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Chapter 0

Preliminaries

0.1 Abstract

The Spatial A-Fleming-Viot process (SAFV) is a stochastic process developed to model the frequency
of genes occurring within a population inhabiting R? (although with extra effort it can be defined in a
general Lusin space). It is essentially a spatial version of the generalised form of the Fleming-Viot process
due to Bertoin and Le Gall (2003)).

In Chapter [I] we introduce the Fleming-Viot process and outline the major steps in its development.
We start from the original definition in [Fleming and Viot| (1979) and finish with a description of the
duality between the A-Fleming-Viot process of Bertoin and Le Gall (2003) and the A-coalescents of
Pitman| (1999)), |Sagitov| (1999) and Donnelly and Kurtz (1999al). From there we move on to our Chapter
[2] which begins with a definition of the most basic version of the SAFV process. We use this basic version
to introduce the state space, which has a non-trivial topology coming from [Evans| (1998|), appropriate
duality and an informal discussion of existence. We then review the literature to date on the SAFV
process and give our own, more general formulation of the process.

In Chapter |3| we give a proof of the existence of our formulation of the SAFV process and characterise
it as the solution to a martingale problem. We are able to prove uniqueness (via duality) in the case
without selection but are unable to give a general proof of uniqueness.

In Chapter [4| we work with a family of processes which we call bursting processes. Bursting processes
are a spatially discretized version of a particular type of SAFV process; they turn out to also be a
generalized version of the Voter model. In |Cox et al. (2000)) it was shown that in dimensions d > 2 the
Voter model could be rescaled to super-Brownian motion and we give a proof (in d > 3) extending this
result to bursting processes. Our final chapter discusses ideas for further work.

The first two chapters contain no new material and as such we will permit ourselves to discuss
known results in an informal style. Chapters 3 and 4 contain new results for which we adopt a properly
mathematical approach to our proofs.

0.2 Dependency of the chapters

Figureoutlines the dependency between the sectionsﬂ A solid arrow indicates an important dependency
(e.g. carried over notation) whilst a dotted arrow indicates a dependence that is helpful but non-essential.

The shortest self contained routes to understanding the statements of results in Chapters 3 and 4 can
be found via the thickened arrows on Figure

The reader who is already familiar with the terminology of population genetics will have little difficulty
omitting our first chapter and beginning with Chapter [2| It is preferable but non-essential to be familiar
with the A-Fleming-Viot process discussed in Sections and before reading Chapter 2] A self
contained description of the A-Fleming-Viot process can be found shortly after Definition

Chapter |3 cannot be read without understanding Chapter [2| in particular the construction of the
state space in Section and the informal description of our version of the SAFV process in Section

INot including Chapters 0 and 5, all appendices, and introductory paragraphs at the start of some chapters.
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1.2.2

1.2.3

Figure 1: Diagram of dependency between sections.

In Chapter [3] we continue to use much of the notation set up in Chapter

Chapter [4] on the other hand, stands on its own and (with the exception of the paragraph which
portrays bursting processes as a discretization of the SAFV process) can be understood without having
read the preceeding chapters. This does not illustrate a marked change of topic in the thesis but rather
the fact that in Chapter [4 we work with a simplified spatially discretized version of the SAFV process
and in order to do so we set up entirely new notation.

0.3 Notation

We will define all our notation when we come to it in the text, but we give here a list of common notation
which we use throughout the thesis. In each of the following definitions we use the space A as a dummy
space. In each case A is assumed to have the properties appropriate for the definition to make sense.
Most of this notation is in common usage, in fact the vast majority is that of [Ethier and Kurtz (1986)).

Spaces of measures. Let Mp(A) denote the set of finite signed measures on A, equipped with the
weak topology (unless it is explicitly specified otherwise) and let £2(A) denote the closed subspace of
probability measures on A. We denote the delta measure of a € A by d§,(B) = 1{a € B}.

Spaces of functions. Let DI denote the space of cadlag paths f : I — A, where I € R is an
interval (usually I = [0,00)). Equip D4l with the Skorokhod topology. Whenever we use the terms
‘vector space’, ‘Banach space’, etc, we refer to spaces over R with pointwise operations. Let C'(A) denote
the vector space of continuous functions on A with the topology of uniform convergence on compact sets.
Let C(A) denote the continuous functions which are bounded. Then C(A) is a Banach space with the



supremum norm || - ||... Let C(A) denote the subspace of such functions which have compact support
and let C(A) denote the further subspace of continuous functions on A with compact support and
derivatives of all orders.

Multiplication operators. We denote product measure with the symbol (X) and write (f x g)(z,y) =
F(2)g(y) (but, as normal, (fg)(x) = f(x)g(x)).

Integrals. We will use the notations § f(z)dz = {dz f(z) for integrals interchangeably; Mostly we
will write § f(z)dz but when we come to write down some especially long generators of jump processes
we will tend to use {dz f(z).

Euclidean space. We use the letter d € N for dimension. We denote balls in R? by B,.(z) = {z €
R?; |z — x| < r}. The Borel subsets of R? will be denoted B¢. We use £ for Lebesgue (i.e. d-dimensional
Hausdorff) measure in R? with the intention that the dimension should be clear from the context.

Other. We will often use superscripts to denote dependencies as well as powers and this also should
be clear from the context. Some of our notation has been chosen to agree with particular references. For
the SAFV process these are [Evans| (1998) and Barton et al.| (2010b|) whereas for bursting processes we
use notation similar to [Cox et al.| (2000)).

0.4 Acknowledgements

This thesis was written at the end of the first year of my D. Phil. at Oxford University under the
supervision of Prof. Alison Etheridge and Dr. Ben Hambly. I am very grateful also to Dr. Amandine
Véber and Prof. Ed Perkins for their hospitality and helpful discussion.



Chapter 1

An introduction to Fleming-Viot
processes

In this Chapter we describe the development of Fleming-Viot processes, beginning with an informal
construction in the style of the original paper [Fleming and Viot| (1979)) which we relate to the more
commonly cited definitions of [Dawson and Hochberg| (1982)) and |[Etheridge| (2000). We outline the dual-
ity between the Fleming-Viot process and Kingman’s coalescent before finishing our exploration of the
classical Fleming-Viot process with a basic version of the Donelly-Kurtz (1996)) lookdown construction.

The SAFV process finds its clearest connection to the literature via the generalised Fleming-Viot
process of [Bertoin and Le Galll (2003). We outline their framework for general exchangeable coalescents
on N and the resulting duality between what, following [Etheridge et al.| (2010), we refer to as the A-
Fleming-Viot process and the A-coalescents of Pitman| (1999) and [Sagitov| (1999). This same duality was
implicit in [Donnelly and Kurtz (1999a).

1.1 Biological terminology

Let us begin with an informal description of some of the terminology of population genetics. Our intention
is to establish common language and we do not imply biological justification for the processes we consider.

In mathematical English, an individual is a single organism and a population is a set of individuals.
We remark that in contrast to the natural language meaning of ‘population’ we do not require all the
individuals in some population to exist at the same instant in time. The type space is the set of genetic
types an individual could assume. Usually we will choose our notation in such a way as an individual
can only assume a single type at any one time.

A coalesent is a stochastic process whose initial state is some population X and over time groups
the elements of X together. For example the initial state of the coalescent might be {1,2,3,4,5,6} and
at some later time the state of the process might be {(1,4),2,(3,5,6)}. Usually this represents looking
backwards in time and describing which individuals are descended from common ancestors.

If we view a coalescent in reversed time we see a branching p?"ocess{-f]7 in which we start with some
individuals and over time the currently alive individuals give birth to more individuals. Usually when
new individuals are born at time ¢ one or more individuals alive at time ¢t— will pass on some of their
characteristics (which could constitute spatial position and/or genetic type). These individuals will be
referred to as the parents and the individuals who are born will be referred to as the offspring or children.
We will almost exclusively look at processes where each reproduction event involves only one parent. Any
occurrence within the process which potentially results in individuals being born or killed will be known
as a reproduction event.

We explain the canonical way in which a coalescent and a branching process are ideologically the same
object viewed respectively with time running in opposite directions via the following example. We will

1We use term informally here; we do not mean the Galton-Watson process specifically, just any process with a branching
structure. Similarly, by coalescent we refer to the concept rather than precise mathematics.



usually parametrize time with the variable ¢t and we will alternate between ‘forwards in time’ referring to
coalescents or branching processes as is convenient. Let B.(z) = {y e R; |y — z| < r}.

Example 1.1.1 Let K be some set, which represents the different genetic types an individual may as-
sume. We define a process Fy; which at any time takes its values in the set .F of functions from R to
K. The interpretation is that at all times t € [0,00) we have a single individual at each x € R and Fi(x)
represents the type of the individual at x € R at time t € [0, ).

The evolution of the process is specified as follows. Pick some initial state Fy. Let A be a Poisson
point process with points (t,z) € [0,00) x R of intensity given by the Lebesgue measure dt ® dx.

o If (t,y) € A then at time t the individuals at points x € Bi(y) die and are replaced with new
individuals which have the type of the individual at y at time t—. In symbols, Fy(x) = Fy_(y) for
all x € B1(y) and Fy(x) = Fi—(x) for all x ¢ B1(y).

e For each x, in between the jumps caused as above s — Fg(x) is constant.

Thus, forwards in time we have a branching process in which at a reproduction event (¢,y) € A the
individual at x gives birth to individuals which instantaneously colonise the surrounding area Bi(y).

Backwards in time we obtain a coalescent: Fix some time 7' € (0,00) and represent the individuals
alive at time 7" as the set R. To each individual = € R associate a random walk (BY)e[o,r] With Bf = x
and dynamics as follows:

o If (T — s,y) € A then for all z € By(y) set BY =y.
e For each z, in between the jump times caused as above s +— B? is constant.

Define the process
Cs = {[z]~,; z e RY)

where ~; is the equivalence relation © ~5 y < BY = BY and [z]~, is the equivalence class of z. Thus C;
tells us which individuals had a common ancestor in the time interval [T, 7T — s].

Let us use Example to introduce the concept of an ancestral lineage. In non-spatial settings
the ancestral lineage from some individual at time 7' is the random walk which, looking backwards in
time, traces the line of ancestors back over [T, 0]. Since we consider processes where reproduction events
involve only one parent, this can be thought of as a random walk on the set of individuals which lived
in time [0,7]. The random walk (i.e. the lineage) moves only when, looking backwards in time, the
individual which is the current value was born and at this moment the walk jumps to the parent. In the
spatial setting of Example since we have precisely one individual at any one point of space we carry
the same information if we trace the location of the ancestors. Thus in Example B?” is the ancestral
lineage of z from time 7.

Remark 1.1.2 It is customary to take ancestral lineages to be right continuous, even though it would
be mathematically more natural to have a left continuous process as the reversed time version of a right
continuous process. We will only look at coalescents driven by Poisson point process with a Radon measure
on the time component and therefore (by elementary properties of the Poisson point process) we always
have ancestral lineages which are stochastically continuous. In this case the left and right versions have
the same distribution so we can ignore technicalities and work with the right continuous version.

A multiple merger is said to happen if some reproduction event causes strictly more than two lineages
to coalesce. A simultaneous merger occurs if two or more reproduction events causing ancestral lineages
to coalesce happen in the same instant of time. A coalescent which sees multiple mergers but not
simultaneous mergers is known as a A-coalescent. A coalescent which sees simultaneous mergers (and
usually multiple mergers as well) is known as a Z-coalescent.

It is natural to consider branching processes in which the reproductive success of an individual depends
on its genetic type. Processes in which this occurs (both branching processes and coalescence) are said to
incorporate selection and processes in which it does not are said to be neutral. We say a process exhibits
mutation if the genetic type of a child depends on that of its parent and some additional randomnessﬂ

2In this context it could be unclear what is meant by an ancestral lineage. We will only consider lineages in processes
without mutation.



Let us conclude this section with some modifications to Example which would be biologically
desirable. It would be natural if a reproduction event didn’t completely recolonise the area in which it
occurs. We should also to consider reproduction events of varying size and shape. Another noticeable
problem is that in Example we have no sense of how many individuals might inhabit some region,
only a sense of genetic type.

It is clear in Example that the individuals inhabiting any bounded region of space only change
at finite rate. From a mathematical point of view it is natural to ask if there are processes similar to
Example which don’t posses this property. Clearly some sort of control over the rate is required
for the process to exist, but precisely how much? Destroying the homogeneity in time and space would
be an unpleasant step towards intractability, but a neat way to aim for ‘faster’ processes is to allow the
radius of the reproduction events to vary. In the style of Lévy processes, big events would have to happen
slowly since they affect large numbers of individuals, but small events could happen very fast. We will
return to this idea in Sections|1.3.3] [2.1.2| and [2.1.3]

1.2 The Fleming-Viot process.

In the genealogy of mathematics the SAFV process is a direct descendent of the Fleming-Viot process.
Fleming and Viot were interested in modelling the frequency of genetic types found within a population.
They did not consider geographical effects; in fact for the duration of this chapter we will work only with
non-spatial models.

1.2.1 Rescaling the Moran model

Let K be a compact metric space, which plays the role of the type space. Let H be the generator of some
well behaved K-valued Markov process, H. We describe the Fleming-Viot process as a limit of Moran
models.

Definition 1.2.1 (Moran model) We construct a process with N particles (indexed by {1,2...,N})
moving around in K. The evolution is specified as follows.

e Each pair (i,5) € {1,...,N}? of particles carries an exponential clock of rate 1/2. When this clock
rings the particle j instantaneously moves to the location of the particle i, and both subsequently
continue independent motion according to H.

o In between jumps caused as above, each particle moves around K according to the process H, inde-
pendently of the other particles.

Let YN (t) denote the type of the i'h particle at time t.

The process YV = (Y V)N | differs from the classical model of Moran| (1958) in the respect that mutation
occurs continuously rather than in jumps coinciding with the times of reproduction events.

In Definition [I.2.T] the ‘position’ of an individual in K corresponds to its genetic type. The operator H
is said to be a mutation operator since it specifies the random mutation of the genetic types individuals. In
later sections we will be primarily interested in the case with no mutation (H = 0). The mechanism with
the exponential clocks is often known as resampling and corresponds to reproduction with interpretation
as follows. First let us note that since we are constrained to keep the population size constant if we are
to think of each child as having two parents then one of the parents must die at birth. Suppose the clock
corresponding to (7, k) rings. We take the individuals 7 and k to be parents. The parent ¢ dies and the
child is born with the type of the other parent, k.

Fleming and Viot|(1979)) proposed a rescaling in which one keeps the rate at which individuals mutate
and resample constant but allows the number of individuals to tend to co. As we have already noted,
they were interested in the frequency of genetic types rather than absolute numbers. In mathemetical
terms this means they were interested in the empirical distribution of the limiting model.



Definition 1.2.2 If W = (W,)}¥, is a collection of K valued random variables then define the empirical
measure of W to be

LN
EV = — % 6w,
N ; Wi
If (W;(t)) is a particle system write EV (t) for the 2(K) valued process of the empirical measure of W (t).

Definition 1.2.3 (Fleming-Viot process) The Fleming-Viot process is the (unique) limit of the pro-
cesses BV (t) as N — oo. The limit is taken in the weak topology on the space Z(D g ([0, 0)).

Definition [I.2:3] does not include the precise technical requirements for the Fleming-Viot process to
exist. [Fleming and Viot| (1979) obtain the same process from a different sequence of prelimiting models
in which the mutation process was taken to be Brownian motion. Note also that Definition [1.2.3] is
different to that found in Chapter 1 of Etheridge| (2000) (which in turn is that of Section 5 of (Dawson
and Hochberg, [1982))) since we wish to allow ourselves a general type space. In [Etheridge| (2000) K is
taken to be Z? and the mutation process (£) is taken to be the simple random walk. This corresponds to
using the stepwise mutation model of Kimural (1953) in place of Definition Then in addition to the
rescaling involved in Definition space and time is rescaled in such a way as one recovers Brownian
mutation in the limit. The limit is then a 2(R%) valued process. To obtain the same limiting process
via Definition one simply takes H = %A as the generator for Brownian motion in K = R?

Remark 1.2.4 The Fleming-Viot process has been shown to be a diffusion approximation to many of the
classical population models. For example, Section 3 of |Ethier and Kurt4 (1993) obtains the Fleming Viot
process as a limit of rescaled Wright-Fisher models. We will not discuss results of this type.

In [Fleming and Viot| (1979)) the Fleming-Viot process is characterized by a generator type martingale
problem whereas in [Etheridge (2000) it is characterised by a superprocess type martingale problenﬂ In
both of these formulations existence is proved as a limit of particle systems and uniqueness of the process
is proved with duality.

1.2.2 Kingman’s coalescent

For the duration of this subsection let us suppose H = 0. In other words no mutation occurs and the
Moran models of Definition change state only at resampling events.

Let Py be the space of partitions of N and Py be the space of partitions of {1, ..., N}. We will usually
drop any brackets around a singleton when write down a partition as a set, for example {1, (2, 3), 4} would
be the same partition as {(1), (2, 3), (4)}. In words we say this partition has blocks (1), (2,3) and (4) and
that (2,3) was the coagulation of (2) and (3).

