.

3. Then:

- if x 6= x0, go back to step one;

- if x = x0,accept θ0 as a sample of Θ|{X=x}.

This algorithm is precisely the strategy of our proof for Lemma 1.4.1, written as an algorithm and
adapted to the special case of Definition 8.1.1. It generates a single sample of the distribution
Θ|{X=x}. We can run the algorithm again to obtain more samples.

The ABC algorithm outlined above requires only that we have the ability to take samples from
discrete distributions with known probability mass functions. To handle cases with continuous
priors and/or data, we also need to be able to sample from continuous distributions with known
probability density functions. The modifications are as follows:

• If Θ is continuous and (Mθ) is discrete then we can adopt the same algorithm, with the
modification that in step 1 we must now sample from a continuous distribution rather than
a discrete distribution.
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• If (Mθ) is continuous then in step 3 we will have P[x = x0] = 0. In this case the simplest
strategy is to fix some ε > 0 and accept θ0 as an approximate sample of Θ|{X=x} if |x−x0| ≤ ε.

This idea is based on (1.9), which stated that if Θ|{X=x} was to be defined then it should be
defined to be the limit as ε → 0 of Θ|{|X−x|≤ε}. The terminology ‘Approximate’ Bayesian
Computation comes from this step.

More complex strategies for comparing x and x0 can also be used, with the aim of focusing
on the aspects of the data that are most important to us.

The ABC algorithm as described above has a serious drawback. In discrete cases the probability
that x = x0 (in step 3) can be extremely small, meaning that we have to go around the loop
1 → 2 → 3 → 1 many times before we find a sample we can accept. In continuous cases, choosing
ε close to 0 obtains results in good approximation but introduces the same problem; that the
probability of accepting the same x0 becomes small. To get handle this difficulty, various ways
of sampling x0 (in step 2) have been developed to increase the acceptance probability, without
changing the distribution of x0. One such method is ABC-MCMC, which uses ideas from Section
8.3 to sample x0. Another method is sequential ABC, where x0 is sampled as a perturbation in
a carefully chosen direction from the (rejected) x0 in the previous iteration of the loop. We will
not detail such methods here. They are very popular in some applications.

101



©Nic Freeman, University of Sheffield, 2025.

8.2 Metropolis-Hastings

In order to perform Bayesian inference computationally, the main requirement is that we can
obtain samples from the posterior distribution Θ|{X=x}. We know the p.d.f. from Theorem
2.4.1/3.1.2, but this doesn’t allow us to take samples quickly or easily. The most popular strate-
gies for sampling are based on the Metropolis-Hastings algorithm. We will describe the algorithm
in this section, and explain its application to Bayesian inference in Section 8.3.

8.2.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a general technique for producing samples from a distribu-
tion. We will describe it in the case where we take samples of a continuous random variable Y

with p.d.f. fY and range RY ⊆ Rd. The key ingredient of the algorithm is a joint distribution
(Y,Q), where Q|{Y=y} is well defined for all y ∈ RY , both with the same range as Y .

Example 8.2.1 A common choice is to take Q = Y + N(0, σ2) where σ > 0 is a constant.

The Metropolis-Hastings algorithm is the following. For now, it won’t be obvious why this
algorithm generates samples of Y , but we will address this point soon after. Let y0 be a point
within RY . Then, given ym we define ym+1 as follows.

1. Generate a proposal point ỹ from the distribution of Q|{Y=ym}.

2. Calculate the value of

α = min

{
1,

fQ|{Y =ỹ}(ym)fY (ỹ)

fQ|{Y =ym}(ỹ)fY (ym)

}
(8.1)

3. Then, set

ym+1 =

{
ỹ with probability α,

ym with probability 1− α.
(8.2)

The distribution Q|{Y=y} is called the proposal distribution, based on its role in steps 1 and 2.
The two cases in step 3 are usually referred to as acceptance (when ym+1 = ỹ) and rejection
(when ym+1 = ym). The key point is that the algorithm only needs samples from the proposal
distribution; we can run it without needing to sample of the distribution of Y directly! The
Metropolis-Hastings algorithm is useful in cases where the distribution of Y is unknown or is too
complicated to efficiently sample from.

Theorem 8.2.2 Let (ym) be the random sequence obtained from the Metropolis-Hastings algo-
rithm. Then for all A ⊆ RY we have P[ym ∈ A] → P[Y ∈ A] as m → ∞.

Theorem 8.2.2 says that if we run the MH algorithm for a long time, so that m becomes large,
the random value of ym will have a similar distribution to Y . We won’t be able to prove Theorem
8.2.2 in this course but we will give a detailed idea of why it is true in Section 8.2.3 (which is
off-syllabus). As you might expect, this will involve the precise form of (8.1).

From Lemma 1.6.1 we can rewrite equation (8.1) as α = min
(
1, fY,Q(ỹ,ym)

fY,Q(ym,ỹ)

)
. This is a nicer

formula, but the convention that you will find in all textbooks is to write the form (8.1). The
reason for this will become clear in Section 8.2.2.

102



©Nic Freeman, University of Sheffield, 2025.

Example 8.2.3 Here’s some examples of the random sequence (ym) generated by the MH algo-
rithm, in the case Y ∼ Cauchy(0, 1) with Q = Y + N(0, 1) as in Example 8.2.1.

We’ve shown five sample runs of (ym)100m=1, starting from zero in each case. You can see that
sometimes for a few steps of time passes whilst a path does not move – that is when the proposal
ỹ is rejected a few times in a row. When the paths do move, each movement is an (independent)
N(0, 1) random variable.

Next we run the MH algorithm 500 times, and in each case we record the value of y100.
Theorem 8.2.2 tells us that each y100 should be approximately a sample of Cauchy(0, 1), so by
taking 500 samples we should be able to see the shape of the distribution. We plot these values
as a histogram and compare to the p.d.f. of Cauchy(0, 1), giving

We can see that the histogram is a reasonable match for fCauchy(0,1), so the MH algorithm is
behaving as Theorem 8.2.2 predicts. If we let the MH algorithm have more steps, so that we
consider y1000 instead of y100, then we obtain a better approximation:

Of course, we could also obtain a better approximation to the distribution of Y ∼ Cauchy(0, 1)
by taking more samples. The code that generated the plots above is given to you in Exercise 8.1,
and used in other exercises at the end of this chapter.

In statistics you will often hear the terminology ‘ym has converged’ used to mean that m is large
enough that ym has approximately the same distribution as Y . This is a misuse of terminology,
but it is common and quite helpful in practice. The period before is sometimes known as ‘burn
in’.
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8.2.2 The Metropolis algorithm

A common technique when using the MH algorithm is to choose Q in such a way that

fQ|{Y =y}(ỹ) = fY |{Q=ỹ}(y) (8.3)

for all y and ỹ. The point of doing so is that it greatly simplifies the formula (8.1) for α, because
the terms on top and bottom involving conditional densities then cancel. The algorithm for
updating ym then becomes:

1. Generate a candidate point ỹ from the distribution of Q|{Y=ym}.

2. Calculate the value of
α = min

{
1,

fY (ỹ)

fY (ym)

}
(8.4)

3. Then, set

ym+1 =

{
ỹ with probability α,

ym with probability 1− α.

This is known as the Metropolis algorithm, or sometimes as the symmetric Metropolis-Hastings
algorithm.

Example 8.2.4 It is often straightforward to write down a Q such that (8.3) holds. For example,
Suppose that Y is any random variable with range R and take Q = Y + N(0, σ2) as in Example
8.2.1. Then from Remark 1.6.4 we have

Q|{Y=y}
d
= y + N(0, σ2)

d
= N(y, σ2),

Hence
fQ|{Y =y}(ỹ) =

1√
2πσ2

e−
(y−ỹ)2

2σ2 = fQ|{Y =ỹ}(y).

More generally, if Y has range Rd then (8.3) will hold whenever Q = Y +Z where Z is a continuous
random variable with a distribution that is symmetric about zero i.e. fZ(z) = fZ(−z). Proving
this fact is Exercise 8.6.

This case is known as the random-walk Metropolis algorithm.
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8.2.3 Why does Metropolis-Hastings work? (�)

In order to explain why the MH algorithm for (Y,Q) generates samples of Y , we will need some
of the terminology that has been introduced in earlier courses on Markov chains. These courses
are recommended pre-requisites to this course, but they are not compulsory pre-requisites, so this
section is off-syllabus. We will sketch out parts of it in lectures, if there is time.

The sequence (ym) defined by the MH algorithm in Section 8.2.1 is an example of a Markov
chain with state space R = RY , the range of Y . In earlier courses you have studied Markov chains
with discrete (i.e. finite or countable) state spaces, but in this case the state space is uncountable,
because Y is a continuous random variable. Processes of this type are known as Markov chains
in continuous space.

The key ingredients of a Markov chain with a finite or countable state space are its transition
probabilities, which record the probabilities of moving between various states. In continuous space
the equivalent concept is the function

p(x,A) = P
[
Xm+1|{Xm=x} ∈ A

]
, (8.5)

which is known as a transition function for the Markov chain (Xm). It gives the probability of
moving to a state within A, from state x, where A ⊆ R and R is the state space of the chain. You
will sometimes see the right hand side of this equation written as P[Xm+1 ∈ A|Xm = x], with the
same meaning.

We say that a continuous random variable X with p.d.f. fX(x) is a stationary distribution for
the chain (Xm) if when Xm

d
= X we have also that Xm+1

d
= X. In symbols, this requirement

means that P[X ∈ A] = P[Xm+1|{Xm=X} ∈ A], or equivalently

P[X ∈ A] =

∫
R
p(x,A)fX(x) dx (8.6)

for all A ⊆ R. The expression on the right hand side here comes from (8.5), using that
P[Xm+1|{Xm=X} ∈ A] = E[p(X,A)].

The definitions of periodicity, irreducibility and the various types of recurrence can be upgraded
into continuous space in a natural way. Moreover, there is a convergence theorem for Markov
chains in discrete space, which gives conditions (similar to those for discrete space) for the chain
to converge to a unique stationary distribution, as time becomes large. We will not cover these
ideas here, but note that our condition in Section 8.2.1 that Q|{Y=y} is a continuous random
variable with range RY means that the sequence (ym) might jump to anywhere within RY on
any step of time. Under that condition the convergence theorem applies and it is known that the
chain (ym) will converge to a unique stationary distribution. The stationary distribution will be
a continuous random variable and will satisfy (8.6).