For the moment suppose we fix some (deterministic) time 7" € (0,00) and finite N € N. We are
interested in the genealogy of an N-particle Moran model, that is we are interested in viewing the
process backwards in time and recording precisely which individuals were born of which parents and
when. Over time it is clear that this defines a binary tree where forwards in time we see branching and
backwards in time we see coalescing.

Let us suppose we are looking at a Moran model at time ¢ and we see n individuals (or lineages)
which we label {1,...,n}. Then, looking backwards in time, for each pair (7,j) at rate 1 the lineages
corresponding to ¢ and j coalesce (at rate 1/2 ¢ gave birth to j and at rate 1/2 j gave birth to i). We
then are down to considering only n — 1 lineages.

Definition 1.2.5 (n-lineage Kingman’s coalescent) Define a Py valued process k; as follows. Ini-
tially mo = {1,...,N}. Then specify the evolution as follows.

3A generator type martingale problem is the well known f(X;) — Sé L¢(Xs)ds type, the theory of which is developed
in |[Ethier and Kurtz| (1986]). A superprocess type martingale problem is, as one might expect, the form usually used to
characterise superprocesses. An example of this type (the martingale problem for super-Brownian motion) is given as
Definition @ in Chapter @, and a discussion of how to relate it to the superprocess can be found in Section @



o Enumerate the blocks of ky currently in existence as {1,...,m}. To each pair of blocks (i, j) currently
alive associate an exponential clock of rate 1. When the clock for the pair (i,7) rings coagulate the
blocks labelled i and j, obtaining a partition with m — 1 blocks. Relabel the blocks {1,...,m — 1}
and repeat.

e In between jumps causing coagulation as above the process is constant (recall H = 0).

Note that by looking at the lineages of only a subset of m particles in the n particle Moran model
we obtain a Kingman coalescent with m lineages embedded inside one for n lineages. This observation
suggests that we take a projective limit of the n-lineage Kingman coalescent as n — o0. We will refer to
the projective limit as Kingman’s coalescent and we characterize it as follows.

Theorem 1.2.6 (Kingman| (1982)) There is a Py valued process K with initial value N (i.e. the
partition of N into singletons) such that for any finite subset A of N the lineages back from A are well
defined and constitute a |A|-lineage Kingman coalescent.

Since the n-lineage coalescent describes the genealogy of the pre-limiting Moran models we naturally
expect Kingman’s coalescent to describe a particle system carrying the Fleming-Viot process as it’s
empirical measure. Finding a way to formally express this (without going via the pre-limiting processes)
is not trivial and will be the subject of our next section. Note that, in contrast to Kingman’s coalescent,
we cannot readily embed an N-particle Moran model inside an (N + 1)-particle Moran model.

1.2.3 The lookdown process

Donnelly and Kurtz| (1996) were concerned with constructing the Fleming-Viot process in such a way as
keeps track of the genealogy in the measure valued limit. They did so via a particle system known as the
lookdown process. In many ways the lookdown process resembles a Moran model but it contains more
structure. Since the original (1996) paper the lookdown construction has been greatly extended to very
general settings (see Donnelly and Kurtz| (1999al), Donnelly and Kurtz (1999b)) and Birkner et al.| (2009)
for example).

We have already described the Moran model in Deﬁnition Following Donnelly and Kurtz (1996),
we will define the particle system which is now known as the (first version of the) lookdown process and
show that the limit of its empirical measures is the Fleming-Viot process. We conclude the chapter by
using the lookdown process to describe the genealogy of the Fleming-Viot process.

Definition 1.2.7 (The (Original) Lookdown Process.) We construct a branching system of parti-
cles moving around in S. This system will have countably many particles which we will think of as ranked
into levels labelled according to N. At all times each level i € N contains exactly one particle. The
evolution is as follows.

e In between jumps, each particle moves around K according to the process H, independently of the
other particles.

e Each pair (i,7) of levels such that i < j carries an exponential clock of rate 1. When the clock rings
the particle at level j ‘looks down’ on level i; which means the particle in level j at time t— dies and
is instantaneously replaced by a new particle with the same type as its parent in ¢ at t—.

Let X;(t) denote the type of the particle at the i*" level at time t.

The idea of the lookdown process is as follows. If one starts both the Moran model and the lookdown
process from the same initial configuration Y (0) = X (0) and this configuration is exchangeable then for
all time the first N particles of the lookdown process will have the same empirical measure as those of
the NV particle Moran model. Let us state this as a theorem.

Theorem 1.2.8 Let (X;(0))ien be an exchangeable sequence of S valued random variables. Fix N € N
and let Y = (Y;)N| be the Moran model with initial configuration Y;(0) = X;(0). Let X = (X;)ien be the
lookdown process started from X (0). Then

EX(t) is equal in disitribution to EY (t)
for allt = 0.

10



SKETCH OF PROOF: Let us start from X and use it to drive a third particle system W. W will contain
N particles and be a stochastic reordering of (X;) ;. That is for all ¢ > 0 there will exist a permutation
7 of {1,..., N} such that (X;(t)) = (Wr,;(t)). We will then argue that W is a process with the same
distribution as Y, from which the result follows.

To be precise, let W;(0) = X;(0) and define the perm(N) valued process o; as follows. When (in the
process X) j < N looks down on i we sample an independent Bernoulli random variable with success
probability 1/2 and on a success we exchange 7 and j. That is, if j < N looks down on i at time T, with
probability 1/2 we do nothing and with probability 1/2 set or = or_ o m;; where m;; € perm(N) is the
permutation exchanging i and j. Define Wj(t) = X, (;(t) for all ¢ > 0.

We now argue that W is a Moran model in the sense of Definition Clearly in between jump
times W has the correct evolution. Let T be a jump time of X, and let us examine the ways in which
pairs of particles W; and W; could change type. Without loss of generality consider ¢ < j. Clearly W;
and W; can only be a pair involved in the same reproduction event if it is the clock for (4, j) which rang
in the process X, so suppose this happens at time 7. In that case, with probability 1/2 (a failure) we set
W;(T) = W;(T—) and leave W; unchanged, and with probability 1/2 (a success) we do the same thing
with ¢ and j swapped; That is we set W;(T") = W;(T—) and leave W, unchanged. Thus we see that
at rate 1/2 (the particle at) j takes on the type of ¢ and with rate 1/2 ¢ takes on the type of j. This
completes the argument. |

With rather more formal notation, Theorem 2.1 of Donnelly and Kurtz| (1996]) also shows that for
each t, oy and Y () are independent, whence it follows that X has an exchangeable distribution for all
time. We will not prove this but it is certainly something one would expect; Suppose we knew the global
distribution of initial types but not their positions, and let us run the lookdown process. Then (ignoring
mutation) and tracking the types of individuals, exchangeability implies that any pair of types (descended
from the initial state) are equally likely to be ordered above/below one another, so providing we start in
an exchangeable state it would be equally likely for any one type in the pair to be looking down on the
other. The lookdown mechanism of reproduction thus generates one exchangeable state from another.

Theorem 1.2.9 Providing the initial distribution Xo is exchangeable, the empirical measure of X given
by

exists and is the Fleming-Viot process.

Proor: This follows from Theorem and the fact the Fleming-Viot process is obtained as a limit
of Moran models in Definition [[.2.3] [ ]

Let us briefly set H = 0 again and observe that if we look at the first n particles of the lookdown
process backwards in time, their genealogy is precisely that of an n-particle Kingman coalescent. Note
also that the evolution backwards in time of these first n particles is not affected by the particles in
levels 5 > n. Thus Theorem tells us that providing X is exchangeabe Kingman’s coalescent is the
genealogy of the Fleming-Viot process. We can also view the genealogy of the lookdown process as a
spine decomposition of the Fleming-Viot process; note that the particle in level 0 does not change type.

We conclude this subsection by obtaining a representation for the generator of the Fleming-Viot
process in its particle form. Fix m € N. For f € B(K™) write

Hf = Z Hif
i=1
where H, f denotes H applied to f as a function only of its it coordinate. Define Fy : 2(K) — R by
Fy(p) = {f, u®™)

where u®™ is the m-fold product measure of p and {g,x) denotes integration of g with respect to k.
Then the generator A : C(Z(K)) —» C(L(K)) of the Fleming Viot process is characterized by

AFp(p) = CHf, 1™y + > (<<I>ijf, pEm=y —(f, u®"‘>) (1.2.1)

1<i<j<m
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where ®;; : B(K™) — B(K™™!) corresponds to setting the i and j** coordinates of f equal and renum-
bering the coordinates (so for example for f(x1,z2,23), P12f(x1,22) = f(x1, 21, 22) and P13 (21, 29) =

f(z1,m2,21)).
The first term on the right hand side of (|1.2.1)) corresponds to mutation and the second term corre-
sponds to resampling.

1.3 The generalized Fleming-Viot process

A framework for studying general exchangeable coalescents on N was provided in [Bertoin and Le Gall
(2003) where it was shown that all such coalescents can be represented with coagulation driven by a
suitable Poisson point process. Building on ideas from [Kingman! (1982) and [Kallenberg| (1973) they were
able to show that all exchangeable A-coalescents on N could be represented in this way. The duality
between the A-Fleming-Viot process and A-coalescents was first proven in [Bertoin and Le Gall (2003)
(although it was implicit in the earlier modified lookdown construction from|Donnelly and Kurtz| (1999b))).
In this section we give an outline of some results from Bertoin and Le Gall| (2003). We discuss general
exchangeable coalescents before specializing our treatment to A-coalescents in Section [1.3.2

1.3.1 Exchangeable coalescents on N

Definition 1.3.1 An exchangeable coalescent (m)i=0 on N with initial state n is a Py valued process
such that T, = n and

e For allt =0, b€ n implies there is some b’ € m; such that b C b'.
e Forallt >0, m is an exchangeable partition of N.

Central to the methods of [Bertoin and Le Gall (2003) is the idea of an (exchangeable) bridge, which
originated in Kallenberg (1973).

Definition 1.3.2 A bridge B is a Dg[0,1] valued random variable such that
1. With probability one, B(0) =0, B(1) = 1 and B is both right continuous and non-decreasing.
2. v+ B(r) has exchangeable increments.

Results in [Kallenberg (1973) show that every bridge is equal in distribution to a C([0,1]) valued random
variable of the form

B(r) = Bor + Z Bil{U; < r} (1.3.1)

where §; are [0, 1] valued random variables such that 8; = ;41 for i e N, P [Z;O:o B; = 1] =1 and (U;):en
are 1.i.d. uniform random variables (on [0, 1]).

We will shortly establish a correspondence between bridges and exchangeable partitions of N. We will
then define what it means to coagulate partitions (this corresponds to blocks combining together) and
represent it in terms of bridges. We finish this section with a theorem to the effect that any exchangeable
coalescent on N can be represented in terms of composition (as functions) of bridges.

Definition 1.3.3 For each m € Py define an equivalence relation i ~ j < 3be w such that i,j € b.

Theorem 1.3.4 (The ‘paintbox scheme’ of Kingman| (1982)) Let B be a bridge and let B=1 de-
note the (right continuous) inverse of B. Let (V;);en be a sequence of i.i.d. uniform random variables on
[0,1] and define a Py valued random variable © by

it je B '(V;)=B1(V))

Then 7 is an exchangeable partition of N. Further, (a random variable with the distribution of) any
exchangeable partition of N can be constructed this way.

12



SKETCH OF PROOF: The first statement, the forwards direction, of Theorem is easy enough to

understand. The sections of B which are linear give rise to the singletons and the jumps give rise to

infinite blocks. Note that we do not obtain finite blocks with more than one element. The reverse

direction is slightly harder to understand. If 7 € Py then the asymptotic frequency of b € 7 is defined by
£ {1,2,...,n})

|b] = lim ,
n—o0 n

provided the limit exists. It can be shown that every exchangeable partition of N is made up of blocks with
asymptotic frequencies. Given some exchangeable partition 7w of N the asymptotic frequencies of b € m,
reordered in order of decreasing size, are taken as the (5;)en in and one sets By = 1=, fi. It
is a fact that the only finite blocks of an exchangeable partition are singletons. It is now apparent that
the construction of in the statement of this theorem produces a partition with the law of . |

Thus we have a correspondence between (the laws of ) bridges and (the laws of ) exchangeable partitions
of N. Let us refer to the partition constructed from B by Theorem as m(B).

Definition 1.3.5 Let w,n’ € Py. The coagulation of m by w' is coag(m, ') € Py defined as follows. Write
m = {b;; i € N} where the blocks b; are ranked in order of their smallest element. Then set

coag(m, ') = {Ubi; cew’}.

i€c
Thus, 7’ acts as a set of instructions for which blocks of m we coagulate. An obvious question is to

ask what coagulation means in terms of bridges. The answer is as follows.

Lemma 1.3.6 Let B and B’ be independent bridges. Then coag(m(B),n(B’)) is an exchangeable parti-
tion of N with the same distribution as 7(B o B’).
The coagulation of one exchangeable partition by another is exchangeable.

One of the main results of [Bertoin and Le Gall| (2003) (which they state as Theorem 1) was establishing
the following theorem, relating flows of bridges to exchangeable coalescents.

Definition 1.3.7 A flow of bridges is a collection {Bs; —00 < s <t < 00} of bridges such that

1. For every s <t <wu, Bs, = B0 DBy ,.

2. The law of Bs; depends only ont — s.

3. For sy < 83 < --- < sy, the random variables By, ¢,, B, s5,---,DBs,_,,s, are independent.

4. By is the identity function and and By, — By, in probability as t — 0.
Theorem 1.3.8 (Bertoin and Le Galll (2003)) Let B, be a flow of bridges. Then (m(Boy))iso s
an exchangeable coalescent on N starting from the partition of N into singletons. Further (m¢)i=0 has a
time homogeneous Markov semigroup and is stochastically continuous.

Conversely, if (m)t=0 s a stochastically continuous exchangeable coalescent on N with a (time homo-
geneous) Markov semigroup, there is a flow of bridges {Bst; —00 < s <t < o0} such that (7(Bo+))t=0
and (my)i=0 have the same finite dimensional distributions.

1.3.2 The A-Fleming-Viot process and A-coalescents

As yet, there is nothing to say the coalescent 7(Byp ;) constructed from Theorem is a A-coalescent.
From Lemma we see that whether or not m(By,) is a A-coalescent is related to whether or not the
bridges feature multiple discontinuities.

For u,x € [0,1] define B € C([0,1]) by

bue(r) =1 —z)r + zl{u < r} (1.3.2)
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and note that if U is a uniform random variable on [0, 1], By () is a bridge. In fact we can take this idea
much further. Let M be a Poisson point process with points (¢,z,u) € R x (0,1) x (0, 1] with intensity
dt®dx®v(du) where v is a finite measure on (0, 1]. Then the atoms of M are almost surely countable and
without limit points so we may enumerate them ordered by their time coordinate ¢; € R as (t;, ;, u;)iez-
For the remainder of this section we consider the flow

Bs,t = bT«j,uj © b$j+1,uj+1 O--+0 bﬂ@k,uk

where t;_1 <5 <t; <+ <t <t <tppr. The following result is easy to prove.
Lemma 1.3.9 {B%; —0 < s <t <o} isa flow of bridges.

Let us describe the evolution of the resulting coalescent II; = W(B(%). Clearly t is a jump time for II;
only if there is a point of M in {t} x (0,1) x (0,1], and II; is constant in between its jump times. The
jump times occur at rate v((0,1]) and at each jump u is independently distribution uniformly on [0, 1].

Now let us say ¢ is such a jump time corresponding to (t,z,u) € A and thus II,_ = m(B{% ) denotes
the state of the coalescent immediately preceding the jump. Enumerate the blocks of TI;— as (b;)ien,
ranked in order of their smallest elements and associate an independent uniform [0, 1] random variable
V; to each block. Then to obtain II; we must coagulate together all blocks for which by} (U;) = b % (U;).
From the form of b, , this means precisely those blocks for which

I-2)u<U;<(l-2)u+x

are coagulated into a single block, and all other blocks remain unchanged. Thus II; is a A-coalescent.
By exchangability (in particular, by Lemma 2 of Bertoin and Le Gall (2003)) we can reformulate this
as follows; Label the blocks of II;— as (b;);en (the order does not matter) and to each block associate
an independent Bernoulli random variable &; with success probability x. Coagulate all blocks for which
& = 1 into a single block and leave all the blocks for which &; = 0 unchanged.
Let us now look at time in the other direction.

s*

Definition 1.3.10 We define the dual flow of st‘fft to be Bth = Bﬁ/ftﬁ

Note that BM is not quite a flow of bridges. Since BM travels in reversed time one has BLHOB% = Bé\/fu

for s <t < u, but all other properties a flow of bridges are carried over from BM .
Definition 1.3.11 Define a &([0,1]) process p: by

pe([0,9]) = Boi(y)
(and extension from the algebra generated by {[0,y]; vy € [0,1]} to the Borel sets of [0,1]).

We will shortly see why it is natural to view p; as a generalised version of the Fleming-Viot process and
we will adopt the terminology of |Etheridge et al|(2010) in calling the family of processes obtained from
Definition A-Fleming-Viot processes. Let us first make the important observation that, strictly
speaking, p; is a measure valued process and not a branching process. By looking at the mechanism by
which the composition of bridges controls the coagulation of [0, 1] we see that p;(A) is the mass of the
descendants of the set A < [0, 1] at time ¢. Having realised this is it natural to think of p; as corresponding
to a branching process and hope for a duality relationship between 7; and p;. As we have commented,
flows of bridges are jump processes. It is straightforward to deduce that p, is also a jump process and
hence has cadlag version, which we will work with from now on.

From the definition of the flow B% we get the following evolution for p;.

e Reproduction events occur at rate v((0,1]) and in between reproduction events the process p; is
constant.

e At a reproduction event we sample an independent random variable U according to v(-)/v((0,1])
and an independent random variable X with law p;. The change is given by

pr = (1 =U)p— +Ubx. (1.3.3)
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That is, a parent type X is sampled according of the distribution of the current population and a random
proportion U, with law v, of the population are replaced with that type. The individuals alive at time ¢
are reduced in number through a factor (1 —U).

In this formulation p; looks similar to the Fleming Viot process of Section but with multiple
branching instead of reproduction events producing a single individual. It is also in this form that we
will eventually see the clearest connection to the SAFV process. Note the strong similarity between p;
and the process tracking the total mass of a single type in Example [[.1.1]

From our description of the evolution of p; and the standard theory of Markov process it follows that
the generator of p; is given by the bounded linear operator G : C(#([0,1])) — C(Z([0,1])) defined by

Goe) = [ plab) | w(du) [6((1 = wp + udr) = 9(p)] (1.3.4)

0 0

and that the process is characterised as the solution to the following martingale problem.

Definition 1.3.12 The generalised Fleming Viot process is the unique cadlag ([0, 1]) valued process
such that for all ¢ € C(2(]0,1])),

6() f ds Gé(py)

0
is a martingale.

Remark 1.3.13 Expressions corresponding to the generators of jump processes should be interpreted as
follows. The integrals at the start of the expression are selecting a reproduction event and the integrand
is the change exacted by that reproduction event seen through the eyes of the test function. The mass
inwvolved in the measures for the integrals corresponds to the rate of the different possible reproduction
events.

The first integral in is selecting a parent type and the second integral is selecting the proportion

of children to be born of that type. The total rate of events is Sé v(du) Sé p(dk) = v(0,1).

We now establish the duality between II; and p;. The generator for II; can be characterised as follows.
Let P, denote the space of partitions of {1,2,--- ,p} and write IT} for the restriction of II; to {1,...,p}
(obtained by simply deleting the natural numbers > p). Then II} is a Markov process. For ¢ : P, » R
and 7 € P, define

G*o(m) = D0 Bugn [mym) = ()] (1.3.5)

JE{1,...n},] |22

where 7 = {b;; i = 1,...,n}, mym denotes m with the blocks corresponding to i € J coagulated and

Bn,|J‘ = J V(dS) SlJ‘(l — 3)"_|J‘_

0

Then G* is the generator of ITY. Note that, in keeping with our discussion of how to interpret generators
of jump processes, the summation in chooses which blocks coagulate, 3, | specifies the rates
at which the reproduction events corresponding to coagulating the blocks with indices in J occur, and
Y(mym) — () is the resulting change to II; viewed through the test function .

For each pe N and f € C([0,1]?) define & : &([0,1]) x P, = R by

D (p, ) = f[ N CORNCESTCATREN)

where n = |r| is the number of blocks of 7 and Y} is defined by Yz (z1,...,2s) = (y1,...,Yp) where
y; = x; if (and only if) i € b; where m = {b;; j = 1,..., p} are the blocks of 7 ordered by least element.
The duality relationship between II; and p; is formally stated as follows.

Lemma 1.3.14 It holds that
G (p,7) = G*®;(p, ) (1.3.6)
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forallpeN, feC([0,1]7), pe Z(]0,1]) and m € P,. On the left hand side of (1.3.6) G acts on @ as
a function of its first coordinate whereas on the right hand side G* acts on ®¢ as a function of its second
coordinate.

Hence,
E[GP(pt,1o)] = E[G* P (po, I1¢)] (1.3.7)

for allt > 0.

SKETCH OF PROOF: The reader can verify (1.3.6) with straightforward (but messy) algebra and the
second statement follows from (1.3.6) and the theory of martingale problems (e.g. Section 4.4 of |[Ethier
and Kurtz (1986))). See Lemma 4, [Bertoin and Le Gall (2003). |

Equation (|1.3.7) expresses the duality between II; and p;. Essentially, the mechanism by which II;
evolves forwards in time can be recovered from looking at how p; evolves backwards in time (and vice
versa). This is sufficient to obtain uniqueness to the relevant martingale problems.

1.3.3 Infinite rate coalescents

By allowing a more general form for we can adapt the method of Sectionto generate a wider
class of coalescents. See Section 4 of Bertoin and Le Gall (2003) for details. A natural question to ask
is whether or not one can relax the requirement that v be a finite measure. If v is infinite then we are
unable to label the atoms of v in order of time coordinate with the integers, and cannot carry through
the representation of Section [[.3.2] However, if v is an infinite measure we can approximate it with a
sequence of finite measures and take a limit. We lose the neatness of the representation in the limit but
we are able to construct a large family of infinite rate coalescents.

Remark 1.3.15 Note that the measure v was constrained to be a measure on (0,1] instead of the more
natural [0,1]. In|Bertoin and Le Gall (2003) the framework is developed in such a way as when v is
point mass at {0} one obtains precisely Kingman’s coalescent (of Section . A general exchangeable
coalescent on N can then be viewed as a having an evolution which is a mizture of Kingmans coalescent
and a Z-coalescent which corresponds to the dynamics induced by a flow of bridges and a suitable Poisson
point process.

Clearly we cannot allow v to be any infinite measure and we should ask precisely what the right
condition on v is for the approximations with a sequence (v, )nen of finite measures to generate a sequence
of processes with a unique limit point. If existence of the limit process is given, uniqueness can be covered
using the same sort of duality as is exhibited above for the finite rate processes. Thus we are really only
concerned with existence of the limit.

The correct condition (with the flows of bridges as in Section is that

Jl u?v(du) < 0. (1.3.8)
0

Note that v((ug,1]) < oo for all ug > 0 but the mass apportioned by v might blow up around 0. This
reflects a principle which is best known in the context of existence of Levy processes; if we fix a threshold
ug > 0 and look at the rate of events which have a total effect of magnitude above uy we see it must be
finite. However, the overall rate of events may still be infinite. We will not discuss why the condition
is precisely the right one but it is essentially a compensation very much in the style of Levy
processes. For full details see |Pitman| (1999)).
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Chapter 2

The Spatial A-Fleming-Viot Process

In this chapter we give two informal definitions of the SAFV process. First, in Definition 2.1.1] we give
the most basic formulation and in this context we discuss some important aspects of the process. In
particular, we construct the state space = (which comes from [Evans (1998)), give a representation of
the duality in a similar style to Barton et al. (2010b) and discuss the mechanism by which reproduction
events occur at infinite rate. We will then survey the current literature featuring the SAFV process before
giving own own formulation in Definition 2.3.1} Our formulation will feature selection and we give a brief
description of why duality then fails in Section [2.3.1

2.1 The SAFV process (basic form)

Recall K is a compact metric space which for us plays the role of the type space. Let us associate a
P(K) valued process p;(z) to each z € R?.

Definition 2.1.1 (Spatial A-Fleming-Viot Process, Basic Form) Let A be a Poisson point process
with points (t,y,r,u) € [0,00) x R? x (0,00) x [0,1] of rate

dt ® dy ® p(dr)v,(du)

where dt and dy correspond to Lebesgue measure and pu(dr)v,(du) corresponds to a measure on (0,00) X
[0,1] such that such that for each r, v, € Z2(]0,1]) and

f ur®u(dr)v, (du) < . (2.1.1)
(0,¢)x[0,1]

From some initial state pg the evolution is specified by

o Whenever (t,y,r,u) € A, sample k according to p;—(y). Set
pr(x) = (1 —u)pi—(x) + udg (2.1.2)
for all x € B,(y).

e For each x € R%, in between the jump times caused by reproduction events (as above) the process
pt(x) is constant.

We refer to (t,z,r,u) as a reproduction event occurring at time t about y with radius r and killing
proportion u. We refer to y as the parent site and k or §y as the parent type.

It can be seen from that we are allowing choices for 1 and v, such that any open set A € R? is
hit (by which we mean intersected) by reproduction events at infinite rate. In fact, we even allow some
. v such that points are hit at infinite rate. We will discuss this in Sections 2:1.2] and

Infinite rate occurrences cause a potential problem in defining the process. The result is that for any
time t € [0,00) we can only define p;(x) for almost all x € R%. It is not known if the exceptional set
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of points can be taken independent of time, or even if it needs to be non-empty. We will not formulate
proper existence/uniqueness theorems for the SAFV process until Chapter but we will informally

discuss existence and (2.1.1)) in Section 2.1.3]

Remark 2.1.2 We stress that the measure A is not intended to correspond to the measure A involved in
specifying a A-coalescent in the formulation of \Pitman| (1999). However they do share the characteristic
that they control the mechanism of reproduction events, which explains our choice of notation.

Remark 2.1.3 Most authors do not take the parent type to sampled from the measure at the center of
the reproduction event. Our concern for the moment is to discuss the basic features of the process, and
to do so Definition [2.1.1] will be quite adequate. See[2.1.7] for possible generalizations of Definition [2.1.1}
In Section[2-4 we review the literature to date on the SAFV process.

The measure p;(x) should be thought of as representing the local distribution of genetic types. The
process is not concerned with the quantity of individuals present in a spatial location, only the relative
frequencies of their genetic types. Until further notice (which means, up until Definition we refer
to the process characterised by Definition as the SAFV process. We will eventually give a more
general definition; this chapter is concerned with understanding the process and for that Definition [2.1.1
will be quite sufficient.

The SAFV process is a much generalized version of Example @ To see this, take v; = d(1y and
start from a state where for each x there is some k, such that po(x) = d,. Then it is natural to think
of the process as associating a single type to each point and represent the process as a random function
mapping each point to a type rather than a probability measure on the type space. We refer to the case
v; = 041} as total killing. We will study this special case in Chapter

Note also the similarity between (2.1.2)) and (|1.3.3]). From this relationship we see that the Definition
[2.1.1]is a natural spatial version of the A-Fleming-Viot process. In Subsection [2.1.2] we will describe the
dual process associated to the SAFV process and this will be reminiscent of the duality seen in Theorem

C37

2.1.1 The state space =

In this section we set up the state space for the SAFV process and characterise its topology. The results
of this section are essentially due to|Evans| (1998). We will relegate all the proofs of results in this Section
to Appendix [A]

We do not yet have a clear idea of what it means to be an individual in the SAFV process, but for
now let us tacitly assume these individuals will live in R?, each individual will have a single genetic type
and the types of individuals will be drawn from the compact metric space K. Equip Mg (K), the space
of finite signed measures on K, with the total variation norm || - ||py. Since K is compact this induces
the weak topology on Mp(K).

Let

L*(RY Mp(K)) = {p: R > Mp(K); p is measurable and esssup {||p(z)||rv ; € R‘} < o0}.
Then £* (R4, Mp(K)) is a vector space with seminorm

llpl| = esssup {||p(z)[|rv ; © € R?}. (2.1.3)

We set
p1 ~1 p2 iff {x € RY; py(z) # po(x)} is Lebesgue null,

and define L*(R? Mp(K)) to be the quotient of £L*(R% Mp(K)) under the equivalence relation ~j.
Then L*(RY, 2(K)) is a Banach space. Let [p] _ denote the equivalence class of p under ~;.

Definition 2.1.4 Define
E= {[,O]N1 e L (R, 2(K)); for almost all z € R, p(x) € 2(K)}

and note this is both well defined and a norm-closed subspace of L*(R%, 2(K)).
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The space Z is the state space of the SAFV process, but with a different topology to the subspace
topology inherited from £*(R%, Mr(K)). We characterise the topology on = in Proposition We
will abuse notation in the standard fashion by writing p € = instead of [p]., € E.

Our test functions will be as follows.

Definition 2.1.5 We say ® : (R?)" — C(K™) is of the form (x,n) if it may be written as

(@(2)) (k1. -, kn) = 9(2)

=
i?
—~
3?‘
~

i=1
where 1 : R? — R is continuous with compact support, and x; € C(K). We say ® is of the form (%) if ®

is constant or ® is of the form (x,n) for some n € N.

Remark 2.1.6 Whenever we say ‘let ® be of the form (x,n)’” we implicitly associate the functions v and
X to such ®.

Recall our convention for multiplication operators, in particular that (f x g)(z,y) = f(z)g(y) and ®
denotes product measure. For any n € N and ® : (RY)" — C(K™) such that S(Rd)n [|®(x)]]cdr < 00 we

define I,(-;®) : E > R by
I,(p; ®) = J’ D(z1,...,20), X p(z;) )dwy ... dz,.
(R)m j=1
where (-, ) denotes integration over K™. If ® has the form (*,n) then this becomes
n n
In(p?q))zf ’l/)(xlr"a'rn) >< Xja ®p($j)>dx1,...,xn.
(Rd)n j:1 j:1
Let
S =1lin{l,(;®); @ is of the form (x)}.
Proposition 2.1.7 (mostly Evans| (1998)) There exists a metric r for E such that
1. (E,7) is a compact, complete, separable metric space.
2. 7 is a dense subset of C(Z).
3. is both a separating and convergence determining class of C(Z).

4. If p™, p € Z, then r(p™, p) — 0 if and only if for all ¢ : R — R continuous with compact support
and x € C(K),

f () O o (@) de — f b(z) (6 pla)) da.
Rd Rd

PROOF: See Appendix [A] [ |

From this point on, we use the topology on = induced by r. In general this topology is not the topology
induced by . The topological properties of = given by Proposition make it a convenient space
to work with.

The topology on Z is also natural from the point of view of biological sampling. Consider the test
function; first one chooses some n € N corresponding to how many sites one wants to consider sampling
at once. Then choose 1) : R — R integrable and x; : K — R measurable and bounded. The function

p J’(Rd)’ V(xy, .. xn) (X Xj,®p(a:j)>dx1...da:n

j=1 Jj=1

tells us the amount of n-tuplets of R? (i.e. (z;)7_1 € (R9)™) which in state p have the genetic types
weighted according to y; (for the type of the j* individual) and v (for locations). With these test
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functions one can extract complete information about the distribution of genetic types in any non—nulﬂ
spatial region.

For biological reasons one wants such functions to be continuous on the state space, whereas from an
analytic point of view one wants fewer open sets (since this is what leads to simpler topological structure
and easier definition of probability measures etc.). Proposition says that with = and .# we have
achieved the best of both worlds.

Remark 2.1.8 Using the space = gives us a weak formulation of the process with regards to genetic type
but a strong formulation with regards to location. By a ‘weak formulation’ we mean that we lose track of
individuals and can only obtain information about them through looking at large subsets of them via the
measures py(z). However, we maintain precise knowledge of which types exist where in R?.

2.1.2 Duality

In Example [[.I.7] it was easy to identify what it meant to be an individual and correspondingly we
could define an ancestral lineage. In Definition it is not immediately clear what one should call
an individual. The rate at which a single point z € R" is hit by reproduction events in the process of
Definition is (up to a constant corresponding to the volume of a d dimensional unit ball)

v 8}
J ru(dr) (2.1.4)
0

which is potentially infinite, even if holds. However, a point x is associated to a probability
measure p;(x) on K which corresponds to the local distribution of genetic types. The interpretation is as
follows; At each site x we have a local neighbourhood containing uncountably many individuals indexed
by [0,1]. The measure p:(z) specifies the distribution of types of these individuals. Each individual
has a single genetic type. At each reproduction event (t,y,r,u) a parent type individual whose type is
the variable k is sampled from p;—(y). The variable u specifies what proportion of the individuals at
z (for x € B,(z)) are replaced by the parent type k. Note that each genetic type present in the local
neighbourhood represented by p; is replaced to an equal extent.

In this notional formulation (terminology which we use for the remainder of this section), individuals
have a single genetic type and are born/killed at finite rate. In this notional world there are uncountably
many individuals associated to each site (and there are uncountable many sites). It is sensible to expect
that existence of the SAFV process is a delicate question.

The notional formulation suggests a way to just define what it means to be an ancestral lineage.
The relationship between the dual process and the SAFV process will then be expressed as a functional
identity as in , instead of embedding the lineages directly into the forwards in time model.

Definition 2.1.9 (A dual to the basic SAFV process) Let II be a Poisson point process with points
(t,z,7) € [0,00) x R% x (0,00) x [0,1] of rate

dt ® dz ® u(dr)v,(du).