We will show here that the transition function given by the MH algorithm satisfies (8.6)
with stationary distribution Y . When this fact is combined with the convergence theorem for
continuous space Markov chains, it leads to Theorem 8.2.2 – but we will only cover the calculation
of the stationary distribution here. The transition function given by the MH algorithm is

p(x,A) = P
[
Bernoulli(αx,Q|{Y =x}) = 1 and Q|{Y=x} ∈ A

]
+ 1{x∈A}P

[
Bernoulli(αx,Q|{Y =x}) = 0

]
= E

[
Bernoulli(αx,Q|{Y =x})1{Q|{Y =x}∈A}

]
+ 1{x∈A}E

[
1− Bernoulli(αx,Q|{Y =x})

]
=

∫
A
αx,yfQ|{Y =x}(y) dy + 1{x∈A}

∫
R
(1− αx,y)fQ|{Y =x}(y) dy (8.7)
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where

αx,y = min

(
1,

fQ|{Y =y}(x)fY (y)

fQ|{Y =x}(y)fY (x)

)
(8.8)

is such that αym,ỹ is precisely (8.1). The MH algorithm will have stationary distribution Y if and
only if for all A ⊆ R,

P[Y ∈ A] =

∫
R
p(x,A)fY (x) dy (8.9)

The rest of the argument will concentrate on proving that (8.7) and (8.8) imply that (8.9) holds.
The choice of α in (8.8) is key. Our next goal is to show that

αx,yfQ|{Y =x}(y)fY (x) = αy,xfQ|{Y =y}(x)fY (y), (8.10)

which by Lemma 1.6.1 is equivalent to

αx,yfY,Q(x, y) = αy,xfY,Q(y, x). (8.11)

Using (8.8), this equation can be checked by considering two cases:

• if fY,Q(x, y) ≤ fY,Q(y, x) then αx,y = 1 and αy,x = fY,Q(y,x)
fY,Q(x,y) ;

• if fY,Q(x, y) ≥ fY,Q(y, x) then αx,y = fY,Q(x,y)
fY,Q(y,x) and αy,x = 1.

In both cases, (8.11) holds.

Remark 8.2.5 Recall the heuristic interpretation of probability density functions: fP (p) repre-
sents how likely P is to be close to p. From the MH algorithm, this means that the left hand side
of (8.10) represents the likelihood of ym+1 ≈ x given that ym ≈ y, where y is sampled from Y ,
The right hand side of (8.10) represents the same concept but with time run in reverse, that is
the likelihood of ym+1 ≈ y given that ym ≈ x, where x is sampled from Y . The choice of αx,y in
(8.8) ensures that these quantities are equal.

Equation (8.10) is closely related to detailed balance equations, which you have seen in earlier
courses for discrete space chains. Loosely, (8.10) gives detailed balance equations for the chain
conditional on the event that a proposal is accepted. The quantity αx,y controls how likely a
proposal for the jump x 7→ y is to be accepted, or equivalently how likely the chain is to stand
still rather than move to y. Because αx,y depends on y, this also controls how likely all of the
various possible moves are, which in turn controls the stationary distribution.

We will now show that (8.9) holds. We have∫
R
p(x,A)fY (x) dy =

∫
R

∫
A
αx,yfQ|{Y =x}(y)fY (x) dy dx+

∫
R

∫
R
1{x∈A}(1− αx,y)fQ|{Y =x}fY (x) dy dx

=

∫
R

∫
A
αx,yfY,Q(x, y) dy dx+

∫
A

∫
R
(1− αx,y)fY,Q(x, y) dy dx

=

∫
R

∫
A
αy,xfY,Q(y, x) dy dx+

∫
A

∫
R
fY,Q(x, y) dy dx−

∫
A

∫
R
αx,yfY,Q(x, y) dy dx

=

∫
A

∫
R
αy,xfY,Q(y, x) dx dy + P[Y ∈ A,Q ∈ R]−

∫
A

∫
R
αx,yfY,Q(x, y) dy dx

= P[Y ∈ A]
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In the first line of the above we use (8.7) to expand p(x,A). To obtain the second line we use
Lemma 1.6.1. To obtain the third line we use (8.11) for the first term, and for other terms we
simply split the integral into two. In the fourth line we exchange the order of integration in the
first term, and note that the second term can be expressed as a probability. The final line follows
because the first and third terms cancel (re-label x and y as each other in the first term to obtain
the third) and because P[Q ∈ R] = 1. We thus obtain (8.9), as required.

Remark 8.2.6 It is possible to weaken the conditions on (Y,Q) and allow cases where the range
of Q|{Y=y} is a subset of the range of Y . In this case it becomes necessary that the random
sequence (yn) defined by the algorithm satisfies the condition P[∃n ∈ N, yn ∈ A] = 1 whenever
P[Y ∈ A] > 0, regardless of the starting point of the chain (yn). This condition is known as
Harris recurrence.

The same algorithm can also produce samples from discrete distributions. In this case we must
replace the p.d.f fY by the p.m.f. pY , and similarly for the conditional parts in (8.1), but otherwise
we proceed exactly as before. We have focused on continuous prior and posterior distributions,
with the consequence that we won’t need the discrete case of Metropolis-Hastings within this
course.
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8.3 Markov Chain Monte Carlo

We now take a Bayesian model (X,Θ). We will assume that the parameter space Π is a subset
of Rd. Recall from Theorems 2.4.1 and 3.1.2 that Π is also the range of both the prior Θ and
the posterior Θ|{X=x}. As usual, we will assume that the prior distribution Θ is a continuous
distribution with p.d.f. fΘ.

Markov Chain Monte Carlo, or MCMC, is a general term for algorithms that use Markov
chains to sample from probability distributions. In particular, we can use the Metropolis-Hasting
algorithm from Section 8.2 to construct samples from the posterior distribution Y = Θ|{X=x}.
Let us think about what we capabilities we need, in order to do this.

1. We first need a choice of joint distribution (Y,Q), and the ability to take samples ỹ from
the proposal distribution Q|{Y=y}, for any value of y.

Random walk case: General case:

Choose Q = Θ|{X=x}+Z, where Z satisfies
fZ(z) = fZ(−z), as in Example 8.2.4.

Then ỹ = y + Z has the distribution
Q|{Θ|{X=x}=y}.

If we want to use a more complicated pro-
posal distribution, then there is a more dif-
ficult choice to make here.

2. The second requirement is that we can calculate the value of α in (8.1)/(8.4).

Random walk case: General case:

We can calculate the p.d.f. fΘ|{X=x} using
Theorems 2.4.1 and 3.1.2. In the symmetric
case this is all that we need.

If we don’t use the symmetric case, then
we also need to evaluate fQ|{Y =y} , from our
chosen joint distribution (Y,Q). Our choice
of (Y,Q) (in the step above) will usually
result in us being able to write down the
joint p.d.f. fY,Q, from which we can (at least
in principle) use Lemma 1.6.1 to calculate
fQ|{Y =y} .

3. The last thing that we require is that the proposals are accepted fairly often, in step 3 of
the MH algorithm. As a rough guide, an acceptance rate of 15− 50% is generally viewed as
best.

• An acceptance rate that is very high (i.e. moderately close to 100%) often means that
the MH algorithm is not moving very fast, so won’t converge quickly.

• An acceptance rate that is too low (i.e. close to 0%) tells you that few proposals are
being accepted. This also prevents the MH algorithm from converging quickly.

A good acceptance rate happens naturally in some cases. When it does not, a bit of hand-
tuning or additional techniques are required, some of which appear in the MSc material next
semester.

We’ll focus on the symmetric case from now on. We’ll write down a full description of the MCMC
algorithm for Bayesian inference, for the random walk case, in Section 8.3.1
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8.3.1 MCMC algorithm for the random walk case

Take a (discrete or continuous) Bayesian model (X,Θ), with parameter space Π ⊆ Rd. We want
to obtain samples of Θ|{X=x}, and we know the p.d.f. fΘ|{X=x} from Theorems 2.4.1/3.1.2.

We must first choose an initial point y0. We ideally want this value near where the typical
values of Θ|{X=x} sit, because that will (at least, initially) give a higher acceptance rate. If we
choose the initial state poorly then the algorithm will take a bit longer to converge, which often
doesn’t matter too much.

We must also choose a continuous distribution for Z satisfying fZ(z) = fZ(−z) for all z ∈ R.
A common choice is Z ∼ N(0, σ2), as in Example 8.2.4, for some chosen value of σ.

Then, given ym, we define ym+1 as follows.

1. Sample z from Z and set ỹ = ym + z.

2. Calculate α = min
(
1,

fΘ|{X=x} (ỹ)

fΘ|{X=x} (ym)

)
.

3. Then, set ym+1 =

{
ỹ with probability α,

ym with probability 1− α.

We repeat steps 1-3 until m is large enough that values taken by the ym are no longer affected by
the choice of y0. This often can be judged by eye, from a plot of the sequence (ym).

Repeating the whole procedure obtains multiple samples of Θ|{X=x}, which we can plot in a
histogram to get an approximation of the distribution. This is exactly what we already did in
Example 8.2.3.
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8.4 Gibbs sampling

Recall that our parameter θ may really be a vector of parameters, as in Section 4.5 where we
considered the model M(µ,σ) ∼ N(µ, σ2) with θ = (µ, σ) ∈ R×(0,∞). In this section we introduce
a technique for handling models with many parameters θ = (θ1, . . . , θd) ∈ Rd. For those of you
taking MAS364, this section is non-examinable and is included for interest only. For those of you
taking MAS61006, this section is on syllabus and will feed into your work next semester.

For d = 1 or d = 2 the MH algorithm as described in Section 8.3 is effective. For much large d,
what tends to happen is that it takes a very long time for the sequence (ym) generated by the MH
algorithm to explore the parameter space Π ⊆ Rd, which means that it takes longer to converge
to (the distribution of) Θ|{X=x}. This happens simply because there is a lot of space to explore
inside Rd when d is large; this phenomenon is often known as the curse of dimensionality.

Example 8.4.1 Imagine you have parked your car inside a multi-story car park and then for-
gotten where you’ve parked it. If you know which level your car is on then you will only have to
search on that level, and you will find your car in minutes. If you don’t know which level, it will
take you much longer. The first case is exploring d = 2, the second is d = 3. Actually, to make
this example properly match the difference between d = 2 and d = 3, the car park should have
the same number of floors as there are parking spaces along the side-length of each floor! The
problem only gets worse in d ≥ 3.

One strategy for working around this problem is to update the parameters (θ1, . . . , θd) one at
a time. That is, we would first change θ1 while keeping (θ2, . . . , θd) fixed, then we would change
θ2 while keeping (θ1, θ3, . . . , θd) fixed, and so on. After updating θd we would then return to θ1.
It is helpful to introduce some notation for this: we write θ−i = (θ1, . . . , θi−1, θi+1, . . . , θd) for the
vector θ with the θi term removed. We use the same notation for the random vector Θ e.g. Θ−i.