Fiz N € N. We will define a system of N particles (which we refer to as lineages) moving around RY.
Let Bl denote the position of the nt" lineage at time t >. We will also need a process ~y, taking values
in the equivalence relations on {1,..., N}. Fiz some initial state (By))_, € R? and define the evolution
as follows.

o If(t,x,r,u) €I, let A denote the set of equivalence classes of ~i—. For each a € A, write B = B}°
where ag € a, and note this does not depend on the choice of ag € a.

For each a € A, if Bf_ € B,(y) then, independently of all else, sample a Bernoulli random variable
with success probability uw and on a success set B = y for all n € a. Coalesce the blocks a € A
which saw a success to obtain ~¢ from ~,_. On a failure do nothing.

o In between reproduction events causing jumps as above, the lineages do not move and t —~y is
constant.

1By this we mean, of positive Lebesgue measure.
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The first thing to observe is the effect of the equivalence relations, which keep track of blocks of
coalesced lineages. If at any point in time two lineages B{" and By® are involved in the same reproduction
event (i.e. the Bernoulli random variable described above is sampled for the relevant blocks and is a
success in each case), they coalesce and remain together for all further time. Having realized that, in
order to understand Definition [2.1.9] one needs only to understand the motion of a single lineage. If the
lineage B is at the point B;— = = and is hit by a reproduction event (¢,y,r,u), which means z € B, (y),
then with probability 1 —u the lineage stays put and with probability w it moves to z sampled uniformly
from within B, (y).

Since p(dr)v,(du) is potentially an infinite measure we must check that implies the system in
Definition is well defined. First note that if two lineages are at separation z € R?\{0} then they
coalesce at rate

J’ JOO J 1{0, z € B, (y)}y° v (du) pu(dr)dy. (2.1.5)
R Jo Jo

Performing the integration with respect to y and using the bound L, (0, z) < C4r? where L,.(z,y) denotes
the volume of B,(z) n B,(y) and Cy is the volume of a d dimensional unit ball we get

o prl
EID<Ca| | wrtv(duntarn).
0 0

Since u? < u the condition is more than sufficient to guarantee is finite. A similar calculation
can be done for multiple coalescence events. N

Secondly, a lineage jumps with increments given by a Poisson point process II with points (¢, Azx) €
[0,00) x R? and intensity

L rl
dt ®J;) L 1{0 € B, (z)}uv,(du)u(dr) dx.

Thus a lineage would correspond to a well defined Levy process t — Z(S Aw)eit 1{s < t}Ax if

JRd(l A fal?) <£L Jol 1{0e Br(x)}uw(du)u(dr)> dx

was finite. In fact, equation (2.1.1]) gives us something much stronger; it says the lineages jump at a finite
rate, in particular

fRd J: Ll 1{0 € B, (z)}uv,(du)u(dr)dz = Cy l[:c Ll ru v, (du) p(dr).

These two checks, whilst not a formal proof, establish beyond reasonable doubt that the dual system is
well defined. We might also suspect that is in fact too strong. This leads us to our next section,
but first let us record a proper statement of the duality.

Let By = (Bi(m))" _; be the dual system of Definition ran for time ¢ from initial state By.
Define an equivalence relation ~; on {1,...,n} by n ~y m < B;_(n) = By;_(m). Suppose ~; has I(t)
equivalence classes and let them be enumerated as 4; = {a!,... 7a}s(t)}. Note B;_(a},) is well defined for
k < I(t). For any bounded measurable F' : [0,1]" — R and p € E define T, by

1(t)
Yol BiF) = | Pk i) @o(Bula)(dk).
¢ i=1

Let E¢p,(m)=a,,} denote expectation on the probability space of the n-particle dual system of Definition
with initial state Bo(m) = x,, for m = 1,...,n. Let E,; denote expectation on the probability
space of the basic SAFV process p; with initial condition py € =.

Theorem 2.1.10 The semigroup of the basic SAFV process is characterized by the relation

By, (01 )] = |

e E(Bo(m)=am} [ Tn(po: Be; (21, ..., x0)) ]| day .. . day
R n

for all @ of the form (x,n).
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The above theorem essentially comes out of the construction in Section 4 of Barton et al.| (2010Db])
(which is really about a very slightly different version of the SAFV process but the modifications are
trivial). We will discuss the construction of |Barton et al.| (2010b) in more detail in Section

2.1.3 The rate of reproduction

Let us compare (2.1.1)) to the corresponding equation (|1.3.8]) for the A-Fleming-Viot process. As we have
already noted a point 2 € R? is hit by reproduction events at rate

| " )

which is potentially infinite. One might examine (|1.3.8]) and (2.1.4) and guess that condition for existence
of the basic SAFV was

J’ w?rep(dr)v, (du) < . (2.1.6)
(0,50)%[0,1]

instead of (2.1.1). This would certainly be enough to handle the dual process of Definition but
equation ([2.1.6) turns out to be a bad guess. In Section we saw a notional formulation of the

process in which corresponds to ancestral lineages jumping at finite rate, obtaining a dual system
of coalescing compound Poisson process. As one might imagine from our discussion in Section [1.3.3]
equation corresponds to replacing this with a system of coalescing Lévy processes. We run into
difficulty trying to weave together all the lineages into dynamics driven by a Poisson point process. This
is most easily seen if we attempt to write down the generator of the basic SAFV process.

Let us do so on the test function I1(-; @) for some ® of the form (x,1). The dynamics of definition
[2:1:3] suggest that the result will be

o9 = [y [ tar) [ vt [ owyam [ ao
o)1 € B, ()} (O (1= wpla) +ud) = v pl@)) ) |-

Recall our advice in Section [1.3.2] on interpreting the generators of jump processes. The first three
integrals select the parameters (y,r,u) of a reproduction event. The integral over K selects a parent
type k according to p(y). The remaining pieces are the change the process would experience in the
corresponding reproduction event as seen through the test function ®. A little rearrangement leads us to

6100 = [y [ tar) [ ) [ ae [ot1io € Bu( o)~ onw))]

The best bound on the terms in large round brackets is in general 2||x||,. Since ||¢]|1 < oo and
SRd 1{x € B.(y)}dy = Cqr? we see that is precisely the right bound for GI; to be well defined. A
similar calculation can be carried out for any I € .#.

In the A-Fleming-Viot process we took essentially the test function I; without the spatial component,
but in the generator we did not encounter a finiteness problem since without space the parent was
selected from ‘the same site’ as it reproduces into.

Remark 2.1.11 We end this section with the comment that it is known (but unpublished) that versions
of the SAFV exist with a corresponding notional formulation in which the ancestral lineages are infinite
rate pure jump Levy processes. Since the Poisson point process representation breaks down it is not known
how to characterise these processes forwards in time. Very little is known about such processes.
Expressing the SAFV process as driven by reproduction events taking place in finite regions where each
location is affected equally puts a limitation on the type of interaction between the ancestral lineages. As
a consequence the Poisson point process driven SAFV cannot support a sufficiently complex dependency
between the ancestral lineages as would be needed for a system of coalescing infinite rate Lévy processes.
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2.1.4 Generalizations

Some possible generalisations of the basic SAFV are as follows.

1. The parent location in the reproduction event (¢, x,r,u) could be sampled according to some dis-
tribution on B, (z). We will refer to this general form as non-central parenting. The sampling of
parents as in Definition we refer to as central parenting and if the parent is selected uniformly
at random from B,.(y) we refer to it as uniform parenting.

2. We could vary the shape of the region affected by a reproduction event with parent y and radius r.
We refer to this as reproduction events of varied shape. In this case we would no longer be able to
parametrise the relevant axis of A (which is (0, 00) 3 r) as a radius and would require some indexing
space.

3. Multiple parents 21, ..., 2, could be sampled. Then, sampling k; according to p;—(z;), we would

have
m

pr(z) = (1 —uo)pe(z) + Z u;i0p,

where A is modified so as (u;) is sampled with ug = Y, u; as the analogue of (2.1.2).

4. We could allow the killing proportion u to depend on the distance of some affected site from the
parent site.

5. We could introduce spatial motion in between reproduction events.

6. We could incorporate selection so as the type d; chosen to be the parent type affects to what extent
the reproduction event takes place.

7. We could introduce mutation. It would be interesting to let p;(x) evolve randomly in between jumps
caused by the reproduction events. It is more realistic biologically to have mutation occurring as
part of the reproduction events.

Many other generalizations would be possible, beyond those we list above. With applications in
mind, it is sensible to think of SAFV processes as a framework rather than a particular process. Our
construction in Chapter [3| (see also Definition will include a mechanism selecting event shape and
parent location, and will also incorporate selection. We could easily modify the prelimiting particle
systems of Definition [3.2.4] in Chapter [3|to generate an SAFV process with all of the above modifications.
Doing so would require even more unwieldy formula than those which already appear in Chapter [3] but
would not add significant difficulty to the analysis.

2.2 SAFYV literature

The SAFV was first introduced in [Etheridge| (2008) in the form of Definition but with uniform
parenting. A construction of this version of the SAFV process on a torus, the only published construction
to date, was given in Barton et al.| (2010b).

1. [Etheridge| (2008) was a survey of models used in modern population genetics. It contains a short
section introducing the SAFV and a list of suggestions of possible generalizations of the process.

2. Berestycki, Etheridge, and Hutzenthaler| (2009) considers a process which is intended to
approximate the SAFV with only finitely many individuals in any bounded region. In contrast to
most finite population models the individuals in their model exhibit correlated reproduction. The
article is concerned mostly with discussing the long term survival and ergodicity of such models.
Proof that these models really do converge to the SAFV process is to appear in [Etheridge and
Kurtz| (In Preparation)).
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3. Barton, Etheridge, and Véber| (2010b)) features the first construction of the SAFV process,
in the form of Definition [2.1.1] but on a Torus with uniform parenting. Neither of these features is
crucial to their construction, which is an adaptation of Evans (1998) and relies heavily on ancestral
lineage duality. The primary aim of Barton et al.| (2010b) is to investigate the asymptotic properties
of the dual. Note that for the case with uniform reproduction a dual can be defined analogously
to our Definition on a (t,y,r,u) reproduction event sample a parent site uniformly from
B, (y) rather than always taking it to be y. Under different scaling limits they obtain a Kingman
coalescent, a general A-coalscent and a system of coalescing Brownian motions with a non-local
coalescence mechanism.

4. Limic, Véber, and Wakolbinger|(2010) is work in progess and is intended to provide a lookdown
construction of the SAFV process. They also give a natural way to express the SAFV process as a
measure valued process (i.e. a M(R? x K valued process) but using a non-standard topology on
M(R? x K) induced by a bijection with =.

5. Berestycki, Etheridge, and Véber| (2010)) is also work in progress and looks at scaling limits of
two versions of the SAFV process. Firstly, a one dimensional version with a heavy tailed distribution
on the radii of reproduction events. Secondly (and in all dimensions d), a case where the ancestral
lineages are required to have finite variance and are rescaled to Brownian motion. If (in dimensions
d = 2) the initial conditions are suitable sparse, the scaling limit of the SAFV is a super-Brownian
motion. We will explore this ourselves in Chapter [4l Berestycki et al.| (2010) covers the non-sparse
case.

6. Barton, Etheridge, and Kelleher| (2010a)) is concerned with the biological effects the SAFV
was designed to model. A simulation package (which is used in the paper) can be found at http:
//homepages.ed.ac.uk/jkellehe/qps.php. They consider a version of the process in R? where
each reproduction event affects all of R%, and the proportion u of individuals replaced at a site y is
the value of a Gaussian centred about the parent location.

2.3 Our formulation

Let us first note that the action of the reproduction events in Definition is homogeneous in both
space and time. Suppose we had non-central parenting in the process of Definition and suppose
the site = € R? is a parent site in the reproduction event (¢, z,7,u). We could write down an expression
for the conditional distribution of the area in which the reproduction event occurs. Thus we see that
specifying the distribution by which the parent is chosen inside a reproduction event is really the same
thing as fixing the parent site in the event (¢,x,-,u) to always be x and specifying how the shape of the
reproduction events vary. In fact, this second formulation is the more general.

Informally for now, let I be some set and for each i € I let E; be some open subset of R?. We then
specify the rate of the different shape events with a measure on i. A reproduction event (t,x,,u) occurs
in the region z + E;. We will not require 0 € E;.

We will also incorporate viability selection. For us this means that in a reproduction event once we
have selected the parent type d; we then carry out a further test in which only we permit the reproduction
event to take place with some probability S(i, k). We will call this the selection test.

Sampling some parameters of a reproduction event from the Poisson point process and others in a
more informal fashion corresponds formally to using a larger Poisson point process. As we will see in the
next chapter, selecting all the parameters of a reproduction event properly from a Poisson point process
makes for complicated notation. For now let us record a statement of our version of the process in the
informal style of Definition Again, to ‘each’ point # € R? we associate a Z(K) valued process

pe().
Definition 2.3.1 (Spatial A-Fleming-Viot Process, Our Version) Let (I,Z) be a measure space

and let pu(di)v;(du) be a measure on I x [0,1] such that for eachi€ I, v; € 2([0,1]). Let E: I — B? be
some function such that for each i € I, E(i) = E; is an open set of R* . Suppose that

J WD) p(divs (du) < oo, (2.3.1)
Ix[0,1]
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where (i) = sup{|z — y|; z,y € E;} is the (mazximal) diameter of E;. Let S : I x K — [0,1] be some
function. Let A be a Poisson point process with points (t,y,i,u) € [0,00) x R% x I x [0, 1] of intensity

dt @ dy ® p(di)v;(du).
From some initial state py we specify the evolution

o If(t,y,i,u) € A then select k according to p;—(y). Sample an independent Bernoulli random variable
with success probability S(i, k). Then, on a success, for each x € y + E; set

pil@) = (1= Wpr (@) + ud.
On a failure do nothing.

o In between the jump times caused by reproduction events affecting x which pass the selection test
the process pi(x) is constant.

We call (t,y,u,i) a reproduction event at time t in the region y + E; with parent site y, parent type k,
killing proportion u and selection success probability S(i, k).

As with Definition there are technicalities to do with the topology on the state space which will
hold us back from giving a formal definition in this chapter. We have additional technicalities to cope

with in Definition [2.3.1] concerning measurability of functions mapping out of I. These issues will be
addressed in Chapter [3]

Note that we have replaced (2.1.1) with (2.3.1). Writing
0 pl 0 el
Cdf J ur@v, (du)p(dr) = f J ul(By(0))vy(du)p(dr)
o Jo o Jo

(recall £ denotes Lebesgue measure) we expect that the natural analogue of (2.3.1) in the setting with
(I, E) specifying non-central parenting would be

J J wl(E;)v;(du)p(di). (2.3.2)
1Jo

Whilst this is probably the correct condition, our construction in the following chapter of the process
corresponding to Definition will require the stronger . Since our construction is the only
construction to date that deals with selection, we stick to stating (but see Remark [3.1.3]). Note
that if the reproduction events are circular and the reproduction is parent centred then (2.3.1]) and (2.3.2)
are the same condition. In fact permits one to construct almost all useful examples of the process.
We will state a proper existence theorem (with other, less important conditions too) as Theorem

2.3.1 The effect of selection on duality

It is very important that at this point we make a note of the influence of selection on the duality
expressed in Subsection 2.1.2] As a general principle throughout mathematical genetics, selection and
ancestral lineage duality are not happy companions.

The reason for this is that when we are tracing back an ancestral lineage in order to know where to
jump next we need to know how strongly the potential parents were competing to give birth. If this
competition was influenced by genetic type then in order to know the distribution of where to jump we
need to know the distribution of types at a time which (because we are tracing in reverse time) is in the
future. This causes duality relationships to break down. Thus the construction of the SAFV in [Barton
et al.| (2010b) is not able to deal with selection.

Remark 2.3.2 |Fleming and Viod (1979) and |Etheridge (2000) both obtain uniqueness of the Fleming-
Viot process with selection via a Dawson-Girsanov transform of the neutral case. However, Dawson and
Kurtz (1982) gives an example of a Fleming-Viot process with a particular type of selection where a
dual can be found. A tool especially worthy of note in this approach is the modified lookdown process of
Donnelly and Kurtz (1999d) which deals with both selection and mutation.

25



Another idea to get around these issues is the ancestral selection graph, introduced in
[Neuhauser| (1997). It is known (but unpublished) that a dual exists for the SAFV process with a particular
type of (biologically reasonable) selection, involving a choice between two potential parents. This duality
corresponds to an ancestral selection graph with random numbers of branches, and we will not describe it
in detail here.

As is well documented in Section 4.4 of [Ethier and Kurtz| (1986), duality is the major tool for proving
uniqueness to martingale problems. This will cause us trouble in the next section where we deal with
proving existence/uniqueness for our version of the SAFV process. In this chapter we have studiously
avoided mentioning a martingale problem for the SAFV process, but we will do so in Chapter
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Chapter 3

A construction of the Spatial
A-Fleming-Viot process

In this chapter we give a construction of the SAFV process defined informally in Definition [2.3.1} We
will characterise the process as the solution to an appropriate generator type martingale problem but we
will only be able to prove uniqueness in the case without selection. As we suggested by calling Definition
‘our formulation’, existence of this process is a new result. We now switch out of the informal style
of Chapters [l and [2] to giving fully rigorous proofs of our results. The final section of this chapter is the
subject of ongoing work.