Remark 8.4.2 In reality, instead of updating the θi one-by-one, it is common to update the pa-
rameters in small batches. For example we might update (θ1, . . . , θ4) in one step, then (θ5, . . . , θ8)

in the next step, and so on. It is helpful to put related parameters, with values that might strongly
influence each other, within the same batch.

When we update the parameters in turn, a common choice of proposal distribution is to set
Q ∼ Θi|{Θ−i=θ−i, X=x} in the update for θi, where θ−i are the values obtained from the previous
update. This choice of proposal has the effect that, from (8.1), we end up with α = 1 and all
proposals are then accepted. When using proposals of this form, the MH algorithm is usually
known as the Gibbs sampler.

Definition 8.4.3 The distributions of Θi|{Θ−i=θ−i, X=x}, for i = 1, . . . , d, are known as the full
conditional distributions. From Lemma 1.6.1 the ith full conditional has p.d.f. given by

fΘi|{Θ−i=θ−i, X=x}(θi) =
fΘ|{X=x}(θ)∫

Rd−1 fΘ|{X=x}(θ1, . . . , θi−1, θi, θi+1, . . . , θd) dθ−i

∝ fΘ|{X=x}(θ) (8.12)

We can calculate fΘ|{X=x} from Theorems 2.4.1/3.1.2, which provides a strategy for calculating
(8.12) analytically. Note that ∝ in (8.12) treats θ−i and x as constants, and the only variable is
θi.
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Remark 8.4.4 The notation Θi|{Θ−i=θ−i, X=x} for the full conditionals is a bit unwieldy. In
Bayesian shorthand we would write simply θi|θ−i, x which is much neater.

The Gibbs sampler that results from these strategies is as follows.

1. Choose an initial point y0 = (θ
(0)
1 , . . . , θ

(0)
d ) ∈ Π.

2. For each i = 1, . . . , d, sample ỹ from Θi|{Θ−i=θ
(m)
−i , X=x} and set

ym+1 = (θ
(m)
1 , . . . , θ

(m)
i−1 , ỹ, θ

(m)
i+1 , . . . , θ

(m)
d ).

Note that we increment the value of m each time that we increment i. When reach i = d,
return to i = 1 and repeat.
Repeat this step until m is large enough that values taken by the ym are no longer affected
by the choice of y0.

3. The final value of ym is now a sample of Θ|{X=x}.

Note that we need to take samples from the full conditionals Θi|{Θ−i=θ
(m)
−i , X=x} in step 2. This

isn’t always possible, and the Gibbs sampler is only helpful if we can do that. It is often used in
cases where the full conditionals turn out to be named distributions, or nearly one as in Example
8.4.5 below.

For the MH algorithm we had Theorem 8.2.2 to tell us that ym was (approximately) a sample
of Θ|{X=x}, justified by the discussion in Section 8.2.3. It is possible to make similar arguments
for the Gibbs algorithm above, but we won’t include them in our course.

If the full conditionals can’t be easily sampled from, then one strategy is to use the MH
algorithm (run inside of step 2 above) to obtain samples of Θ−i|{X=x}. This technique is known
as Metropolis-within-Gibbs. In practice, once the parameters are divided up into batches, as
described in Remark 8.4.2, some batches may be amenable to Gibbs sampling, whilst others may
require Metropolis-within-Gibbs. The details will depend on the model. Trial and error is often
required to find the best combination of techniques. We won’t try to write down algorithms of that
complexity within these notes, but you should hopefully end the course with an understanding of
how (and why) each piece of an algorithm like that would work.

Example 8.4.5 This example comes from Sections 1.1.1/7.5.3/8.6.2 of the book ‘Bayesian Ap-
proach to Intrepreting Archaeological Data’ by Buck et al (1996). The data comes from radiocar-
bon dating, and is a vector (x1, x2, . . . , xn) of estimated ages obtained (via carbon dating) from
n different objects. We write θi for the true age of object i, which is unknown. Our model for the
age of each object is xi ∼ N(θi, vi) and we assume that the estimation errors are independent, for
each i. For simplicity we will assume that the vi are known parameters, so our model family has
n parameters θ = (θ1, . . . , θn). We thus have the model family

Mθ = N(θ1, v1)⊗ . . .⊗ N(θn, vn).

From the historical context of the objects, it is known that θ1 < θ2 < . . . < θn, so we condition
our model Mθ on this event. We can use Exercise 1.8 to do this conditioning, resulting in a new
model family M ′

θ given by

fM ′
θ
(x) =

{
fMθ

(x)

P[N(θ1,v1)<N(θ2,v2)<...<N(θn,vn)]
for θ1 < θ2 < . . . < θn

0 otherwise
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∝

{∏n
i=1 fN(θi,vi)(xi) for θ1 < θ2 < . . . < θn

0 otherwise

∝

exp
(
−1

2

∑n
i=1

(θi−xi)2

vi

)
for θ1 < θ2 < . . . < θn

0 otherwise.

We use the Bayesian model (X,Θ) with model family M ′
θ and the improper prior

fΘ(θ) =

{
1 for 0 < θ1 < θ2 < . . . < θn,

0 otherwise.

By Theorem 3.1.2 we obtain that the posterior distribution has p.d.f.

fΘ|{X=x}(θ) ∝

exp
(
−1

2

∑n
i=1

(θi−xi)2

vi

)
for 0 < θ1 < θ2 < . . . < θn,

0 otherwise.
(8.13)

This is the same density as M ′
θ, except now we treat θ rather than x as the variable. The density

is symmetric in x and θ so we already know this distribution. It is the distribution of θ ∼
N(x1, v1)⊗ . . .⊗N(xn, vn) conditioned on the event 0 < θ1 < θ2 < . . . < θn. One way to simulate
samples of this distribution is via rejection sampling: simulate θ ∼ N(x1, v1) ⊗ . . . ⊗ N(xn, vn)

and reject the sample θ until it satisfies 0 < θ1 < θ2 < . . . < θn. The trouble is that unless n is
small, we will mostly end up rejecting the samples because the condition we have imposed is an
unlikely one.

From (8.13) and (8.12) we have full conditionals given by

fΘi|{Θ−i=θ−i, X=x}(θi) ∝

exp
(
−1

2

∑n
j=1

(θj−xi)2

vi

)
for θi ∈ (θi−1, θi+1),

0 otherwise

∝

exp
(
−1

2
(θi−xi)2

vi

)
for θi ∈ (θi−1, θi+1),

0 otherwise

(where we set θ0 = 0 and θn+1 = ∞ to make convenient notation). Note that θi is the only variable
here, and the second line follows because θ−i and x are treated as constants. We recognize this full
conditional distribution as that of θi ∼ N(xi, vi) conditioned on the event θi ∈ (θi−1, θi+1). These
full conditionals are much easier to sample from: we use rejection sampling, sample θi ∼ N(xi, vi)

and reject until we obtain a sample for which θi ∈ (θi−1, θi+1). Hence, in this situation we have
all the necessary ingredients to use a Gibbs sampler.

112



©Nic Freeman, University of Sheffield, 2025.

8.5 Exercises on Chapter 8

8.1 Inside the files 8_mh_random_walk_case.ipynb and 8_mh_random_walk_case.Rmd you will?

find code that generates the first two plots in Example 8.2.3.

This question investigates some modifications to the code from Example 8.2.3.

(a) In each case (i)-(iv) listed below, start from the original code and make the change(s)
listed. Then, note any differences between the two new plots and the two plots in
Example 8.2.3. Give a brief explanation for any differences you notice.
(i) Change the proposal distribution from Q = Y + N(0, 1) to Q = Y + N(0, 10).
(ii) Change the initial location from 0 to 10.
(iii) Change the initial location from 0 to 20.
(iv) Change the initial location from 0 to 20 and change the proposal distribution from

Q = Y + N(0, 1) to Q = Y + N(0, 10).
(b) For (i)-(iv) in part (a), in which cases does it look like the MH algorithm has converged

after 100 steps?
(c) Change the target distribution from Cauchy(0, 1) to Exp(1). You should now notice

that the sequence (ym) generated by the MH algorithm never goes below zero. Why
has this occurred?

8.2 A Cauchy distribution Mθ = Cauchy(0, θ) with parameter θ ∈ (0,∞) is used to model the? ?

errors made by a financial model, which forecasts the price in dollars of a particular asset.
By using historical data it is possible to compare the predictions of the model to the prices
that were later observed. Using ten independent time periods, the following errors were
observed

(−11.93, 23.26, −13.17, 38.25, −0.36).

It is decided to use a prior density

f(θ) ∝

{
1
θ2 for θ ∈ (1,∞)

0 otherwise.

(a) Find the posterior density of θ|x. Is this a proper or improper density function?
(b) Write an MCMC algorithm that produces samples from θ|x and plot a histogram of 100

samples.
Hint: Re-use some of your code from Exercise 8.1.

8.3 Look at the right hand column of the reference sheet ‘Bayesian Models and Related Formulae’?

in Appendix A. For each item listed there, identify which Section, Lemma, equation, or other
part of Chapter 7 it comes from.

Do the same for the both columns of the reference sheet ‘Some Useful Algorithms’, with
Chapter 8.

8.4 (a) Convince yourself that, within the MH algorithm, the choice of proposal distribution? ?

Q = Y would result in α = 1 i.e. all proposals are accepted. This observation is not
helpful in practice – why not?
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(b) A related question: what happens if we try to use the Gibbs sampler, as described in
Section 8.4, with d = 1?

8.5 Write Definition 8.4.3 in Bayesian shorthand.? ?

8.6 In this question we prove the final claim in Example 8.2.4.? ? ?

(a) Let X be a continuous random variable with p.d.f. fX . Show that X d
= −X if and only

if fX(x) = fX(−x).

(b) Let Y,Q and Z be continuous random variables with range R. Suppose that Q = Y +Z,
where Z is independent of (Y,Q) and fZ(z) = fZ(−z) for all z ∈ R. Show that

fQ|{Y =y}(ỹ) = fQ|{Y =ỹ}(y)

for all y, ỹ ∈ R, assuming that both are well defined.
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Appendix A

Reference Sheets

The reference sheets displayed on the following pages will be provided in the exam. Full size
copies will also be given out alongside these lecture notes, at the start of the course.
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Appendix B

Advice for revision/exams

There are two different exam papers, one for MAS364 (sat in January) and one for MAS61006 (sat in the summer).
The MAS61006 exam contains additional questions on the material taught in semester 2. For both exams the
rubric reads:

Candidates should attempt ALL questions. The maximum marks for the various parts of the questions
are indicated.

Within these notes, material marked with a (�) is non-examinable for everyone. You do not need to study these
parts during your revision.

• You will be asked to solve problems based on the material in these notes. There will be a broad range of
difficulty amongst the questions. Some will be variations of questions in the assignments/notes, others will
also try to test your ingenuity.