We ask that before beginning this chapter the reader becomes familiar with the construction of the
state space Z in Section and Proposition [2.1.7 which characterizes the topology of =. We will use
the notation from Section [2.1.1]in this Chapter without comment. We ask also that the reader have read
Section although we will recall the notation used in our formulation of the SAFV (Definition
at the start of Section BI.1l

3.1 Introduction

The only published construction of the SAFV process to date has already been mentioned and can be
found in Barton et al.| (2010b)). The construction is indirect and relies heavily on ancestral lineage type
duality; as it such cannot be extended to the case with selection. In this chapter we construct the SAFV
process of Definition forwards in time, as a limit of discrete particle systems.

Our construction is extremely flexible and could be easily extended to include essentially any super-
position of effects discussed in It also would be relatively easy to adapt the convergence arguments
in this chapter into showing that the SAFV process (as a Dz[0, ) valued process) is continuous in both
its initial conditions and its parameters. With regards to the parameters which are measures this would
correspond to the appropriate weak topology.

Whilst the strategy of the proof is simple, the expressions involved in dealing with the SAFV generators
are unwieldy. We restrict ourselves to only the existence of the SAFV process of Definition [2.3.1

3.1.1 Parameters and conditions

We recap the ingredients of Definition Let (I,Z,u) be a measure space equipped with a o-finite
measure p. Let E : I — B? be a function, and let us write £; = E(i) and

E(y)=y+E, ={y+z;z€ E;}.

Let £(di,du) = u(di)v;(du) be a o-finite measure on I x [0, 1] such that the conditional measures v;(du)
are probability measures on [0,1]. Let S : I x K — [0,1] be a measurable function.

Remark 3.1.1 [ is just an index for different shapes of reproduction event and E is the function mapping
the index to the event shapes. The measures p and v; control the event rate and the killing proportion.
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S specifies which types in K are at a selective advantage. A high value of S(i, k) increases the chance
that a parent of type k has a reproduction event affecting an area of shape E;. We are consistent with
terminology of Definition ' the probability that a a reproduction even corresponding to (t,x,i,u) with
parent type chosen to be k passes the selection test is S(i, k). If S is constant the process is neutral (i.e.
without selection).

Remark 3.1.2 The same construction as given below is valid if S is also allowed to depend on wu.

We intend all the action to take place over some probability space (€2, F,P) which will, for the most
part, remain in the background. As normal, elements of the sample space 2 are denoted by w.
Let k be a = valued random variable, which will be our initial state. Recall

(i) = supflz —y[; z,y € Ei}
is the (maximal) diameter of E;.
The parameters (I, E, u, v, S, k) must satisfy
1) Each E; is bounded and open.

#2) For each z € R, i — 1{x € E;} is measurable.
A3) §, ul(di) §g vi(du) uP (i) < co.
)

(
(
(
(#4) The set
{zeR; I(zp) SR, 2, > 2 and k() — K(z) in Mp(K)}
is almost surely a Lebesgue-null subset of R?.

Obviously there is something to prove here in that (J#°2) guarantees enough measurability for (#3)
to make sense. We will prove this (and more) in Lemma We will not make further comment on
matters of Z-measurability; All the Z-measurability required in what follows can be easily deduced from
Lemma and the standard algebra of measurable functions. (J74) is what we require for the natural
sequence of lattice approximations to x to converge to k.

Remark 3.1.3 The fact that we require (3£4) is a limitation of the discrete space particle system ap-
proach. It is the regularity one needs to make the appropriate lattice approxzimation for the initial states.
To get existence (potentially without particle system approzimations) the natural condition to expect is
simply k € 2. (°4) poses little restriction from a biological point of view, since if R% can be divided into
countably many regions with say, Lipschitz boundary, and on each region x — k(x) is continuous, (H'4)
clearly holds.

For our purposes, condition (#3) could be replaced with the weaker (but unwieldy) condition that for
some € (0,00),

,u(di)fO vi(du)ul(E;) < oo

Ll w(di) Jl vi(du)u2(i)? < oo and f

0 Iy

where Iy = {i € I; 2(i) < p} and Iy = {i € I; Z(i) = B}. In other words, it is enough to have the bound
with wL(E;) for the large events but for the small events we must use the stronger uP(i)?.

3.1.2 Results
Definition 3.1.4 Define a linear operator G : & — C(E) by

G (L (p, ®)) = j dy j u(di) j i(du) fK o(y)(dk) f() dy,...d,

S(i, k)p(z1,. .., n) [T Ggopl))

{7;2¢E:i(y)}

x [T o =wp)+usy— ] OGrelz)) |,

{7;7€E:(y)} {7;7€E:(y)}
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and G(f) =0 if f € C(2) is constant.

Note that this is precisely the generator we would expect to correspond to Definition The first
four integrals select a location y, a shape reproduction event i (in the form of E;), a killing proportion
u and a parent type k. The term S(i, k) modifies the rate at which reproduction events corresponding
to y,1,u, and k can take place. The remainder of the expression is the change we would expect to see at
such a reproduction event as viewed through the test function I,,(-; ®@).

We define the Spatial A-Fleming-Viot process to be the solution to the following martingale problem.
We say ‘the’ somewhat tongue in cheek since there is currently no proof of uniqueness in the case with
selection.

Definition 3.1.5 (Martingale Problem for the SAFV process.) The Spatial A-Fleming-Viot pro-
cess with initial distribution k is the cadlag Z valued process t — py such that Plpo = k] =1 and

o(pr) - f Ga(6)(ps)ds

is a martingale for all p € & .

Our pre-limiting particle systems are indexed by « € (0, 1] and can be informally described as follows.
We will give a formal description as Definition [3.:2.2] Note that they are not formulated as =-valued
processes, which is an issue we will address in Section [3.2

Define

If ={iel; 2(i) <aorlja< 2(i)}

and let p® be the measure on (I,Z) given by
p(A) = p(A\LG).

Remark 3.1.6 We could use any sequence f(a) such that f(a) — 00 as a | 0 in place of 1/« in the
definition of I§. The point of u® is that we remove the small events and the large events.

Definition 3.1.7 Fiz o € (0,1]. To each x € aZ associate a K valued process t — &&(x) with initial
state defined by the relation d¢, () = k(x). Let L be a Poisson point process in [0,00) x aZ® x I x [0,1]
of rate

dt @ addx ® p (di)v;(du)

where dt corresponds to Lebesgue measure on [0,00) and dx corresponds to the measure giving each point
of aZ* mass 1. Define the dynamics as follows.

o If(t,y,i,u) € L then, independently of all else, sample k according to p;(y) and a Bernoulli random
variable . with success probability S(i,k). Do the following.

— If .7 is a success, for each x € E;(y) n aZ?, independently of all else, take a uniform random

variable U and if U < u set £} (x) = & (y).
— If 7 is a failure, do nothing.

o The process t — £X(y) is constant in between the jumps caused by the reproduction events above.

Our main results are:

Theorem 3.1.8 The martingale problem for the Spatial A-Fleming-Viot process has a solution. In fact,
any limit point (in 2(Dz[0,))) of the set of particle systems defined in Definition[5.1.7 is a solution.

Theorem 3.1.9 If S is constant the martingale problem for the Spatial A-Fleming-Viot process has at
most one solution. In this case, the particle systems of Definition have a unique limit point.

Remark 3.1.10 As we have already commented, we believe Theorem[3.1.9 to be true without the condi-
tion that S be constant.

29



We discuss the pre-limiting processes in Section [3.:2} Proof of Theorem is given in Section [3.3]
and proof of Theorem [3.1.9]is given in Section [3.4]

Recall that at the end of Section we remarked that our pre-limiting particle systems would allow
for easy modification to produce even more general version of the process. We will not describe the precise
modification for each case but hope that the principles of how to discretize the desired limit process are
now clear. The convergence argument in each case will be essentially the same as that given below.

The estimates involved in the proof of Theorem [3.1.§ require a huge amount of notation, and the
reader who does not wish to verify the proof is advised skip the remainder of this chapter.

3.2 The pre-limiting processes

In this section we set up the pre-limiting particle systems and prove some results about their generators.
For the duration of this section fix a € (0,1]. We prove existence and characterize the generator,

formulated as a K% valued process. Then we translate these results into statements about the = valued
version of the same system and take a limit as @ — 0.
For = € R? define
[2]a = y where y € aZ? and z € [y + /2,y — a/2)<.

to be (off a null set) the nearest neighbour in aZ? of r € R?.
In order to properly describe our pre-limiting particle systems of Definition [3.1.7] we need a method
for constructing countably many uniform random variables within a larger Poisson point process. Let

U=1{f:aZ?—[0,1]; f is measurable.}
with the || - ||»» norm and corresponding o-field. The following result is well known.

Lemma 3.2.1 There exists a measure U on U such that if F' is a U valued random variable with law U,
the set of functions {w — F(z)(w); x € aZ} is a set of independent random variables, each of which is
uniform on [0, 1].

Our initial state for the limiting process is k € Z. For each a € (0, 1] there is a (unique, in distribution)
K°Z* valued random variable satisfying the relation

653(w) = K}(I) (321)
Our pre-limiting processes are described as follows.

Definition 3.2.2 Fiz a € (0,1]. The a'* process (€)%, takes values in K% and its value at time
t € [0,00) will be denoted &. The initial state £ is given by (3.2.1). Let A* be a Poisson point process
(independent of k) with points (t,x,i,u, f,g) in
[0,00) x aZ® x I x [0,1] x [0,1]°Z" x [0, 1]*%"
of rate
dt ® a’de @ p®(di)v;(du) @ U(df) @ U(dg)

where dt is Lebesgue measure on [0,00) and dx is the measure assigning mass 1 to each lattice point of
aZ%. The dynamics are

o If (t,y,i,u, f,g) € A, then for every x € E;(y) n aZ?, if S (i,gt{(y)) > f(y) and u > g(x) set
& y) = & ().

o The process t — £ (y) is constant in between the jumps caused the the reproduction events as above.

Remark 3.2.3 By Lemma[3.2.]] this defines the same particle system as Definition [3.1.7
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Let
% =R x I x[0,1] x U?

be the underlying space for A® without the time component. For x € RY, (y,i,u, f,g) € % and ( € KoL
let

T(z,y,i,u, f,9,0) = 11{[90]a € Ei ([yla) su > g([z5]a) S (4, (([y]a) > f ([¥]a) }

We will usually permit ourselves to suppress dependence on all but = and write T'(z; ). In words, T'(x;) is
a test to see if the reproduction event (-,y,4,u, f, g) is successful in overwriting the type of x from state
¢. Let

T(x;)=1-T(x;).

be the corresponding test for failure.
We equip the space C(K O‘Zd) of continuous real valued functions on K°%* with the [|-]]o» norm (which
is defined since K is a metric space) and corresponding topology. For n € K% set

b9 (@) = T n(lyla) + T(as ().

In words, n¥»%f9 is n after being affected by a reproduction event (-,y,1,u, f,g).

Lemma 3.2.4 The K°%* valued process £ (+) is well defined by Deﬁnition. Further, £€* has Markov
pre-generator Q¢ defined by

s = [ ay | utai) | wtaw | @)Ut (6o < )

0

for J € A™ where

A” = {Jec(mzd) 2 2 s {1 = J(Ql5 1. € K% and for y # 2,n(y) = ()} < oo}.

reEQZ

The closure Q : C(Ko‘zd) - C(K"‘Zd) of Q is a Markov generator.

PrOOF: Our proof of this Lemma will rely on results from |Ligget| (1985). See Appendix |

We now move straight on to considering the particle system of Definition [3.2.2] as a = valued process.
Define a process t — p§* by

PE (@) = Ogp(fala)-
Note that taking ¢t = 0 gives p§(z) = k([z]a). Let

X ={peZ; for almost all z € R?, p(z) = p([z],) and for some k, € K, p(zx) = 6, }.
Lemma 3.2.5 t — p is £ valued and almost surely cadlag . For all t, pf € 2.

Proor: The fact that pf' € 2% € = is immediate from the definition of p®. It remains only to prove
that p almost surely has cadlag paths. Let ¢ : R? — R be continuous with compact support and let
X € C(K). By Definition for each « € (0, 1] the rate of reproduction events affecting the bounded
region supp(¢) is finite and so

PVt e [0,00)de > 0Vs € [t,t +€), ps(x) = p(x) for all x € supp(y)] = 1.

Hence

Plutcm)as st [ 0@ Gept)de = [ i@ Gopt @) da <1

so by Lemma [2.1.7]
P[Vt e [0,00), if s | ¢ then p — pi] = 1.
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A similar argument covers the left limits. |

For pe &', let p,(y) = k where k € K is unique such that p(y) = p([y]a) = dx. Note in particular
that by Lemma [3.2.5

6ppt(y) = pt(y)'

With mild abuse of notation let us write

T(z,y,i,u, f,9,p) = 1{[z]a € Ei ([yla) ,u > g ([2;]a) , S (i, pp([yla)) > f([yla)} -
for pe 2 and similarly for T'(z;) = 1 — T(x; ).
Let G be the linear operator defined on .# — C(E) by

G (L ®) = | ay | e tai) | : vi(du) fw UNUg) | do...da,

(RE)™

Y@, ,wn){ X X (;) [T(:vj;)p([y]a) +D(xj;)p ([wj]a)]>

j=1  j=1

- >n< Xis (;)p([:cj]a)> } (3.2.2)

j=1  j=1

and G(Ip) = 0 if Iy € C(E) is constant.

Remark 3.2.6 We will not prove whether or not G* extends to a Markov generator. It is relatively
easy to show (using, for example, Theorem 2.2 of |Ligget (1985)) that G* is an unbounded Markov pre-
generator.

Proposition 3.2.7 For all he .7,
t
o)~ | Gon(oz)ds (3.23)
is a martingale.

PROOF: Since a linear combinations of martingales is a martingale it suffices to prove (3.2.3)) for h =
I,,(-; ®) where for some n € N ® has the form (x,n).

So let ® have the form (x,n). Define J2(-; @) : K%' s R by

I (n; @) = J Yy, .., z0) { X x5 &) §n([wj]a)> dzy ...dz,.
(RT)™ j=1  j=1

Note that d¢o([2;1.) = P ([2j]a) and so
(&5 @) = Ln(pf'; ®). (3.2.4)

By Lemma [3.2.4]

0

X ( X XJ"®5T<[xj]a»ss<[y]a>+f([zj]a;>s;?<[z]-]a>> —( X Xiv®5€?([wﬂa>>) }

j=1 j=1 j=1 j=1

QT (63;0) = J}Rd dy L p(di) J v;(du) B U(df)U(dg) J(Rd)n dzy ... dmn{w(xl, ceey Tp)

Since pff € 277,

O (a1 )68 ([T (1 067 (G 1) = L (121 )0F (W) + T ([25]a; )P ([25]a),

SO as
QT (&5 W) = G In(py'; V). (3.2.5)

32



Using (3.2.4) and (3.2.5)), (3.2.3)) is a martingale if and only if

t
T - | or s wyas (3.2.6)

is a martingale.
Recall that our definition of the form (*,7n) required 1 to have compact support. Hence if z €
aZ¥\supp()) and n(y) = ((y) for all y # = we have J¥(n; ¥) = J¥((;¥). Note also that for any
d
ne K",

n
1Ty @) < 0l [ T e
j=1
From these two observations it follows that

sup {J(1) = J(Q)l; m, ¢ € K% and for y # z,n(y) = C(y) |

< 2#(aZ? v supp@)II¥I [ T Il < 0

=1

and hence J2(-;¥) € A% In Lemma we showed that the closure of the pre-generator Q¢ is a
Markov Generator for &*. By the Hille-Yosida theorem there is a semigroup corresponding to this
Markov generator. The fact that is a martingale now follows from Lemma 2.1.7 of Ethier and
Kurtz| (1986). ]

Let
A ={z e RY"; V) # k,[2)]a # [z1]a}-

As a — 0 note that 14. — 1 pointwise.

Lemma 3.2.8 Let n € N. There exists a bounded real valued function b5 such that for all p e X and
all & of the form (%,n)

G (1) = |y | o) | () | otwian f( oy B

{ﬂ{(fcj) € ApES(i,pp(y)) (21, T0) 1 Xy p(5))
{75 [z;]atEi([y]la)}
x I1 Gy (L =u)p(x)) + udy, () — [T ooela)y
{7;[zi]a€E:i([yla)} {7;7€E:i([y]a)}
where
|b${($17 ey Ty Y, iaua (I))| < U]]-{E|]7 [xj]a € El([y]oé)}wj(xla o axn)|2n 1_[ ||XJ||3C < 0. (328)
j=1

Further, there exists Cy, € (0,00) such that for all p € E and ® of the form (x,n),

|G (T (p; ®))| < Collelln | ] 11X 1oe- (3.2.9)
j=1

PrOOF: We first note that 1{S(4,p,([y]a) > g([yla)} does not depend on j, so if S(7,p,([y]a) < 9([y]a)
we have

X ijé [T(%;)P([y]a) +T(x;3)p ([xj]a):l> —( X xj,(;@p([xj]a)> =0

=1 j=1 i=1 =1
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and thus from (3.2.2)),

G (L (p: ®)) — J]Rd dy L Lo (di) L vi(du) LQ U(df)U (dg) J( o
Y@y, 20) I{S(,pp([y]a) > 9([yla)}

x{ ><X]7®[T’(xj,)p([])+T’:rj, [z;], > <><X],®P ([25]a >}

j=1 Jj=
(3.2.10)

where
Tl(wv) = T'(x,y,i,u,f,g,p) =1 {[z]a € El ([y]a) ,U>g ([xj]a)}
and T"(z;) = 1 — T"(2;). For m = 0,1 define
o(m) ={je{l,....n}; [z;]a € Ei([yla)}

we supress dependence on a,n, (z;) and y) and then
( J Yy

1
G (I (p: ) :fRd dy L 1 (di) L v(du) | UGUdg) LRd)n day ... da,

(e, wn) IS (0 pp([y]a)) > ( H s ol )

on

x {< X X ® [H{U>f([mj]a)}p([y]a)Jr]l{uSf([wj]a)}p([wj]a)]>

jeo(1)  jea(1)
X x5 & p([xj]a)>}. (3.2.11)
jeo(l)  jeo(1)

We seek to perform the integration over ¢42. In the above expression we have isolated the piece depending
on g, and by Lemma [3.2.1

L U(dg) 1{S (i, po([yla)) > 9([yla)} = S(i po([yla))- (3.2.12)

We have also isolated the piece depending on f, namely the expression in curly brackets making up third
and fourth hnes of (3.2.11). Note that the term from the fourth line does not depend on f and U(U) =
by Lemma [3 We now approach the term from the third line. Let

Aoy = {7 :0(1) = {0,1}}

and define
Tl y,u) = Hu > f([zjla)},
To(z,y,u) =1 =T(z,y,u),
Si(z,y) = p([y]a) and finally So(x,y) = p([x;]a). Then

LU(df){ X x5 ® [H{U>f([xj]a)}p([y]a)+1{qu([$j]a)}ﬂ([wj]a)]>}

jea(1) Jjea(1)

LU(df){ > Q) Sr(y)(,y)(dk;) [H X (k) Tr g (2,9, u >]}

TEX (1) Ko jeo(l) jeo(1)

TE;U(D JKUMJS%)ST(J ,y)(dk;) [( [T xik )L { 1_[ Try (@, g u }] (3.2.13)

jea(l jeo(1
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To obtain from the line immediately preceding we note that all the products over j are
separate entities and we are not really overusing the variable j. We are now able to evaluate the integral
in over U, but recalling Lemma and the definition of Ty, (z,y,u) we require to know which
of the z; are such that [z}, ]o = [2;,]. Looking at the case where the [z;], are distinct we obtain from
Lemma [3.2.7] that

Li(ay) € A3} | U(df){ I1 7;<j>(x,y,u>} — 1{(a) € ASJul! (1 — w11 (3:2.14)
u jea(1)
where we define |7| = Zjeg(l) 7(j). For the case involving 1{(z;) ¢ A%} we create the error term b
described in the statement of this Lemma. So, by (3.2.14))
1(z;) € A%} x (B2T3)
= 1{(z;) e A7} ] Q Sepla@y)ky) | [ [T xilky) Julm(@ = )OIl
reyy VK7 jeo(1) | \seo(1)
= 1{(z;) e A} D] X Sr)(@y)(k)) X (k;)
TEX (1) KoMl jes(1) | jea(1)
~ 1) e A X xp @ [uelll) + 0 —u)p([xj]a>]> (3:2.15)
jeo(1) Jjeo(1)

where S (x,y) = up([y]a) and Si(z,y) = (1 — u)p([z]a). We now look to be in good shape! Putting
(3-2.12) and (3.2.15)) into (3.2.11)) and creating an error term to account for using 1{(z;) € A%} in (3.2.14)),

G*(I.(p; ®)) = JRd dy L u®(di) Jl v;(du) J;Rd)” dry,...,dzy,

0

{]1{(%') € Au3S (i, pp([yla) (a1, - - ) ( I1 <Xj»p([$j]a)>>

{7;[zi]atE:i([yla)}

x ( 11 OGs (L=wp([zs]a) +upllyled = [T Qo p([fvj]a)>)

{75 [z;]acEi([yla)} {i;i€Ei([yla)}

+ 1{(z;) ¢ Ai}bi(m,--~7wn,y,i,u)}. (3.2.16)

where bS is given by

bz(x17"'7xnay7iau7p?\ll) :J,
u

. U(df)U(dg){w(xl, @) IS po([yla) > 9([y]a)}

. ( X e @ [Tl ([0),) + Ty ([xj]a)]> ~{ % x.j>(>n<)p([xj]a)>> }

j=1  j=1 =1 J=l1

(3.2.17)

The fact that p € 2™ means that for almost all y € R?, §,. p(y)(dk) = 0, (1y].) = Op,(y)- Thus (3.2.16) is
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equal to

G 1 ®) = [ o | (i) | () | ot | ...,

(Rd)m

{1{(%‘) € ARYS (i, k) ¥ (1, ... xn) ( I1 G P([»”Uj]a)>>
{75 [2]

o Ei([y]la)}

X ( I1 Gy (T =uwp([zj]a) + udk)) — [T p([xj]a)>>
{75 [=5]

J1a€E: ([y]a)} {7;7€B:([yla)}

+ 1{(x;) ¢ AS}on(x1,. .., Zn, Y, z,u)}

which is precisely .
All that remains to do is prove (3.2.8) and (3.2.9)). Let us note first that if [z;] ¢ E;([y]a) for each
j =1,...,n then the term in the second line of (3.2.17) is zero. Similarly if u < f([z;]q) for all j Then

the second line of (3.2.17)) is zero. So from ( ) we obtain

|b%(x17 s 7$n7y77;7u7p7\1/)|

< U(df)U(dm{u{aj, [231a € Eilfyla) }1{37,u > f(lz)0) Hibtor, o mn) 2] ] ||xj||x}.
j=1

M2

Carrying out the integral

| v {zie> s} < | vl@nu Y 1> £

j=1

U(df) Hu > f([z;]a)}

Il
D=
N

1

Il

u

by Lemma proves ([3.2.8]). Similar considerations obtain from (3.2.10]) that
1 n
G (L)l < [ dy [ ) |t | [un{aj’, [21o € B[yl oG, oan)len [ ] slle
R4 I 0 (Rd)" j=1

We note that

S—

J {3 Eitlo)} < [ v 3t e Bl

I
D=
= ?

dy1{~[gla € Bi(—fr;]0)}

<.
Il

I
1=
= ?

Ay 1=l € B

<.
Il

_ nj dy 1{ly] < 2(i) + a)
Rd
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which gives us

G (T (p, @) < 207 (Ilwlh [1 ||xj||m> | ety | i@y | aytini < 26 +aig i)

< 2n? (I|<p||1 H ||Xj||cc> L/ﬂ(di)uﬁkd dy Hy| < 292(i)}

<2m’C <||<p||1 11 IIXJ||x> Lu“(di)uD(eﬂ)d <

Jj=1

where to get from the second to third lines we used that ¢ € I\I§ implies o < Z(i). Finiteness follows
from (F3). ]

The corresponding result for G is much easier to prove. But note that we have an extra term in
(13.2.18]) since we are also comparing p to p®.

Lemma 3.2.9 Let n € N. There exists a bounded real valued function b, such that for all p € = and all
® of the form (*,n)

Gl ®) = [ ay | ntai) j ) | p(o)(at f( N

{1{(%) € AntS(ipp())(21, ... ) [T Cuoela)

{7;2;¢E:(y)}
x [T o0 =wela;) +usy— ] Ouoelas))

(G 12;€B:(v)} {7:5€Ei ()}
+ 1{(z5) ¢ Aptbn(er, .o 20y, 0,0, D)

+ <2n||<p||1 H||Xj||ﬁ,\;> JI u(di)L vi(du) u@(i)d}. (3.2.18)

where

B (@1, Ty, @) < ul{3j,w5 € Bi(y) oo, @) 2 [T sl (3.2.19)
j=1

Further, there exists Cy, € (0,00) such that for all p € E and ® of the form (x,n),

|G (Tn(p; @) < Callolly [ T ls11ee- (3.2.20)
j=1
PrOOF: First let us split off the comparison between p and p®. To ease the length of our formulae let

yn(yviaua kvé) = J

(Rd)m

dxy,...,dz, lS(i,k)w(m,...,xn) H G p(4))

{7;2;¢E:(y)}

x [T o =wpa;)+usy— [ G elz)

{iiieEi(y)} {i;ieE:(y)}

If for all j = 1,...,n one has x; ¢ E;(y) then the second line of the above is expression zero and if jj is
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such that z;, € E;(y),

[T & Q=wp)+usy— [ G elz)

{7;7€E:i ()} {5;7€E:i(v)}

n

<[ 2] e | OGo —un(x) +up(y))
=1
jj?fjo

<u (z 1 ||xj||w)
j=1
Thus we have the bound

\Fly, i, b, B)] < f

L doy e day l]l{ﬂj, zj € Bi(y)yb(ar,...,2)2] | ||X||w] : (3.2.21)
(RE)™ j=1

From Definition recalling that u®(A) = p(A\I§),

Gttt o) = [ av [t [ vt [ o)) 7o)

=[] | ) [ )@, k59

1
< f w(di) ,[ v;(du) J dzy ...dz,
o4 0 (Rd)n

0

[uz ([ artter e 1) v, .2 1‘[ ||x||x]

n 1
< <2n||w||1H||x||x> |t [ vt o) (32.22)

0

where we used ([3.2.21)) to get from the second to third lines.
We now split off the term with 1{(x;) € A%}. From (3.2.22)) we obtain that (3.2.18) is satisfied with

bg(xl,...,xn,y,i,u,@) :S(Zapp(y))w(xlaaxn) H <Xjap(xj)>
{isz;¢E:(y)}

x [T o -wp)+ud,y—  []  OGre())

{7;25€Ei(y)} {7;5€E:i(y)}

We bound this using the same technique as we did on % (y,i,u,k). The bottom line of the above
expression is only non zero if for some j =1,...,n we have z; € E;(y). Fix jo to be such a j. So

b (@1, sy dw, @) < 13,25 € B (e, el | 2 [T Iglle || O —un() +up(y)) ]
j=1

J#Jjo

< U3jz; € Bi(y)}i (e, - )] <2 I1 ||Xj||rp) u
j=1
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which proves (3.2.19)). Similar considerations applied to the expression in Definition (3.1.4) give us that

G0l < [ ay [ e | () | o] dn ..,

(R)™

ul{3j, z; € Bi(y)}v(zy,. .., 2,)] (2 H ||Xj||x>

1
< J w(di) J v;(du) f dzy .. .dzy,
I 0 (R

ul(@r, )] (2 [T ||xj||7v> > [ dvtta e Bi)

< 2nllly <H||xj||x> | wtan |ty <o

as required. Finiteness follows from (573). [ |

3.3 Existence

Proposition 3.3.1 The set of processes {p®; o € (0,1]} is tight in Dz=[0,00).

PRrROOF: We look to use the Aldous-Rebolledo Criterion which is recalled as Theorem Our process
p® is = valued rather than real valued and to remedy this we use Theorem Fix some sequence

(am)meN c (07 1:

Proposition [2.1.7

Qm,

such that a,, | 0 as m — . and write p;'™ = p}* for the duration of this proof.
gives us that Z is separable and hence Dz[0, ) is also separable. Thus it suffices to

check that {p™ ; m € N} is tight for the arbitrary sequence a,, | 0.

= is compact

by Proposition and thus p" automatically satisfies the compact containment

condition of Theorem [D.1] Also by Proposition # is dense in C(E) under the || - || topology, so it
is certainly dense in the topology of uniform convergence on compact sets. Thus by Theorem and the
fact that a linear combination of tight processes is necessarily tight, {p™; m € N} is tight as a D=[0, «0)
valued process if and only if for every n € N and ¥ of the form (x,n), {L,(p™;¥); m € N} is tight as a

sequence of Dg[0,

00) valued processes.

Since = is compact condition (1) of Theorem is automatic. We now check (2). Note that

E[ Lo 0) — Lo ) |

- J(Rd)n dx1...dxn¢(x1,...,mn)]El X §j7®pm9($3‘)> —-( X fj,ép;”(xj)>1 }

Let

j=1 j=1 j=1 Jj=1

A0, 21, .. xn) = {p)"(x5) = piie(xy) forall j =1,... n}.

be the event that each of the sites pff(z;) does not change type over the time interval (¢,¢ + 6]. By the
dynamics of Definition the rate at which any fixed site is hit by reproduction events is bounded
above by {, pu*(di) S(l) vi(du) ua#(E; n aZ?). By Lemma there is a constant C' such that for all m

P[A(0,x1,...,2,)] < exp <—n00£u(di) f u@(i)d> .

0

Note also that off the event A} (0, x1,...,2,) = {p}*(x;), for all j p" 4(x;) = p{*(x;) so as

E l< X & ép;’ig(wj)> - < >< &, ép%”(xj)> ‘AZL(H,xl, . ,xn)c] =0.

j=1  j=1
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Hence

B[ 1o ¥) - Lo w)| | <1t (T ||xj||7v> exp (—noc | wtan | 1 u%)d)
j=1

which tends to 0 uniformly in m as 8 — 0. (2) follows by Markov’s inequality, completing the proof. W
The following Lemma essentially states that, ignoring whether or not the selection test passes, the
rate of reproduction events occurring in the pre-limiting processes converges to that of the SAFV process.

Lemma 3.3.2 As«a | 0,
1
f wu(di) 4[ vi(du) ul(E;) — 0 (3.3.1)

0

and for some constant C € (0,0), for all o€ (0,1], Slg w(di) S(l) vi(du)ul(E;) < C.

PROOF: Note that by (1)
1{i e Ig}ul(E;) —» 0

pointwise, as o — 0. Also note that £L(E;) < Cy32(i)% where Cy is the volume of a d dimensional unit
ball and thus by (7#2) we have

1

L u(di) J i) 14i € I8l (E) < L u(di) J Vi(duuCa (i) < o

0 0
By the Dominated Convergence Theorem we have the result. |

Let Q* € #(Dz[0,00)) be the law of p=.

Proposition 3.3.3 Any limit point of the set {Q*; a € (0,1]} € P(Dz[0,)) is the law of a = valued
process which solves the martingale problem for the Spatial A-Fleming-Viot process.

PROOF: Suppose Q is a limit point of {Q%*; « € (0,1]}. Then there exists a sequence a,, — 0 such
that Q®~ — Q. By Lemma and Skorokhods theorem (3.1.8 in [Ethier and Kurtz] (1986))) there is
a probability space (Q, F, 15) equipped with D=[0, 00) valued random variables p™ with law Q®™ and p
with law Q such that Q™ — @ in & (Dz[0,0)). By passing to a subsequence we may assume

" (3.3.2)

almost surely as m — 0.
By Proposition for all m € N and ¥ of the form (x,n)

(P f GO I, (57 W) ds (33.3)

is a martingale. We aim to take a limit of this expression as m — 0. Proposition gave us
L,(+;¥) € C(2) and thus by (3.3.2) we have

In(p*; V) — Ln(pe; ¥) (3.3.4)

almost surely. Note that this convergence is dominated by the constant ||| H?:l [1x;]l- By Lemma
[3:2.5 we have p® € 2'* and so we may apply Lemmas [3.2.8 and [3.2.9] to get

|G L (ps; V) — Gl (ps; V)|

< fRd dy L w(di) fo v;(du) J(Rd)n dzy ... dxn{l{(xj) ¢ Af{}
(2n|¢ T |1‘[ ||xj||7> (1{3i (200 € Bl }1{i ¢ 16} +1{3ja; € Ei(w})}

1
- <2n||¢||1n||xj||x> |t [ vty
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The term in the final line of the above expression tends to zero as « | 0 by Lemma[3.3:2] We bound the
other term of this expression (which makes up the second and third lines) as follows.

C(n, V) fRd dy L w(di) Jol v;(du) f(Rd) dzy ...dx,

ut{(m) ¢ A3 Yotar, ...zl Y 1l - 2] < 290}

Jj=1

_ C(n, 0) f

I

p(di) Ll vi(du) u f(mn dey ... dx,
() ¢ s} (@) ¢ A3 Jolon, ..o |2j a1 {la; | <290}

u(di) f v, (du) UJ(Rd)n d: ... dxn]l{(xj) ¢ Ao }|z/1(x1, )| 2(0)

0

< C'(n, \II)J

I

< C"(n, xp)f dz, . ..dmn]l{(wj) ¢ Agm}w(xl,...,xnn (3.3.5)

(Ré)™
where to get from the second to third lines we used that ¢ € I\I§ implies o < 2(4i) and to get from

the fifth to the sixth lines we used (.##°3). Since ||9||1 < oo and IL{(:U]-) ¢ Aﬁm} — 0 as m — o0, by the
Dominated Convergence Theorem we obtain

|G Iy (ps; ¥) — GI,(ps; U)| — 0 (3.3.6)

as m — 0. By Lemma [3.3.2{ and (3.3.5)) this convergence is bounded by the some constant C*” (¥, n). It
follows from ({3.3.2)) and the dominated convergence taking place in (3.3.4]) and (3.3.6)) that if L € N and
forl=1,...,L, b : 2 —> R is bounded and measurable and 0 < ry,...,ry, < s <t,

E l(fn(ﬁt;\l’) n(ps; ¥ f G I(pa; ¥ da) ]_[bz (o ]
L
= nll—{nwE l(In(ﬁt’W) Pé ) f GIn Pu ) ) H P” 1 :

Since is a martingale the above line is equal to 0. Hence

L(p:0) - j GO I, (pe: 0)ds
0

is a martingale. Since a linear combination of martingales is a martingale it follows that

t
oe) - | Gu@)pds
0
is a martingale for all ¢ € 7.