• Many of the important definitions and results appear on the (six page long!) reference sheets. You should
practice using the reference sheets to help you solve problems.

• You will not be expected to reproduce long proofs from memory. Most proofs are marked as off-syllabus
anyway, within these notes. You are expected to have followed the techniques within the proofs when they
are present, and to be able to use these techniques in your own problem solving (e.g. Lemma 1.5.1).

• There are marks for attempting a suitable method, and for justifying mathematical steps, as well as for
reaching a correct conclusion.

Revision activities
The most important activities:

1. Solve the assignment questions, and end-of-chapter exercises that are at ? and ? ? difficulty levels. Check
your solutions against the typed solutions.

2. Learn the key definitions, results, and examples.
3. Do the practice exam paper and mark your own solutions.

In all cases, you are welcome to come and discuss any questions/comments/typos. Please use office hours or email
to arrange a convenient time.
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Appendix C

Solutions to exercises

Chapter 1
1.1 (a) Samples of X will tend to be in one of three different locations: (1) sharply clustered around −7.5,

(2) a broad cluster between approximately [−4, 4] and (3) close to 10, but not greater than 10.
(b) We have ∫

R
fXθ (x) dx =

∫ ∞

1

(θ − 1)x−θ dx =

[
(θ − 1)

x1−θ

1− θ

]∞
x=1

= 1

as required.
1.2 Neither.

To see that Z is not continuous: recall that for any continuous random variable Z′ we have P[Z′ = z] = 0
for all z′. However, P[Z = 0] = P[Y = 0] + P[Y = 1, X = 0] = 1

2
+ 1

2
(0) = 1

2
.

To see that Z is not discrete: note that Z takes values across all of R, coming from the case where Y = 1,
which has probability 1

2
.

1.3 (a) U ′ has the conditional distribution of U given the event {U ∈ [a, b]}.
(b) We apply Lemma 1.4.1 with A = [a, b]. Part 1 gives that P[U ′ ∈ [a, b]] = 1. Part 2 gives that for all

B ⊆ [a, b] we have

P[U ′ ∈ B] =
P[U ∈ B]

P[U ∈ A]
=

∫
B

1
c−a dx∫ b

a
1
c−a dx

=

∫
B

1
c−a dx
b−a
c−a

=

∫
B

1

b− a
dx.

Hence U ′ is a continuous random variable with p.d.f.

fU′(u) =

{
1
b−a for x ∈ [a, b]

0 otherwise.

This is the continuous uniform distribution on [a, b].
(c) We have:

1.4 Suppose that G has the Geometric(p) distribution, that is P[G = g] = pg−1(1 − p) for g ∈ {1, . . .}, where
p ∈ [0, 1]. Let G′ d

= G|{G≥n}, where n ∈ N.

(a) We apply Lemma 1.4.1 with A = {n, n + 1, . . .}. From part 1 of the lemma we have P[G′ ∈ {n, n +
1, . . . , }] = 1. From part 2, for g ∈ {n, n+ 1, . . .} we have

P[G′ = g] =
P[G = g]

P[G ∈ A]
=

pg(1− p)∑∞
k=n p

k(1− p)
=

pg(1− p)

(1− p)
∑∞
k=n p

k
=

pg(1− p)

(1− p) p
n

1−p
= pg−n(1− p)
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(b) The claim is correct. For g ∈ {n, n+1, . . . , }, the −n term in pg−n above corresponds to removing the
factors p corresponding to success/failure of the first n trials, from what would otherwise have been
pg in the p.m.f. of G.

1.5 You should notice that as n gets larger it takes longer to obtain samples, and it quickly becomes impractical
to do so as n grows large. This is because it becomes more likely that samples fall into (−∞, n) and are
rejected, so it takes longer to find a sample that is accepted.

1.6 (a) We have
∞∑
y=1

∞∑
x=1

2−xy(1− 2−y) =

∞∑
y=1

(1− 2−y)

∞∑
x=1

(2−y)x =

∞∑
y=1

(1− 2−y)
2−y

1− 2−y
=

∞∑
y=1

2−y =
1/2

1− 1/2
= 1

as required. Here we use that the summations are geometric sums.
The random variables X and Y are not independent because (1.14) does not factorise into the form
g(x)h(y).

(b) (i) To find the marginal distribution of Y we sum over all possible values of x, giving

P[Y = y] =

∞∑
x=1

2−xy(1− 2−y) = (1− 2−y)

∞∑
x=1

(2−y)x = (1− 2−y)
2−y

1− 2−y
=

(
1

2

)y
for y ∈ N.

(ii) Using Lemma 1.5.1 we have

P[X|{Y=5} = x] =
P[X = x, Y = 5]

P[Y = 5]
=

2−5x(1− 2−5)

2−5
=

(
1− 1

25

)(
1

25

)x−1

.

In the middle equality we use (1.14) and part (a).
(iii) Again using Lemma 1.5.1 we have

P[Y |{X≥5} = y] =
P[X ≥ 5, Y = y]

P[X ≥ 5]
. (C.1)

We need to calculate the top and bottom of (C.1). For y ∈ N,

P[X ≥ 5, Y = y] =
∞∑
x=5

2−xy(1− 2−y)

= (1− 2−y)

∞∑
x=5

(2−y)x = (1− 2−y)
(2−y)5

1− 2−y
= 2−5y.

Hence P[X ≥ 5] =
∑∞
y=1 2

−5y =
∑∞
y=1(2

−5)y = 2−5

1−2−5 . Putting these into (C.1) we obtain

P[Y |{X≥5} = y] =
2−5y(1− 2−5)

2−5
=

(
1− 1

25

)(
1

25

)y−1

for y ∈ N.
The distributions found in (b) are all Geometric distributions. They have range {1, 2, . . . , } rather
than {0, 1, . . . , } i.e. using the alternative parametrization mentioned on the reference sheet.

1.7 Let X ∈ N(0, 1) and set A = [0,∞), as in Example 1.4.3. Let Y ′ = |X|. Show that Y ′ d
= X|{X∈A}.

Note that P[Y ′ ≥ 0] = 1. For y > 0 we can calculate,

P[Y ′ ≤ y] = P[X ≥ −y or X ≤ y] =

∫ y

−y
fX(x) dx =

∫ 0

−y
fX(x) dx+

∫ y

0

fX(x) dx = 2

∫ y

0

fX(x).

The last equality follows by symmetry (or a v = −y substitution) because fX(x) = fX(−x). Differentiating,
for y > 0 we have fY ′(y) = 2fX(y). Hence Y ′ is a continuous random variable with p.d.f.

fY ′(y) =

{
2fX(y) for y > 0

0 otherwise.

This matches the distribution of X|{X≥0} that we obtained in Example 1.4.3.
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1.8 From part 2 of Lemma 1.4.1, for B ⊆ A we have

P[X|{X∈A} ∈ B] =
P[X ∈ A ∩B]

P[X ∈ A]
=

P[X ∈ B]

P[X ∈ A]
=

∫
B
fX(x) dx

P[X ∈ A]
=

∫
B

fX(x)

P[X ∈ A]
dx.

By part 1 of Lemma 1.4.1 we have P[X|{X∈A} ∈ B] = 1. By Definition 1.1.1 X is a continuous random
variable with p.d.f.

fX|{X∈A}(x) =

{
fX (x)
P[X∈A]

if x ∈ A

0 otherwise.

1.9 Let us write LX(A) = P[X ∈ A] for the law of X.

For the ‘if’ part, suppose that X d
= Y . Take A = {x} in Definition 1.2.1, where x ∈ R, then LX({x}) =

P[X ∈ {x}] = P[X = x] = pX(x), and similarly for Y . Since LX = LY we have pX(x) = pY (x).
For the ‘only if’ part, suppose that pX(x) = pY (x) for all x ∈ Rd. Note that for any A ⊆ Rd we have
LX(A) = P[X ∈ A] =

∑
x∈A P[X = a] =

∑
x∈A pX(x), and similarly for Y . Hence LX(A) = LY (A).

1.10 Suppose that X takes values in Rn and Y takes values in Rd. We apply Lemma 1.4.1, conditioning (X,Y )
to be inside the set A× Rd. By part 2 of that lemma, for all B ⊆ Rd we have

P[(X,Y ) ∈ A×B] =
P[(X,Y ) ∈ A×B]

P[(X,Y ) ∈ A× Rd]
=

P[X ∈ A, Y ∈ B]

P[X ∈ A]
=

P[X ∈ A]P[Y ∈ B]

P[X ∈ A]
= P[Y ∈ B], (C.2)

where we have used the fact thatX and Y are independent. By part 1 of the lemma we have P[(X,Y )|{X∈A} ∈
A × Rd] = 1, which since (X,Y )|{X∈A} = (X|{X∈A}, Y |{X∈A}) means that P[X|{X∈A} ∈ A] = 1. Hence,
for all B ⊆ Rd

P[Y |{X∈A} ∈ B] = P[X|{X∈A} ∈ A and Y |{X∈A} ∈ B] = P[(X,Y )|{X∈A} ∈ A×B] = P[Y ∈ B].

The last equality above uses (C.2). Thus Y d
= Y |{X∈A}.

Chapter 2
2.1 See 2_dist_sketching_solution.ipynb or 2_dist_sketching_solution.Rmd

2.2 (a) P[Mp = n] = p(1− p)n for n ∈ {1, 2, . . . , }.
(b) From Theorem 2.4.1 the posterior distribution is given by

fP |{X=5}(p) =
1∫ 1

0
P[Geometric(q) = 5]fUniform([0,1])(q) dq

P[Geometric(p) = 5]fUniform([0,1])(p) dp

=
1∫ 1

0
q(1− q)5 dq

p(1− p)5

=
1

B(2, 6)p(1− p)5

for p ∈ [0, 1] and zero elsewhere, which we recognize as the p.d.f. of Beta(2, 6).
(c) We obtain

(d) From Theorem 2.4.1, now with the prior taken as P ∼ Beta(2, 6) and the new data point x = 9, the
posterior distribution is given by

fP |{X=9}(p) =
1∫ 1

0
P[Geometric(q) = 9]fBeta(2,6)(q) dq

P[Geometric(p) = 9]fBeta(2,6)(p) dp
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=
B(2, 6)
B(2, 6)

1∫ 1

0
q(1− q)5q(1− q)9q dq

p(1− p)5p(1− p)9

=
1

B(3, 15)p
2(1− p)14

which we recognize as the p.d.f. of Beta(3, 15). Including this into our graph from (c),

(e) The p.m.f. of the predictive distribution is

P[X ′ = x′] =

∫ 1

0

P[Geometric(p) = x′]fBeta(3,15)(p) dp

for x′ ∈ {0, 1, . . .}. We sketch this:

2.3 From Theorem 2.4.1 the posterior has p.d.f.

fΛ|{X=5}(λ) =
1∫∞

0
P[Poisson(l) = 7]fExp(5)(l) dl

P[Poisson(λ) = 7]fExp(5)(λ)

=
7!

7!

1∫∞
0
l7e−l5e−5l dl

λ7e−λ5e−5λ

=
1∫∞

0
l7e−6l dl

λ7e−6λ

=
68

Γ(8)

1∫∞
0

68

Γ(8)
l7e−6l dl

λ8e−6λ

=
68

Γ(8)

1∫∞
0
fGamma(6,8)(l) dl

λ7e−6λ

=
68

Γ(8)
λ7e−6λ

for λ > 0 and zero otherwise. We recognize this as the p.d.f. of the Gamma(8, 6) distribution.
The predictive p.m.f. is given by

P[X ′ = x] =

∫ ∞

0

P[Poisson(λ) = x]fGamma(8,6)(λ) dλ

=

∫ ∞

0

λxe−λ

x!

86

Γ(8)
λ7e−6λ dλ

=
86

7!x!

∫ ∞

0

λ7+xe−7λ dλ.

for x ∈ {0, 1, . . .}.
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2.4 (a) For A ⊆ (0, 1) we have

P[X = n, Y ∈ A] =
∑
n=0

∞P[X = n, Y ∈ A]

=
1

Z

∞∑
n=0

∫
A

e−yyn(1− y)2
1

n!
dy

=
1

Z

∫
A

e−y(1− y)2
∞∑
n=0

e−yyn

n!
dy

=
1

Z

∫
A

(1− y)2 dy.

Taking A = (0, 1) we have 1 = 1
Z

∫ 1

0
(1− y)2 dy = 1

Z
1
27

, which gives Z = 1
27

and

fY (y) =

{
27(1− y)2 for y ∈ (0, 1)

0 otherwise.

We recognize the distribution Y ∼ Beta(1, 3).
(b) Using part (a) we have

P[X = n, Y ∈ A] =

∫
A

e−yyn

n!
fY (y) dy =

∫
A

P[Poisson(y) = n]fBeta(1,3)(y) dy.

Hence (X,Y ) is a Bayesian model with prior Y ∼ Beta(1, 3) and model family X|{Y=y} ∼ Poisson(y).
In particular, the last part solves the question.

Chapter 3
3.1 See 2_dist_sketching_solution.ipynb or 2_dist_sketching_solution.Rmd

3.2 (a) From Theorem 3.1.2 the posterior distribution has p.d.f.

fΘ|{X=2} =
1

Z
fExp(θ)(2)fGamma(2,3)(θ)

=
1

Z

32

Γ(2)
θe−2θθe−3θ

=
1

Z′ θ
2e−5θ

for θ > 0 and zero otherwise, where 1
Z′ = 1

Z
32

Γ(2)
. We recognize Θ|{X=2} ∼ Gamma(3, 5).

(b) From (3.2) the sampling distribution has p.d.f.

fX(x) =

∫ ∞

0

fExp(θ)(x)fGamma(2,3)(θ) dθ

=
32

Γ(2)

∫ ∞

0

θe−θxθe−3θ dθ

= 9

∫ ∞

0

θ2e−θ(x+3) dθ

= 9
2

(x+ 3)3

∫ ∞

0

(x+ 3)3

2
θ2e−θ(x+3) dθ

= 9
2

(x+ 3)3

∫ ∞

0

fGamma(3,x+3)(θ) dθ

=
18

(x+ 3)3

for x > 0 and zero otherwise.
From (3.5) and part (a), the corresponding predictive distribution has p.d.f.

fX′(x) =

∫ ∞

0

fExp(θ)(x)fGamma(3,5)(θ) dθ
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=
53

Γ(3)

∫ ∞

0

θe−θxθ2e−5θ dθ

=
53

2

∫ ∞

0

θ3e−θ(x+5) dθ

=
53

2

Γ(4)

(x+ 5)4

∫ ∞

0

(x+ 5)4

Γ(4)
θ3e−θ(x+5) dθ

=
53

2

6

(x+ 5)4

∫ ∞

0

fGamma(4,x+5)(θ) dθ

=
375

(x+ 5)4

for x > 0 and zero otherwise.
(c) Using independence, the p.d.f. of the model family now becomes

fMθ (x) =

n∏
i=1

θe−θxi = θne−θ
∑n

1 xi .

Let us write z =
∑n

1 xi. From Theorem 3.1.2 we have

fΘ|{X=x}(θ) =
1

Z
fMθ (x)fΓ(2,3)(θ)

=
1

Z

32

Γ(2)
θne−θzθe−3θ

=
1

Z′ θ
n+1e−θ(3+z)

for θ > 0 and zero otherwise. We recognize the Gamma(n+ 2, 3 + z) distribution.
3.3 We obtain:

3.4 (a) In order: Section 1.1, Section 1.2, Lemma 1.4.1, Lemma 1.5.1, equation (1.9), Lemma 1.6.1.
(b) The first part combines Definition 2.2.1 (discrete case) and Definition 3.1.1 (continuous case). The

second part combines equations (2.4) and (3.2). The third part combines Theorems 2.4.1 and 3.1.2,
as discussed at the end of Section 3.1. The fourth part combines equations (2.8) and (3.5).

3.5 In this solution we will keep track of the normalizing constants. If you prefer to write them as 1
Z

in the
style of e.g. (3.7) and use Lemma 1.2.5 to recognize the distributions, or to use ∝ as introduced in Chapter
4, that is fine – but it is difficult to make that approach work for the predictive distribution in part (b)!
In this question we need to be very careful with the limits of integrals. The Uniform([0, θ]) p.d.f. is zero
outside of [0, θ] and the Pareto(a, b) p.d.f. is zero outside of (b,∞). This matters particularly for the integrals
in part (b).

(a) From Theorem 3.1.2 the posterior distribution has p.d.f.

fΘ|{X=5}(θ) =
1∫

R fUniform([0,t])(5)fPareto(3,1)(t) dt
fUniform([0,θ])(

1
2
)fPareto(1,3)(θ)
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=
1∫∞

1
1
t
3t−4 dt

1

θ
3θ−4

=
1∫∞

1
3t−5 dt

3θ−5

=
1

3/4
θ−5

= 4θ−5

for θ > 1 and zero otherwise. We recognize the p.d.f. of the Pareto(4, 1) distribution. Note that to
deduce the second line we used fUniform([0,θ])(

1
2
) = 1

θ
, which was true because 1

2
< θ.

(b) From Theorem 3.1.2 the posterior distribution has p.d.f.

fΘ|{X=5}(θ) =
1∫

R fUniform([0,t])(5)fPareto(1,3)(t) dt
fUniform([0,θ])(5)fPareto(3,1)(θ)

=
1∫∞

1
1{5≤t}

1
t
3t−4 dt

1{5≤θ}
1

θ
3θ−4

=
1∫∞

5
3t−5 dt

1{5≤θ}3θ
−5

=
1

3 5−4

4

1{5≤θ}θ
−5

= 1{5≤θ}5
44θ−5

We recognize the p.d.f. of the Pareto(4, 5) distribution.
From (3.5) the predictive distribution has p.d.f. given by

fX′(x) =

∫ ∞

5

fUniform([0,θ])(x)fPareto(4,5)(θ) dθ

=

{∫∞
x

1
θ
544θ−5 dθ for x > 5∫∞

5
1
θ
544θ−5 dθ for x ∈ [0, 5]

=

{∫∞
x

1x≤θ5
44θ−6 dθ for x > 5∫∞

5
544θ−6 dθ for x ∈ [0, 5]

=

{
544[ θ

−5

−5
]∞x for x > 5

544[ θ
−5

−5
]∞5 for x ∈ [0, 5]

=

{
544 1

5
x−5 for x > 5

544 1
5
5−5 for x ∈ [0, 5]

=

{
534x−5 for x > 5
4
52

for x ∈ [0, 5]

for x ≥ 0 and zero otherwise.

3.6 Noting that P[Θ ∈ A] > 0], we will use Lemma 1.5.1. For B ⊆ RX we have

P[X|{Θ∈A} ∈ B] =
P[X ∈ B,Θ ∈ A]

P[Θ ∈ A]
=

1

P[Θ ∈ A]

∫
B

∫
A

fMθ (x)fΘ(θ) dθ dx

=

∫
B

∫
A

fMθ (x)fΘ|{Θ∈A}(θ) dθ dx.

To deduce the last line above we use Exercise 1.8. It follows from Definition 1.1.1 that X|{Θ∈A} is a
continuous random variable with p.d.f.

fX|{Θ∈A}(x) =

∫
A

fMθ (x)fΘ|{Θ∈A}(θ) dθ.

3.7 (a) We have∫
R
fM′

θ
(x) dx =

∫
R

∫
R
fMθ (x− y)κ(y) dy dx =

∫
R
κ(y)

(∫
R
fMθ (x− y) dx

)
dy =

∫
R
κ(y) dy = 1.

Here we used that fMθ is a p.d.f. which integrates to 1, and also our assumption that κ integrates to
1.
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(b) By Theorem 3.1.2 we have fΘ|{X=x}(θ) =
1
Z
fMθ (x)fΘ(θ) and also that

fΘ|{X′=x}
(θ) =

1

Z′ fM′
θ
(x)fΘ(θ) =

1

Z′

∫
R
fMθ (x− y)κ(y)fΘ(θ) dy =

Z

Z′

∫
R
fΘ|{X=x−y}(θ)κ(y) dy

as required.
(c) In the case where κ(x) is the p.d.f. of N(0, 1), the convolution applied to Model 1 is equivalent to

adding a N(0, 1) random variable to the data, which gives Model 2. That is, X ′ d
= X+N(0, 1). Model

2 is therefore a version of Model 1 that is designed handle (additional) noise.
It helps to visualize things, which is left for you here: the effect of convolution on the probability
density functions is to smooth them i.e. to spread out high peaks into lower and wider regions.
Equation (3.10) says that the posterior density of (X ′,Θ) can be obtained by taking the posterior
density of (X,Θ) and smoothing it in this way (with respect to the x coordinate).

Chapter 4
4.1 (a) (i) The posterior is

N
( 1

4
(14.08) + 0

1
3
4
+ 1

1

,
1

3
4
+ 1

1

)
d
= N(2.01, 0.762)

where we have rounded the parameters to two decimal places.
(ii) The p.d.f. of the sampling distribution is

fX(x) =

∫
R
fN(θ,2)(x)fN(0,1)(θ) dθ.

The p.d.f. of the posterior distribution is

fX′(x) =

∫
R
fN(θ,2)(x)fN(2.01,0.762)(θ) dθ.