It remains only to show that p§ — k. Recall that the initial states p§ are given by p§(x) = k([z]a).
According to Lemma[2.1.7]it suffices to show that for each I,, (-, ®) of the form (x,n), I,,(p§, ¥) — I,,(k, ¥).
By (#£4) we have

P[||p§ (%) — k(z)||rv — 0 for almost all z = (xj);lzl eRY =1

(recall || - ||y denotes the total variational norm on Z?(K)). Hence,
P l< X Xj, ®p0“(xj)> -( X Xj7®,‘€(.’1:j)> for almost all z = (%‘)?Zl eRY| =1.
j=n j=1 j=n j=1

It now follows by dominated convergence that I,(p§, ¥) — I,(k, ¥) almost surely.

PROOF: [Of Theorem [3.1.8] This now follows from Propositions and
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3.4 Uniqueness

As we have already said, proof of uniqueness to the martingale problem of Definition [3.1.5] is work in
progress.

PRrROOF: [Of Theorem In Section we constructed a dual for the basic version of the SAFV
process. Essentially the same method constructs a dual in the case with non-central parenting and since
one of our assumptions was that there is no selection, this dual is then enough to prove uniqueness of
solutions to the martingale problem. We do not give the details here since a full proof of uniqueness is
hoped for at a later date. |
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Chapter 4

Super-Brownian motion is a scaling
limit of bursting processes

In Section we define a discrete model, which we call a bursting process, for spatial competition
between different types of individuals. The process is essentially the Spatial A-Fleming-Viot process with
typespace K = {0,1}, uniform killing (that is, ; = d¢13) and discretized space. It can equally well be
thought of as a generalization of the Voter model in which sites reproduce by imposing their type on
some collection of the other sites (rather than just a single site). In this chapter we show that suitably
rescaled, in dimension d > 3, bursting processes converge to super-Brownian motion.

4.1 Introduction

4.1.1 Some background

It is now well known that in dimensions d > 2 the Voter model can be rescaled to super-Brownian motion.
This was proved initially in |Cox et al|(2000) and was later generalised (to a stochastic Lotka-Volterra
model) and refined in|Cox and Perkins| (2008) and |Cox et al.| (2010]). Many other processes are also known
to rescale to super-Brownian motion, for example see [Cox and Klenke, (2003)), [Durret and Perkins| (1999)
or ivan der Hofstad and Slade| (2003). A common feature (which is almost a necessity) in processes which
rescale to super-Brownian motion is the ability to rescale an ancestral lineage to a Brownian motion; thus
ancestral lineages in the pre-limiting processes must have finite variance. For the SAFV process, a case
where they do not is explored in |Berestycki et al.| (2010) and gives rise to a quite different scaling limit.

All of (Cox et al.| (2000)), |(Cox and Perkins (2008) and |Cox et al.| (2010) (and our own proof) operate
via deriving a superprocess type martingale problem and taking a suitable scaling limit. In both |Cox’
and Perkins| (2008) and |Cox et al.| (2010]) the main differences to the original paper |Cox et al.| (2000) are
the extra drift terms. In our case the argument for this term is only cosmetically different to |Cox et al.
(2000) but the argument for convergence of the square bracket term (Sections and takes more
effort.

We will work in dimensions d > 3, and combine the strategies of |Cox et al.| (2000) and |Cox et al.
(2010). Our argument is in spirit closest to that of |Cox et al.| (2000) but we will use the much improved
method of (Cox et al|(2010) to approach what in |Cox et al. (2000) was the upgrading of L' estimates to
L? ones (Section 4 of |Cox et al. (2000)). We require some new ideas to obtain the asymptotic properties
of the dual in Section With these in hand we can approach the difficult part of the proof (the mean
field simplification in Section using a combination of techniques from |Cox et al.| (2000) and |Cox et al.
(2010).

This chapter presents a neater template for convergence to super-Brownian motion than can be found
anywhere in the literature. We will give a heuristic explanation of the proof in Section which
includes precise details of where the extra complications lie.

Remark 4.1.1 As for the Voter model, we expect that in dimension d = 2 a rescaling (with different
particle mass to account for the clustering which occurs in two dimensions) that takes bursting processes
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to super-Brownian motion. Dimension d = 1 will not work for the same reasons as the d =1 Voter model
does not; see the introduction of|Cox et al| (2000). The case d = 2 is more delicate than d = 3 but we do
not expect the necessary modifications to the arqgument given here to be huge.

We will work on a lattice aZ? where a € (0,1] instead of just Z<¢. Our rescaling to super-Brownian
motion will be indexed by N.

Remark 4.1.2 We thus obtain some dependency on « of the limit obtained as N — o0. Some versions of
the Spatial A-Fleming-Viot process are expected to rescale to super-Brownian motion and these versions
can be constructed as a (measure valued) limit of bursting processes as o — 0. If in our limiting super-
Brownian motion we let « — 0, and the parameters converge to something finite and non-zero, we produce
strong evidence (but not a proof) that suitable versions of the Spatial A-Fleming-Viot process will rescale
to super-Brownian motion.

4.1.2 Definition of bursting processes
A bursting process is parametrized by
1. a mesh size a > 0 for the lattice aZ?,
2. a sequence (dp)nen S [0, 0),
3. a sequence (®,,),en of bounded subsets of aZ< such that 0 ¢ ®,,.

and the resulting process £ we will call a («, ¢, ®)-bursting process. At each time t € [0,00) we assign a
random type & (z) € {0, 1} to each site x € aZ?. The corresponding measure valued process is

Xy =at Y &(x)s, (4.1.1)

reEQZ

and we denote integration of ¢ against this measure by X;(¢). The factor o is the volume of z +
[~a/2,a/2)¢, which is the section of R? to which we notionally assign the type of & (). Set

O, (x) =2+ p(2)

and define the dynamics as follows. Let A be a Poisson point process with points (¢, 2, n) in [0, 00) x aZ? xN

of rate
dt @ addr ® do(n). (4.1.2)

Here dt corresponds to Lebesgue measure on [0, 00), dz corresponds to the measure giving unit mass to
each point of aZ% and d¢(n) to the measure on N where {n} has weight ¢(n). Then

e if (t,2,n) is a point of A then at time ¢ the sites z + ®,, adopt the type &_(z).
e in between the times {t; (t,z,n) € A,y € ®,(x)}, &(y) does not change.

This is known as a reproduction event (of ®,, about z at t).
We require the parameters of the bursting process to satisfy the following.

(¢1) o X ¢, <©
e There exists L € (0,00) such that for all n e N, &, € Br(0).

(¢2) For all z,y € aZ?,
Dz e 0 (y)}on = . 1y € By ()} 0.

n n

(€3) There exists o > 0 such that

(Z# )Z% N wal(ee ) = 0,07

reaZd

where z = (25,)¢ € RY, §;; = 1 if i = j and §;; = 0 otherwise.
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Two immediate consequences of (4'1) are that >, #(®,)¢, < © and Y, #(®,)*¢, < 0. When we
wish to use these facts we will simply refer to (¢'1).

Remark 4.1.3 We also assume that Y., #(®,)¢, > 0 (if it is zero the bursting process is constant and
rescales to the constant process of super-Brownian motion with zero diffusion and zero branching).

Remark 4.1.4 In fact the condition Y, #(®,,)?¢, < 00 is all that is necessary for the process to exist.
This can be checked using the construction of infinite particle systems given in|Ligget (1985]).

As we will see in Section bursting processes exhibit the same sort of ancestral lineage duality as
the Voter model does. In the Voter model case this originates in [Harris| (1975)) and is usually known as
the Harris decomposition. It can be found, for example, in [Durret| (1995). (€2) and (€3) are best seen
as statements about the behaviour of the ancestral lineages.

Let B; be a random walk with the same distribution as an ancestral lineage of £&. The ancestral
lineages of a bursting process are discussed in Section but by now the reader should be familiar with
the concept. Then there is some constant R and a aZ? valued random variable W such that B, has
exponential holding times with parameter R and at its jumps B; increments its position by successive
independent copies of W. In Lemma we show that (4'2) means that W and —W have the same
distribution, whilst (4’3) means the axial components of W are uncorrelated aZ valued random variables
with common variance. (In other words, the covariance matrix of an ancestral lineage is a multiple of
the identity matrix.)

However, our ancestral lineages will not be as well behaved as those of the Voter model. In the
Voter model two lineages move independently before they coalesce but this is not so for general bursting
processes. This is easily seen since if we have two individuals at, say, 0 and z then there could be an
individual nearby capable of having a reproduction event killing the pair at 0 and z in the same instant.

4.1.3 Characterization of super-Brownian motion

We use the following martingale characterization of super-Brownian motion. Let D 54 F(Rd)[o, 00) denote
the space of cadlag paths indexed by [0,00) on Mp(R?) with the Skorokhod topology. Let Cg(R?)
denote the set of functions ¢ : R — R which have compact support and continuous partial derivatives
of all orders.

Definition 4.1.5 Let (2, F,(F;), Q) be a complete filtered space. An adapted Q-a.s. continuous Mp(R?)-
valued process (X;) is a super-Brownian motion with initial measure Xo € Mp(R?), branching rate
be (0,00) and diffusion rate a® € (0,00) if for all € Cy (R?) the process

Mi(p) = Xi(p) — Xo(p) — Lt X (Q;A(@)> ds

is a continuous Fy-martingale and

(M () = j X, (bp?)ds.

Existence and uniqueness of the solution to this martingale problem are well known. A proof of
uniqueness with test functions ¢ € C(R?) can be found in the appendix of |Cox et al. (2000)).

4.1.4 A heuristic explanation of the proof

A bursting process satisfying conditions (€1)-(¢'3) (and (¢4) and (€5) below on the initial states) can
be rescaled to super-Brownian motion. We give a precise statement of the results in the next Section,
but for now let us give a heuristic explanation of the steps of our proof.

Let us begin by examining the martingale problem of Definition It is of the form

o B
t t

—— ——
My(p) = Zu(¢) — Zo() — f 2.0 ) ds, (M) = f 2,7 ds.

0 0

45



The way to interpret this martingale problems is as follows. The term labelled .« carries the information
describing the behaviour of a single ancestral lineage. In Definition this is (morally, at least, since
the process is measure valued) a Brownian motion with generator §A.

The term labelled A relates to the potency of a particle, that is if we notionally pick one of the
particles making up the support of the super-Brownian motion, the term labelled £ tells us the rate at
which this particle spreads its own genetic type. To be precise, the idea is that a particle ‘infects’ a site
if it reproduces in such a way as changes the type at the site of its child. The potency of a particle is
its ability to infect the rest of the system. The test function ¢ weights the spatial locations according to
which sites we want to see the potency of. In Definition the term £ is a constant multiple of the
test function, which corresponds to saying each particle reproduces independently of all other particles.

Remark 4.1.6 Note that the two properties of Brownian motion we claim </ and P represent are
properties one would expect from the construction of super-Brownian motion as a limit of branching
Brownian motions, see chapter 1 of|Etheridge (2000).

The fact that the martingale problem of Definition [£.1.5] has a unique solution says these two char-
acteristics identify super-Brownian motion uniquely amongst cadlag M r(R?) valued processes. Thus in
order to prove convergence of some process with ancestral lineages to super-Brownian motion one must
expect to show that a single lineage rescales to Brownian motion and that in the limit the potency of a
particle collapses to being constant. This is precisely what we will show.

We will derive the terms of the corresponding martingale problem for bursting processes in Theorem
The term in position & will correspond to a finite variance, finite rate random walk (with uncor-
related axial components thanks to (¢3)) and by our choice of rescaling it is a simple matter to see that
a single lineages goes to a Brownian motion. We see this in Lemma The term in position &£ will
require substantially more effort. The convergence result corresponding to the term # is Lemma
and we will require all of Sections and [£.7] to prove it.

Understanding the potency of the particles is essentially the same job as understanding the interaction
between ancestral lineages. If, as in Definition [4.1.5| each particle reproduces independently then the
ancestral lineages must move independently up until they occupy the same point in space, at which time
they coalesce. In the Voter model case in order to understand the interaction between ancestral lineages
we need only know about the behaviour of pairs of lineages (since multiple coalescence events do not
occur). In a bursting process multiple coalescence events can occur and we need to work with triplets of
lineages and a non-local coalescence mechanism. This is essentially the cause of the extra complications
by comparison to |Cox et al.| (2000).

One result of these extra complications is that the constant which comes out in the square bracket
term splits into two parts, v; and v (see Theorem . The quantity =7 is about triplets of particles
where one pair has a common ancestor but the other does not share it, whereas -5 is about triplets of
particles with no common ancestor. They correspond to fixing one of the particles and looking at the
rate at which it infects pairs of other particles. In v; we count up the rates where it infects only one half
of the pair, and in v, we count up the rates where it infects neither. This comprises all the information
available since taking vy; and v, away from the total infection rate would give the rate of infecting both.

We refer to the result that the potency of a particle (to be precise, all particles simultaneously)
converges to a constant (the same constant) as the mean field simplification. The argument for this
proceeds as follows.

We will denote our N* rescaled bursting process by X;V. Let €% be some sequence such that e}, — 0
but Nek — co. On the time scale of the N process, as N — oo an interval of length ex collapses
into being (literally) no time at all. Thinking of our N* stage rescaling as divided into infinitely many
time intervals of length €%, we want the limiting behaviour of our N** bursting processes over a time
interval of length €% to look like the infinitesimal behaviour of super-Brownian motion. Inside each
interval of length €% this corresponds to looking at the unscaled process over time Nek — 0. So we
want the unscaled process, run for all time, and then collapsed into a point to look like the infinitesimal
local dynamics of super-Brownian motion. If we have got our mass rescaling correct (the space and time
rescaling are fixed by .27) then what we see is that just enough mass survives long enough in the N*"
rescaled process to appear in the limit, producing the intensity at which a (notional) single particle in the
limiting super-Brownian motion reproduces. At this point the reader might like to examine the limits on
the integrals in which we (eventually) use to prove Lemma where this idea comes into light.
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In fact, as we see in (part 4 of the proof of) Lemma it important that e} — 0 at a speed
within the right scaling window to allows the bursting processes to even out sufficiently. It is the case

that ng — Xo, and if we let Nek — o0 too fast this does not occur and we do not give the pre-
N

limiting processes enough time to even out and start looking like the infinitesimal local dynamics of
super-Brownian motion.

Although our argument is not about d = 2, if one were to prove convergence of bursting processes
to super-Brownian motion for dimension d = 2, one requires a slower choice of €} (and a different mass
rescaling) to deal with the recurrent behaviour of the ancestral lineages. The care with which e} needs to
be chosen corresponds loosely to the difficulty of getting estimates on asymptotic behaviour of the dual
process. For us e} = N~Y* will suffice. In|Cox et al. (2010), for example, they use the exotic (log N)~.

4.2 Results

In this section give a precise statement of the main results in this chapter.

4.2.1 The appropriate rescaling.

We will be simultaneously rescaling the lattice mesh, the particle mass and the speed of the process. Our
rescaled bursting processes & (), indexed by N € N will be on the lattices

o
Sy = —=Z%
N \/N

Our mass rescaling will be a factor 1/N and we will run time faster by a factor N. Thus our rescaled

measure valued processes are
X = Y otni ()8
t N Nt »\/N xT-

rEQZ?

The dependence on « and d is permitted to disappear into the background. We stress that our rescaling
to super-Brownian motion is indexed by N and « is kept constant throughout.

4.2.2 Initial conditions

Recall Mp(R?) denotes the space of finite measures on R?. We need conditions on the initial states, &'

(¢4) For each N, > &V (z) < oo.

(¢'5) There exists some Xo € Mp(R?) such that XY — X in Mp(R9).

Condition (%'4) corresponds to each initial state having only finitely many 1s, whilst (¢'5) is obviously
going to be necessary in order to obtain a scaling limit.