(b) See 2_dist_sketching_solution.ipynb and 2_dist_sketching_solution.Rmd.
4.2 From Theorem 2.4.1 we have

fΘ|{X=x}(θ) ∝ P[Geometric(θ)⊗n = x]fBeta(α,β)(θ)

∝

(
n∏
i=1

θ(1− θ)xi

)
1

B(α, β)θ
α−1(1− θ)β−1

∝ θn(1− θ)
∑n

1 xiθα−1(1− θ)β−1

∝ θα+n−1(1− θ)β+
∑n

1 xi−1

for θ ∈ [0, 1] and zero otherwise. Using Lemma 1.2.5, we recognize the Beta(α+n, β+
∑n

1 xi) distribution,
as required.

4.3 From Theorem 2.4.1 we have

fΘ|{X=x}(θ) ∝ P[Poisson(θ)⊗n = x]fGamma(α,β)(θ)

∝

(
n∏
i=1

θxie−θ

xi!

)
βα

Γ(α)
θα−1e−βθ

∝ θ
∑n

1 xie−nθθα−1e−βθ

∝ θα+
∑n

1 xi−1e−θ(β+n)

for θ > 0 and zero otherwise. Using Lemma 1.2.5, we recognize the Gamma(α+
∑n

1 xi, β+n) distribution,
as required.

4.4 From Theorem 3.1.2 we have

fΘ|{X=x}(τ) ∝ fN(µ, 1
τ
)⊗n(x)fGamma(α,β)(τ)

∝

(
n∏
i=1

√
τ√
2π
e−

τ(xi−µ)2

2

)
βα

Γ(α)
τα−1e−βτ
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∝ τ
n
2 exp

(
−τ
2

n∑
1

(xi − µ)2
)
τα−1e−βτ

∝ τα+
n
2
−1 exp

[
−τ

(
β +

1

2

n∑
1

(xi − µ)2
)]

.

Using Lemma 1.2.5, we recognize the Gamma(α+ n
2
, β + 1

2

∑n
1 (xi − µ)2) distribution, as required.

4.5 We obtain

4.6 (a) The posterior is N(2.013, 0.36).
(b) Writing the code is left for you. The result will be the same as in part (a).
(c) We have seen that the Bayesian updates here can be done all at once, or piece by piece, and will

give the same results. Checking the formulae for the conjugate priors, in every other case covered in
this chapter it is obvious that this will be the case – only in Lemma 4.2.2 are the update formulae
complicated enough that it is not obvious from the formulae.
In fact, this principle holds with or without conjugate pairs, as we will see in Exercise 6.7.

4.7 From Theorem 3.1.2 we have

fΘ|{X=x}(θ) ∝ fWeibull(k,θ)⊗n(x)fGamma(a,b)(θ)

∝

(
n∏
i=1

θk(xi)
k−1e−θx

k
i

)
ba

Γ(a)
θa−1e−bθ

∝ θne−θ
∑n

1 x
k
i θa−1e−bθ

∝ θa+n−1e−θ(b+
∑n

1 x
k
i ).

Using Lemma 1.2.5, we recognize the Gamma(a+ n, b+
∑n

1 x
k
i ) distribution, as required.

4.8 Omitted.
4.9 (a) Taking C = 1 in Definition 4.1.1 gives f ∝ f .

(b) If f(x) = Cg(x) then g(x) = 1
C
f(x). Note that Definition 4.1.1 gives C > 0, so 1

C
> 0.

(c) If f(x) = Cg(x) and g(x) = C′h(x) then f(x) = CC′h(x). Note that Definition 4.1.1 gives C,C′ > 0,
so CC′ > 0.

Chapter 5
5.1 The data from Census 2021 is as follows.
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Age band Population Proportion (2dp)
10+ 60096227 0.89
20+ 52089688 0.77
30+ 43661735 0.65
40+ 34458842 0.51
50+ 26028478 0.39
60+ 16814195 0.25
70+ 9316631 0.14
80+ 3399106 0.05
90+ 609904 0.01

The total population was 67596281.
The point of this question that you will (probably) find it more difficult to give accurate estimates for events
that have smaller probabilities.

5.2 This is up to you!
5.3 For the model family (Mλ)λ∈(0,∞) in which Mλ ∼ Poisson(λ) we have

LMλ(x) =

λxe−λ

x!
for λ > 0

0 otherwise

where x ∈ {0, 1, . . .}. Hence d
dλ

log(LMλ(x)) =
d
dλ

(x log(λ)−λ−x!) = x
λ
− 1 = x−λ

λ
. For λ > 0, the density

function of the Jeffrey’s prior is given by

fΛ(λ) ∝ E

[(
d

dθ
log(LMθ (X))

)2
]1/2

∝ E

[(
X − λ

λ

)2
]1/2

∝ 1

λ
E
[
(X − λ)2

]1/2
∝ 1

λ
var(X)1/2

∝ 1

λ
λ1/2

∝ 1

λ1/2
.

Noting that
∫∞
0

1

λ1/2 dλ = ∞, this is an improper prior.

5.4 Our model here is Mλ = Poisson(λ)⊗12. From Theorem 2.4.1 we have

fΛ|{X=x}(x) ∝

(
1∏
i=1

2
λxie−λ

xi!

)
1√
λ

∝ λ
∑12

1 xi− 1
2 e−12λ.

Using Lemma 1.2.5 we recognize the Gamma( 1
2
+
∑n

1 xi, n) distribution with n = 12. This is a proper
distribution for all values of x, which answers part (b). For part (a) we have

∑12
1 xi = 5, so we obtain

Λ|{X=x} ∼ Gamma( 11
2
, 12). A sketch looks like
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5.5 (a) From Theorem 3.1.2 we have

fΘ|{X=x}(θ) ∝ fUniform(0,θ)(x)fExp(1)(θ) ∝

{
1
θ
e−θx for θ > x > 0,

0 otherwise,
∝

{
e−θx for θ > x > 0,

0 otherwise.

The distribution Uniform(0, θ) only generates values in (0, θ), so in order to generate the data x it
must have x ∈ (0, θ). For this reason our posterior places zero weight on θ < x. (The boundary x = θ
has probability zero, so it does not matter what happens there.)

(b) The posterior is not well defined in this case. Formally the condition x ∈ R of Theorem 3.1.2 is not
satisfied. From a more practical point of view, we have failed to account for Cromwell’s rule. Our
prior density is zero outside of θ ∈ (1, 2) but our model makes sense for all θ > 0, and to generate the
data x = 3 we would need to have θ > 3.

5.6 We argue by contradiction: suppose such a U does exist. Take c = 1 and [a, b] = [n, n + 1] and we obtain
that P[U ∈ [n, n+ 1]] = P[U ∈ [n+ 1, n+ 2]]. By a trivial induction we have P[U ∈ [0, 1]] = P[U ∈ [1, 2]] =
P[U ∈ [2, 3]] = . . ., but then

1 = P[U ∈ [0,∞)] =

∞∑
n=0

P[U ∈ [n, n+ 1]] =

∞∑
n=0

P[U ∈ [0, 1]].

This a contradiction: the right hand side is either 0 (if P[U ∈ [0, 1]] = 0) or equal to ∞ (if P[U ∈ [0, 1]] > 0).
5.7 Bob chooses his prior to be h(Θ), where Θ is Alice’s prior with p.d.f. f1. As h is strictly monotone increasing

and differentiable, this means that Bob’s prior has p.d.f.

f2(θ) =
dh−1

dθ
f1
(
h−1(θ)

)
.

Take Alice’s sampling distribution and substitute θ = h(λ) to obtain

fX1(x) =

∫
Π

fMθ (x)f1(θ) dθ

=

∫
Π

fMh(λ)
(x)f1

(
h−1(λ)

) dh−1

dλ
dλ

=

∫
Π

fMh(λ)
(x)f2(λ) dλ

= fX2(x)

as required.
5.8 By independence we have L

M⊗n
θ

(x) =
∏n
i=1 LMθ (xi), hence logL

M⊗n
θ

(x) =
∑n

1 logLMθ (xi). Taking X =

(Xi) ∼M⊗n
θ so that Xi ∼Mθ for all i, we have

E
[
− d

dθ2
logL

M⊗n
θ

(X)

]
= E

[
− d

dθ2

n∑
1

logLMθ (Xi)

]

=

n∑
i=1

E
[
− d

dθ2
logLMθ (Xi)

]
.

Hence by (5.3)

f
M⊗n

θ
(θ) ∝

n∑
i=1

fMθ (θ) ∝ nfMθ (θ) ∝ fMθ (θ)

as required.

Chapter 6
6.1 We have fGamma(α,β)(x) ∝ xα−1e−βx when x > 0 and zero otherwise. Differentiating, we have

(α− 1)xα−2e−βx + xα−1(−β)e−βx = xα−2e−βx(α− 1− βx).

This takes the value zero when, and only when, α − 1 − βx = 0, which gives x = α−1
β

. If α ≥ 1 then this
value is within the range of Gamma(α, β). Since fGamma(α,β)(0) = 0 and limx→∞ fGamma(α,β)(x) = 0, and
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there is only one turning point, that turning point must be a global maximum. Hence it is also the mode,
given by α−1

β
.

If α ∈ (0, 1) then from (C) we have that fGamma(α,β)(x) has negative derivative for all x > 0. Hence it is a
decreasing function, and the maximum will occur at x = 0. So the mode is zero, when α ∈ (0, 1).

6.2 (a) Lemma 1.6.1.
(b) Lemma 4.1.5.
(c) If λ ∼ Gamma(α, β) and x|λ ∼ Exp(λ)⊗n then λ|x ∼ Beta(α+ n, β +

∑n
1 xi).

(d) If (µ, τ) ∼ NGamma(m, p, a, b) then τ ∼ Gamma(a, b) and µ|τ ∼ N(m, 1
pτ

).

6.3 (a) If X ∼ N(0, 1) then X|{X>0}
d
= |X|. This is the result of Exercise 1.7, which is closely related to

Example 1.4.3.

(b) If X and Y are independent random variables then X|{Y=y}
d
= X. This is true if the conditioning is

well defined, as discussed (in more general terms) at the start of Section 1.5.
6.4 (a) We have fNegBin(m,θ)(xi) ∝ θm(1− θ)xi , for xi ∈ {0, 1, . . . , }. Hence

f(x|θ) = fNegBin(m,θ)⊗n(x) ∝
n∏
i=1

θm(1− θ)xi ∝ θmn(1− θ)
∑n

1 xi .

(b) From Theorem 3.1.2 we have

f(θ|x) ∝ fNegBin(m,θ)⊗n(x)fBeta(α,β)(θ)

∝ θmn(1− θ)
∑n

1 xiθα−1(1− θ)β−1

∝ θα+mn−1(1− θ)β+
∑n

1 xi−1.

By Lemma 1.2.5 we recognize θ|x ∼ Beta(α∗, β∗) with α∗ = α+mn and β∗ = β +
∑n

1 xi.
(c) (i) The reference prior is given by

f(θ) ∝ E
[
− d2

dθ2
logLNegBin(m,θ)(X)

]1/2
∝ E

[
− d2

dθ2
log
(
θmn(1− θ)

∑n
1 Xi

)]1/2
∝ E

[
− d2

dθ2

(
mn log θ +

n∑
1

Xi log(1− θ)

)]1/2

∝ E
[
mn

θ2
+

∑n
1 Xi

(1− θ)2

]1/2
∝
(
mn

θ2
+
mn(1− θ)

θ

1

(1− θ)2

)1/2

where we use that Xi ∼ NegBin(m, θ) has mean m(1−θ)
θ

. Hence

f(θ) ∝
(
mn(1− θ) +mnθ

θ2(1− θ)

)1/2

∝ θ−1(1− θ)−1/2.

(ii) f(θ) ∝ θ−1(1− θ)−1/2 not define a proper distribution. To see this,∫ 1
2

0

θ−1(1− θ)−1/2 dθ ≥
∫ 1

2

0

θ−1(1/2)−1/2 dθ = ∞.

(iii) From Theorem 3.1.2 the prior is given by

f(θ|x) ∝ θmn(1− θ)
∑n

1 xiθ−1(1− θ)−1/2

∝ θmn−1(1− θ)
∑n

1 xi−
1
2 .

Using Lemma 1.2.5 we recognize θ|x ∼ Beta(mn,
∑n

1 xi +
1
2
).
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6.5 (a) By Theorem 3.1.2 the posterior distribution has p.d.f.

f(µ, τ |x) ∝

(
n∏
i=1

fN(µ, 1
τ
)(xi)

)
1

τ

∝

(
n∏
i=1

1√
τ
e−

1
2
τ(xi−µ)2

)
1

τ

∝ τ
n
2
−1 exp

(
−τ
2

n∑
1

(xi − µ)2
)

where s2 = 1
n

∑n
1 (xi − µ)2.

(b) To find the marginal distribution of τ we must integrate over µ, giving

f(τ |x) ∝
∫
R
τ

n
2
−1 exp

(
−τ
2

n∑
1

(xi − µ)2
)
dµ

∝
∫
R
τ

n
2
−1 exp

(
−τ
2

(
ns2 + (x̄− µ)2

))
dµ

∝ τ
n
2
−1− 1

2 e−
1
2
τns2

∫
R
τ1/2 exp

(
−τ
2
(x̄− µ)2

)
dµ

∝ τ
n−1
2

−1e−
1
2
τns2

∫
R
fN(x̄, 1

τ
)(µ) dµ

∝ τ
n−1
2

−1e−
1
2
τns2 .

Using Lemma 1.2.5 for n ≥ 2 we recognize τ |x ∼ Gamma(a∗, b∗) where a∗ = n−1
2

and b∗ = 1
2
ns2. If

n = 1 then this does not correspond to a Gamma distribution, because in this case a∗ = 0 and the
Gamma distribution requires parameters in (0,∞).
We have ∫ ∞

0

∫
R
f(µ, τ |x) dµ dτ =

∫ ∞

0

f(τ |x) dτ

∝
∫ ∞

0

f(τ |x) dτ,

which is finite if n ≥ 2 because the Gamma distribution is proper. If n = 1 then we have∫ ∞

0

∫
R
f(µ, τ |x) dµ dτ =

∫ ∞

0

τ−1e−
1
2
τs2 dτ ≥ e−

1
2
sn
∫ 1

0

1

τ
dτ = ∞. (C.3)

Here we use that e−
1
2
τs2 ≥ e−

1
2
sn for τ ∈ [0, 1]. Hence f(µ, τ |x) defines an improper distribution

when n = 1.
6.6 (a) We have fΘi(θ) ≥ 0 and α, β ≥ 0 so also fΘ(θ) ≥ 0. Also,∫

R
fΘ(θ) dθ = α

∫
R
fΘ1(θ) dθ + β

∫
R
fΘ2(θ) dθ = α(1) + β(1) = 1.

(b) By Theorem 3.1.2 we have

fΘ|{X=x}(θ) =
fMθ (x)fΘ(θ)∫

Rn fMθ (x)fΘ(θ) dx

=
αfMθ (x)fΘ1(θ) + βfMθ (x)fΘ2(θ)∫

Rn fMθ (x)fΘ1(θ) dx+
∫
Rn fMθ (x)fΘ2(θ) dx

= α′fΘ1|{X1=x}(θ) + β′fΘ1|{X1=x}(θ)

where

α′ =
α
∫
Rn fMθ (x)fΘ1(θ) dθ

α
∫
Rn fMθ (x)fΘ1(θ) dx+ β

∫
Rn fMθ (x)fΘ2(θ) dx

=
αZ1

αZ1 + βZ2

β =
β
∫
Rn fMθ (x)fΘ2(θ) dθ

α
∫
Rn fMθ (x)fΘ1(θ) dx+ β

∫
Rn fMθ (x)fΘ2(θ) dx

=
βZ2

αZ1 + βZ2

where Z1 and Z2 are the normalizing constants (from Theorem 3.1.2) for fΘ1|{X1=x} and fΘ2|{X1=x}
respectively, as required.
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(c) To cover discrete Bayesian models, instead of probability density functions fMθ in (b) we can use
probability mass functions pMθ . We then need Theorem 2.4.1 in place of Theorem 3.1.2, but the
argument is otherwise the same.
We could also cover both cases at once by using likelihood functions and (6.2).

6.7 (a) (i) From the combined version of Bayes rule (6.2) we have

fΘ|{X=x}(θ) ∝ L
M⊗n

θ
(x)fΘ(θ).

Applying (6.2) twice, we obtain

fΘ|{X1=x(1)}(θ) ∝ L
M

⊗n1
θ

(x(1))fΘ(θ)

f(Θ|{X1=x(1)})|{X2=x(2)}(θ) ∝ L
M

⊗n2
θ

(x(2))L
M

⊗n1
θ

(x(1))fΘ(θ)

We note that by independence

L
M

⊗n2
θ

(x(2))L
M

⊗n1
θ

(x(1)) =

(
n1∏
i=1

LMθ (xi)

)(
n2∏

i=n1+1

LMθ (xi)

)
=

(
n2∏
i=1

LMθ (xi)

)
= L

M⊗n
θ

(x).

Hence f(Θ|{X1=x(1)})|{X2=x(2)}(θ) ∝ fΘ|{X=x}(θ), which by Lemma 1.2.5 implies that (Θ|{X1=x(1)})|{X2=x(2)}
d
=

Θ|{X=x} as required.
(ii) Applying a trivial induction to the result in part (a) we have shown that, in general for indepen-

dent data, performing Bayesian updates in individual steps for each data point (or combinations
of datapoints) will give the same results as performing one Bayesian update with all our data at
once. This implies the result of Exercise 4.6.

(b) From Bayes rule we have

f(θ|x) ∝ f(x|θ)f(θ)
f(θ|x(1)) ∝ f(x(1)|θ)f(θ)

f(θ|x(1), x(2)) ∝ f(x(2)|θ)f(x(1)|θ)f(θ).

By independence (or more strictly, by conditional independence of x(1) and x(2) given θ) we have

f(x|θ) = f(x(1), x(2)|θ) ∝ f(x(1)|θ)f(x(2)|θ)

hence f(θ|x) ∝ f(θ|x(1), x(2)). By Lemma 1.2.5 we have θ|x d
= θ|x(1), x(2).

Chapter 7
7.1 fX can be reasonably approximated by its mode. The median and mean would not be particularly bad

choices, but the mode is best because the long right-hand tail (that does not contain much mass) will pull
the median and mean slightly rightwards, away from the from region of highest density.
fY is tricky, because now the right hand tail contains substantial mass. It would be better not to approxi-
mate it with a point estimate, but if we had to do so then the median or mean would be reasonable choices,
depending on the context. Alongside our point estimate, we should try to make sure the right-hand skew
of the distribution is communicated in some way. The mode will be far below most of the mass of the
distribution, so is a bad choice here.
There is no reasonable way to approximate fZ with a point estimate. We could not capture the key feature
of the distribution: that it has two approximately evenly sized peaks in different regions.

7.2 (a) We find numerically that the prior and posterior odds ratios are

P[Beta(2, 8) > 0.2]

P[Beta(2, 8) ≤ 0.2]
= 0.77 and P[Beta(11, 19) > 0.2]

P[Beta(11, 19) ≤ 0.2]
= 49.75

to two decimal places. The Bayes factor is 64.30.
(b) For x ∈ {0, 1, . . . ,m} and p ∈ [0, 1] we have

LBin(m,p)⊗n(x) ∝ px(1− p)m−x
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so logLBin(m,p)(x) = x log p+ (m− x) log(1− p). Hence

d2

dp2
logLBin(m,p)(x) =

−x
p2

+
1− x

(1− p)2
.

Setting X ∼ Bin(m, p) and using (5.3), the reference prior has density

f(p) ∝ E
[
X

p2
+

m−X

(1− p)2

]1/2
∝
(
E[X]

p2
+
m− E[X]

(1− p)2

)1/2

∝
(
mp

p2
+
m−mp

(1− p)2

)1/2

∝
(
1

p
+

1

1− p

)1/2

∝
(

1

p(1− p)

)1/2

.

Using Lemma 1.2.5 we identify then Beta( 1
2
, 1
2
) distribution.

We find numerically that the prior and posterior odds ratios are

P[Beta( 1
2
, 1
2
) > 0.2]

P[Beta( 1
2
, 1
2
) ≤ 0.2]

= 2.39 and
P[Beta( 1

2
+ 9, 1

2
+ 11) > 0.2]

P[Beta( 1
2
+ 9, 1

2
+ 11) ≤ 0.2]

= 191.15

to two decimal places. The Bayes factor is 80.05.
The Bayes factor has not changed much, even though the odds ratios are quite different. For both
choices of prior it suggests strong evidence for H0 over H1.

(c) The regulator will be interested by both sets of analysis. In particular, by the fact that both Bayes
factors (using the informative prior elicited from the scientist and the uninformative reference prior)
point towards the hypothesis θ > 0.2, suggests that the analysis is robust i.e. is not overly sensitive
to the particular methodology used.
This is a highly stylized example. Medical trials tend to be complex experiments with multiple subgroups,
typically with outcomes that are not easily reducible to success vs. failure. The process of deciding what
statistics will be reported is often done in negotiation with the regulator, before the trial begins.

7.3 (a) The reference density f(λ) is not proper, so we cannot calculate the probabilities that λ ∈ [0, 2) or
λ ∈ [2,∞) with respect to this density. The prior odds are not well-defined in this situation.

(b) The data given has n = 40 and
∑n

1 xi = 109. Hence the posterior is λ|x ∼ Gamma( 5
4
+109, 1

5
+40)

d
=

Gamma(110.25, 40.2). We find numerically that the prior and posterior odd ratios are

P[Gamma( 5
4
, 1
5
) ≥ 2]

P[Gamma( 5
4
, 1
5
) < 2]

= 3.42 and P[Gamma(110.25, 40.2) ≥ 2]

P[Gamma(110.25, 40.2) < 2]
= 1093.84

to two decimal places. The Bayes factor is 319.75.
We have (very) strong evidence for H0 over H1. A Poisson model is known to be reasonable, at least
over large enough intervals of time, for large earthquakes. Assuming that we believe this model, we
have strong evidence that Japan will, on average, experience two or more earthquakes of magnitude
above 7.5 every year.
In case this sounds like unreasonably many earthquakes: earthquakes can occur deep underground, as
well as offshore, and in such a case you may not hear much about them.

(c) For our new hypothesis H0 : λ ≥ 3, we find numerically that the prior and posterior odd ratios are

P[Gamma( 5
4
, 1
5
) ≥ 3]

P[Gamma( 5
4
, 1
5
) < 3]

= 1.95 and P[Gamma(110.25, 40.2) ≥ 3]

P[Gamma(110.25, 40.2) < 3]
= 0.19

to two decimal places. The Bayes factor is 0.09.
There is no evidence here to favour H0 over the opposite hypothesis H1 : λ < 3. In fact, swapping H0

and H1 will mean that the Bayes factor becomes 1/B, which in this case is 1/0.09 = 10.14, meaning
that we have strong evidence to favour H1 over H0.
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7.4 You should obtain a = 0.80 and b = 5.32 to two decimal places, and the following figure.

7.5 (a) I will spare you the details, but I have conducted an elicitation procedure on my wife who has
(somewhat reluctantly) supplied us with the prior distribution Exp( 1

1.7
).

(b) The dataset has n = 8 and
∑n

1 xi = 18. Hence the posterior distribution is Gamma(1+ 18, 1
1.7

+8) =
Gamma(19, 8.59) with parameters to two decimal places.

(c) An equally tailed 95% HPD region is [1.33, 3.31], to two decimal places, and looks like

7.6 (a) From the dataset we have n = 40, x̄ = 7.55 and s2 = 0.51, to two decimal places. Hence t|x ∼
Student-t(39) with a 95% HPD region [−2.02, 2.02],

The relationship between µ|x and t|x is that µ|x = x̄ + (t|x)
√
n
s

. Note that the distribution of t|x is
symmetric about 0, hence the distribution of µ|x = x̄+(t|x)

√
n
s

will also be symmetric about its mean,
and the mean of µ|x will be x̄. An equally tailed 95% HPD region is given by [x̄−2.02

√
n
s
, x̄+2.02

√
n
s
].

Putting in x̄, n and s, and this comes out as [7.33, 7.78] to two decimal places.
(b) The posterior density function is given by

f(µ, φ) =

(
n∏
i=1

fN(µ,φ)(xi)

)
1

φ

∝ 1

φn/2+1
exp

(
− 1

2φ

n∑
1

(xi − µ)2
)

∝ 1

φn/2+1
exp

(
− 1

2φ

(
ns2 + n(x̄− µ)2

))
where we have used (4.10) and the notation of that identity, x̄ =

∑n
1 xi and s2 = 1

n

∑n
1 (xi − x̄)2.

Hence the marginal density f(µ|x) satisfies

f(µ|x) ∝
∫ ∞

0

1

φn/2+1
exp

(
− 1

2φ

(
ns2 + n(x̄− µ)2

)
)

)
dφ.

To compute this integral we make the substitution ψ = 1
2φ

(ns2+n(x̄−µ)2). We have dψ
dφ

= −1
2φ2 (ns

2+

n(x̄− µ)2), and hence

f(µ|x) ∝
∫ ∞

0

1

φn/2+1
e−ψ

2φ2

ns2 + n(x̄− µ)2
dψ
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∝ 1

(ns2 + n(x̄− µ)2)n/2

∫ ∞

0

ψn/2−1e−ψ dψ

∝ 1

(ns2 + n(x̄− µ)2)n/2

where we use the fact that
∫∞
0
fGamma(n/2,1)(ψ) dψ = 1. We lastly transform t = µ−x̄

S/
√
n

, to transform
the probability density function of µ|x into that of τ |x, giving

f(τ |x) ∝ f(µ|x)
∣∣∣∣dµdt

∣∣∣∣
∝
(
ns2 + n

S2t2

n

)n/2
∝
(
1 +

t2

n− 1

)−n/2

Note that
∣∣ dµ
dt

∣∣ is constant, so is absorbed by ∝. In the last line we use that ns2 = (n − 1)S2. By
Lemma 1.2.5 we identify τ |x ∼ Student-t(n− 1), as required.

7.7 We have

B =
P[Θ|{X=x} ∈ Π0]P[Θ ∈ H1]

P[Θ|{X=x} ∈ Π1]P[Θ ∈ H0]
=

1
Z

∫
Π0
fMθ (x)fΘ(θ) dθ P[Θ ∈ H1]

1
Z

∫
Π1
fMθ (x)fΘ(θ) dθP[Θ ∈ H0]

=

∫
Π0
fMθ (x)

fΘ(θ)
P[Θ∈H0]

dθ∫
Π1
fMθ (x)

fΘ(θ)
P[Θ∈H1]

dθ
=

∫
Π0
fMθ (x)fΘ|{Θ∈H0}(θ) dθ∫

Π1
fMθ (x)fΘ|{Θ∈H1}(θ) dθ

=
fX|{Θ∈H0}(x)

fX|{Θ∈H1}(x)
.

Here, the third equality is a consequence of Theorem 3.1.2. The second-to-last inequality uses Exercise 1.8
and the final equality uses Exercise 3.6.

Chapter 8
8.1 (a,b) (i) We will answer both (a) and (b) here:

Not much has changed from Example 8.2.3 here; it is clear that the MH algorithm is making
larger movements but the approximation to the Cauchy(0, 1) distribution is still quite good.

(ii) We obtain:
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Here the MH algorithm is struggling to converge, due to being started (just) outside of the bulk
of the Cauchy(0, 1) distribution that we are trying to sample. We can see in both pictures that
too many samples are appearing at large values.

(iii) We obtain:

The MH algorithm is failing to converge here. The effect of the initial value is still very visible
after 100 steps. most of the samples are too large.

(iv) We obtain:
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Here, by comparison to part (iii), the MH algorithm is producing good approximations to the
Cauchy distributions, despite begin started at an unhelpful initial value. Increasing the step size
from N(0, 1) to N(0, 202) has helped it to find its way back into the bulk of the distribution,
quickly enough to have converged within 100 steps.

(c) Any proposals ỹ < 0 will be rejected, because

α = min
{
1,
fExp(1)(ỹ)

fExp(1)(y)

}
= min

{
1,

0

fExp(1)(y)

}
= 0

due the fact that fExp(1) has range (0,∞). Hence the MH algorithm will never move below 0.
8.2 (a) The posterior density is

f(θ|x) ∝

(
5∏
i=1

θ2

x2i + θ2

)
1

θ2
.

for θ > 1 and zero otherwise.
There isn’t any advantage to multiplying this expression out – it won’t simplify into anything nice!
Noting that θ2

x2+θ2
≤ 1, we have f(θ|x) ≤ 1

θ2
, which means that

∫
R f(θ|x) dθ ≤

∫∞
1
θ−2 dθ <∞. Hence

f(θ|x) is a proper density function.
(b) See the files 8_mcmc.ipynb and 8_mcmc.Rmd in the solutions folder.

8.3 (a) In order: Definition 7.1.1, equation (7.3) and the table shortly below it, Definition 7.2.1, equation
(7.5).

(b) In order, left column: Section 8.2.1, Section 8.2.2, Example 8.2.1 / Exercise 8.6.
In order, right column: Section 8.3.1, Section 8.4 (the algorithm is below Remark 8.4.4), Definition
8.4.3.

8.4 The point is that we need to take samples of Q in step 1 of the MH algorithm. If we already had an easy
way to generate samples of Y , then we wouldn’t bother using the MH algorithm anyway. So it doesn’t help
to set Q d

= Y .
If we try to use the Gibbs algorithm in d = 1 then, strictly, our definition of the full conditionals in Definition
8.4.3 no longer works as intended because if Θ = (θ1) then Θ−1 = (), the empty vector! However, if we
try to use the same idea in d = 1 and take the proposal Q d

= Θ|{X=x}, then we run into an instance
of the problem described above, here with Y

d
= Θ|{X=x}, which is the posterior distribution that the

MCMC/Gibbs algorithms are trying to sample from.
8.5 The full conditional distribution of θi is the distribution of θi|θ−i, x. It has p.d.f. f(θi|θ−i, x) ∝ f(θ), where

on the right hand side we treat θi 7→ f(θ) as a function of θi only and f(θ) is the density of θ = (θ1, . . . , θd).

8.6 (a) Suppose that X d
= −X. Then P[X ≤ x] = P[−X ≤ x] = P[−x ≤ X], so

∫ x
−∞ fX(u) du =

∫∞
−x fXu du.

Substituting v = −u in the second integral we obtain

P[X ≤ x] =

∫ x

−∞
fX(u) du =

∫ x

−∞
fX(−v) dv.

Hence the function v 7→ fX(−v) is the p.d.f. of X, which we know is also fX(x). Swapping v for x
gives that fX(x) = fX(−x).
Now suppose that fX(x) = fX(−x). Then, using the substitution v = −u,

P[X ≤ x] =

∫ x

−∞
fX(u) du =

∫ x

−∞
fX(−u) du =

∫ ∞

−x
fX(v) dv = P[−x ≤ X] = P[−X ≤ x].

Hence X d
= −X.

Strictly, when we write fX(x) = fX(−x) here, we should take into account the comments about
probability density functions only being defined ‘almost everywhere’ from Sections 1.1.1 and 1.2.
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(b) By Remark 1.6.4 we have Q|{Y=y}
d
= y + Z. From the first equation we have

P[Q|{Y=y} ≤ ỹ] = P[y + Z ≤ ỹ] = P[Z ≤ ỹ − y].

Hence, differentiating with respect to ỹ, the p.d.f. of Q|{Y=y} is

fQ|{Y =y}(ỹ) = fZ(ỹ − y).

Using this fact along with fZ(z) = fZ(−z),

fQ|{Y =y}(ỹ) = fZ(ỹ − y) = fZ(y − ỹ) = fQ|{Y =ỹ}(y).
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