Remark 4.2.1 Note that we do not take some set A € R? and set £ = Sy n A. The total mass of &
under this definition would not remain finite under the rescaling (in dimensions d = 3). The combined
effect of (64) and (€5) is that the initial state Xo of the limit process will have 2 dimensional support.
For the SAFV process, the case where one does not impose sparse initial conditions is covered in
Berestycki et al| (2010).
Lemma 4.2.2 (¢4) and (¢'5) imply sup X&' (1) < oo.
N

From this point on we proceed from a bursting process satisfying (€'1)-(%¢5).
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4.2.3 Results

In order to define the parameters of the limiting super-Brownian motion we need to use the ancestral lin-
eages. The reader unfamilir with this type of duality might like to read Section 2 where a full explanation
of what it means to be an ancestral lineage is given.

Let (B*, BY) be a pair of ancestral lineages of &, tracing back the succession of ancestors of the types
at x,y € aZ? from some time ty. The distribution of this pair of random walks is independent of the time
at which we start tracing back from so we can think of these walks as run for all time. Define

7(x,y) = inf{t € [0,00); Bf = BY}

to be the first time at which these walks meet (that is, when the types at 2 and y has their most recent
common ancestor). Since d > 3 there is the possibility that they never meet and 7(z,y) = 0. In fact,
since our two walkers are dependent it takes a small amount of work to show P[7(z,y) = w] > 0 for
x # y from the standard result about random walks in d > 3.

Let @21”“2 be the law of the super-Brownian motion of Definition with initial state Xy. Let Qpn
denote the law of (X V)72, which is also a probability measure on D . (ga)[0,0). The main theorem of
this chapter is as follows.

Theorem 4.2.3 In dimensions d = 3, as N — o0, Qn converges weakly to QQ(W*W)’R"Q, in the space
of probability measures on D pq, (re)[0,0). Here

R=a®) #(®,)n, Q = Y #(Pn) bn

and 1,72 € (0,00) are given by

n= >, (Z 1{0,e€ ®,(f)} ¢n> P[r(0,¢) < o0, 7(0, f) = o]
e, feaZd n

Y2 = Z <Z]l{evfe(bn}¢n> P[T(()?e) = OO’T(Oa f) = OO]
e,feaZd \ n

The quantities v; and 72 should not be thought of as a pair which mirror each other. They correspond
to genuinely different parts of the evolution of the pre-limiting processes, which we have already discussed
in the course of Section 1.4l

Remark 4.2.4 To recover the corresponding result in|Coz et al| (2000) set a = 1, choose the ®,, to be
one point sets and choose ¢, so as >, ¢, = 1. Then Y, 1{f € ®,}¢, is the rate at which the site 0
reproduces to the site f, and

=72 = Z (Z ]1{fe<I>n}¢n)IP’[T(0,f)=oo].

feaZd \neN

4.3 The ancestral lineages

We set up the random walk which (with appropriate coupling) will turn out to be the path followed
backwards in time by an ancestral lineage of V.
Define the rescaled sets

1
oN(z) =2+ —&, € Sy

" VN

and write also ®Y = ®N(0). Let W be an aZ? valued random variable with law p given by

ol
p(z) = 5 Z I{z e ®,}¢,
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where R = a4y, #(®,)¢,. Note that R is finite by (#'1) and p(0) = 0. Let B®" be a random walk

on Sy starting from x € Sy, jumping at rate Ry = NR and incrementing its position by successive

independent copies of Wy = \/INW at each jump. Denote the distribution of Wy by

1{z e Vo,
pr(a) = plav) = LR e s

and define py(z,y) = pn(y — ).

Lemma 4.3.1 Let v € Sy and t > 0. If we trace the source of the type &N (x) backwards in time from
time t until time 0, we follow a random walk with distribution (B&N)._, (where s = 0 corresponds to
time t and s =t to time 0).

Remark 4.3.2 Recall our convention that we always deal with the right continuous version of the an-
cestral lineages.

ProOOF: The total rate of reproduction events hitting y € Sy is
D) Hye @Y (2)}a'Ng, = aN Y Y 1{—z € O} (—y)}dn
= O(dNZ #(Sﬁn)¢n = Ry

where we translate by —y — z in the first line. The total rate of the subset of such reproduction events
which would hit y from a fixed z is a?N Y, 1{y € @Y (2)}¢,, and thus the probability of y inheriting the
type of x in this fashion is
Y, Hy e 2} (2)}a’Non
2 2, Hy € ©)(2)}a’Ny,

as required. |

=pn(z,v)

Specifically, by looking for the source of £ (z), we look back in time until x was last hit by a bursting
event, and then move to the point y from which this burst originated (regardless of whether or not the
type at & was actually changed by this event). We continue moving in this manner until (parameterizing
time backwards) we reach time 0.

The following lemma explains the purpose of our conditions (¢'2) and (¢'3). For convenience we write
p=p, W =Wy, etc.

Lemma 4.3.3 The following hold:

1. pn(z) = pn (=) (and therefore py(2,y) = pn(y, ©))-
2. E[Wx] =0 and |W| has moments of all orders.

3. Writing W = (W (i), E[W @)W (H)] = 0 if i # j and E[W(i)?] = o2.

PROOF: (%1) is required for p to be defined. (42) says precisely that p(z) = p(—x) which gives the
first statement and implies E[W] = 0. |W| has moments of all orders because it is bounded (by L) as a
consequence of (€'1). (¢3) is precisely the final statement. ]

The generator of the random walk B* is given by

ANp(z) = Ry Y p(z, ) (e(y) — o())

Y

and the transition semigroup is given by

PN (@) =E[1(BIY)].
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We will usually take some ¢ : R? — R as a test function, although strictly speaking in order to work
with the generator one should define AN for ¢ : Sy — R.
We will frequently need to study the interaction of two ancestral lineages and to do so we define

Oé2d

for y,z,z € aZ? where Q = a2? Y #(®,,)?¢,. The rescaled versions are Qx = NQ and for (z,y,2) €
(SN)Sv
024 N
qN(yava) = UZ ]].{LE,Z € (I)n (y)}¢n

We write ¢ = ¢;. The function (z, 2) — ¢(0,z, z) defines the law of a (aZ?)? random variable. For
now we have set up enough notation to proceed.

4.4 Decomposition of bursting processes

We use a stochastic integral definition of bursting processes which leads naturally to a martingale decom-
position. In this respect the approach originates from |Mueller and Tribe| (1995)). We set up the N-stage
rescaling of the Poisson point processes as follows. Let

{A(z,n); z € aZ neN}

be a family of independent Poisson processes (defined on a common complete probability space) with
A(x,n) having rate a’¢,. Define
AN (z,n) = Ayi(z/~vN,n).

Thus for € Sy and n € N, AN(z,n) is a Poisson process of rate a?N¢,,. This induces the natural
dependence between our N-stage rescaled processes. Define

AN($7n)t = A(Jf,?’l)t - adNCbnt

and note this is a martingale.
The bursting process ¢V will turn out to be the unique solution to the system of equations

(@) = ¢’ () + ZZL [CL(y) = L (2)]1{z € @ (y)}dA™ (y, n) (4.4.1)

where the first sum is over y € Sy and the second over n € N. It is easy to see that the equations of
(4.4.1) correspond to a process with the dynamics discussed in Section

Definition 4.4.1 A solution ¢V of ([£.4.1) is a cadlag {0,1}°~ wvalued process for which
¢
Va, Vit > O,ZZJ G (y) — Gl (2)] L € @ (y)}dA(y,n) < o
y n 0

almost surely, with the intial condition (Y satisfying (€4)-(€5).

Lemma 4.4.2 ([£.4.1)) has the (a/x/N, @Y ¢N) bursting process £V as its unique solution over t = 0.

For each T < oo
E lbupiiV(x)] < 0

t<T

which, in particular, implies that XN (¢) is a.s. finite if ¢ is bounded.
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Proor: This is essentially the same as the proof of Lemma 2.1 in |Cox et al.| (2000]). |

As in Section the corresponding rescaled measure valued processes are X' = O‘Wd >N ()6,
and the integrals of functions against these measures are

ad
= DNACLEE

where ¢ : Sy — R or ¢ : R? — R. We use the symbol 1 for the constant function 1(x) = 1.
We write &V for the set of sites of type 1 at time ¢ (and as we already are, &V (z) for the value of the
site = at time t). Let

&V (x) = 1- &N (x)
be the process ¢V with the roles of the types 0 and 1 exchanged.

Let
Oéd ~
m*(p) = 55 D) e@)e(2)Qnan (.2, )Y ()EX ()6 (v)
Oéd ~ ~
m*(¢) = 37 20 @)e(2)Qnan (. . )8 ()] () (v).

The Doob decomposition of X}¥(¢) is as follows.

Lemma 4.4.3 Let ¢ : R* — R? be bounded and measurable. Then
XN () = X¥(9) + MN (o f XN (ANy) ds (4.4.2)
where MY is a cadlag square integrable martingale given by
"ad N N N AN
= ZL N Dre@) [ (y) — e (@)] 1w € 2] (y)}dAY (y,n)
Yy,n T
and predictable square function given by

QY. = | (2 (0) + m¥ () ds. (4.43)

PROOF: Recall :
N () = &) +ZZ j y) — €Y ()] 1z € BN (1) }dAN (y, ).

We may split up dAN (y,n) = d/A\iV(y, n) + a?Ne,ds and sum over x € Sy to get

XN (o) = X2 (o) + MY () + f LY (p)ds

where
LY (ps) = Z — &V (@)] Lz € &) (y)}a' N,
z,y,n

Note that the left limits s— have been dropped in the definition of L, since the integrator ds is continuous.
The proof that MY () is indeed a square integrable cadlag martingale follows similarly to the proof of
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Lemma 2.3 in |Cox et al.| (2000). By the same token we obtain that

" ta2d

- ZJ &7 2 (@)e(2) [€) () — ¥ (@] [6) () — €Y (2)] Lz, z € B (1)} a ' Nds
t ad

:JO 2 2 P@e() [ ) — £ @] [ () — €7 ()] @uan (v, 7, 2)ds

Noting that

[N (y) — €N (@) [€X (y) — €Y (2)] = €N ()X (2)EN () + EN (2)EN (2)€N (y)

we obtain the form of (4.4.3)). It remains to rearrange LY (¢). Note that

LY (ps) = Z@(fﬂ) — &N ()] Rnpn (2, y)

z,y

and since py(z,y) = pn(y, x),

Oéd
L (ps) = WZ&V(%) l(y) = ()] Rnpn (2, y)

Oéd
N 26 (@) X Te(y) — e(@)] Rypy (x,y)
= XN (AN )

which gives the form claimed for the final term of (4.4.2). |
We now show that a single ancestral lineage rescales to a Brownian motion. This takes care of the

convergence of the diffusion term in the decomposition of Lemma [4.4.2

Lemma 4.4.4 Let p : R* - R have bounded continuous third order derivatives. Then

ANp - =2

lim
N—oC

PROOF: Let us write = (2)%_; € R?, and denote partial differentiation in the direction of the i*"
coordinate as Tf = ;. We write the Euclidean norm as |- |. By Taylor’s Theorem there is a random

Yy € [z,z + Wi] (the line segment between x and z + Wy ) such that

d
(aj + WN Z 2 Pij YN)WNWJ

i,j=1

Hence, recalling that Lemma gives E(Wy) =0,

PEPRELANG >\ - \RNE [0 = t0) - g2 aeta]|

Z ]E‘ pij(Yn) — pij( ))NWJZVWJ]V‘
4,j=1
d

Ry
+72

4,j=1

(4.4.4)

pij(v)E [WKW?V -
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By Lemma m E[W}VWJJ\,] = 5”-\‘;—% so the second term tends to zero. Since ¢ is Lipschitz we have
lo(Yy) — @o(x) < ||l Liplr — Y| and note also |z — Y, | < |[Wy| = |W|/~/N. Thus the first term of (4.4.4))
is bounded above by
d
R 114
9 Z E[H‘PHL@\/NWzW] :

Since (¢'1) implies W has moments of all order, this tends to zero as N — co. |

ij=1

The following Lemma is our first use of duality.
Lemma 4.4.5 If ¢ : R? — R is bounded,
E[X" ()] = X3 (PY(9) -
In particular E [X{¥ (1)] = X§'(1) and sng [X)(1)] < 0.

ProOOF: Note that
P [B;”’N - x] —P [Bf*N - w]

by Lemmam part (1) and the definition of B~". So
d
E[XY(0)] = & DE[& @)]e(@)
d
= S Y e@Pr | BN e g
o
= 5 Do) Y& )P [BIY = ]
ad N w,N
= S0 W) Y e@p | B — x|

a N w,N
= 5 D& WE e8]
= X5 (PN (¢)

as required. The bound on XV (1) now follows by Lemma m [ |

Lemma 4.4.6 Letp>1 and T > 0. There is a constant C, 7 < o0 such that
E [sup XtN(l)p] < Cpr (X0 (V)P +1)
t<T

Proor: For p = 1 this follows from Lemma and the Burkholder-Davis inequality. The proof for
the case p > 1 (using Martingale inequalities from Burkholder| (1973))) is essentially that of Lemma 2.4(b)
from |Cox et al.| (2000)). ) |

We now examine the square bracket of the martingale term.

Lemma 4.4.7 Let s € (0,0) and ¢ : R? - R be bounded and measurable. Then forp = 1,2,
ImY? ()| < QllgllZ XN (1)

PRrOOF: Using that V() <1,

d
[m2()] < S lellZ DN QY an (v, 2)
Yy T,z
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and noting that

Oé2d
Dlan(y,x,2) = 622 1{z € ¢} (1)} b Y, I{w € D) ()}

€T

a2d
= 5 L2y o (@),

o 2d ,
G 2 @) 6 =1, (4.4.5)
we have the result for i = 2. Similarly, using £V (y), N (2) < 1,

d
[mit < el DN @Q Y an (.. 2).
x Y,z

We note

o2

a2d
?ZZ 1{z € &) ()} D 1{—y € ®Y (—z)}¢n

a2d
62#(©")2¢” =1

where we use a translation by —z — y to get from the first line to the second and then proceed as in
(4.4.5). The result for i = 1 follows. |

Lemma 4.4.8 Let p > 1 and let ¢ : R? — R be bounded. Then for any t € (0, 00)

supE [sup 1Y ()| < o

N s<t

PRrROOF: By Lemma [£.4.7]

E [Sup |M§V(<P)|p] < CtE [sup Xév(w)p]

s<t s<t

and the result now follows from Lemma [4.4.6l [ |

4.5 Tightness and convergence

Recall that Dy, ge)[0,0) denotes the space of cadlag paths indexed by [0,00) on Mp(R?) with the
Skorokhod topology. Let Cyy, (ra)[0,00) be the subspace of such paths which are continuous, endowed
with the topology of uniform convergence on compact sets.

Lemma 4.5.1 (Qn) is a tight sequence of probability measures on D xy, we)[0,0) and all of its limit
points are supported by Cpy, wr4)[0,00).

PrROOF: The argument is essentially the same as that given in |Cox et al.| (2000) (or, for that matter, in
Cox and Perkins| (2008) or |Cox et al. (2010)) and we omit it. One could also prove this theorem using
Theorem [D.2] and the results from Section (4.4 [ |

At this point we require a statement to the effect that the mean field simplication takes place in our
situation. The proof of this comes from estimates obtained via the dual process and these can be found
in Sections and To achieve the proper chronology one should insert Sections and here,
but to prove Theorem we require only the final result of Section [4.7]
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Lemma 4.5.2 Let ¢ : R* - R be bounded and Lipschitz. Then for each t > 0,

|~

E H<MN(SD)>t - Q(m +2) Lt XY (p%)ds

as N — o0.

We can now give

PROOF: [Of Theorem M] Let ¢ € CF(R?). Let Q be a limit point of (Qy). By Lemma and
Skorokhods theorem (3.1.8 in [Ethier and Kurtz] (1986)) we may assume (via a change of probability
space) that there is a process X with law Q and a subsequence Ny such that

XM= X as. in Dy, ra)[0, 0). (4.5.1)

Let € C§°(R%). We note

t t 2
sup f XN (AN'“@) ds —J X <02RA(30)> ds (4.5.2)
t<T |Jo 0
t 2R t 2R 2R
< sup f X;V’“ (Anga— UQA(cp)> ds| + sup J Xév’“ (UQA(QD)) - X, <02A(cp)> ds
t<T |Jo t<T [Jo

—0as k — w a.s.

To see why, use Lemma to show that the first term on the right hand side tends a.s. to zero, whilst
the dominated convergence theorem (using Lemma to get the dominating function) and show
the second term tends a.s. to zero.

Define

Mi(e) = Xule) — Xole) — [ X, (26 as.

0

Equations (#.5.1), (#.5.2) and (%5) show that |[M}N* (o) — M,(p)| — 0 a.s. and we can use a.s. continuity
of t — M, (from Lemma [4.5.1) to deduce a.s. uniform convergence on [0, t]:

sup [ M () = My ()] = 0 (45.3)

s<t

Fori=1,...,mlet h; : Mp(R?) — R be bounded and continuous and let 0 < ¢; < ... <t,, <s<t.

Equations (4.5.1), (4.5.3) and Lemma imply that
t n
E[(Mi(0)? = M ()2 = Q(n +72) f X, (%)dr) [ hi(Xe,))|
k—x

— lim E[(MtN’“(ga)Q — MY (0)2 = Q1 +72) f XN (p dr) ﬁh XNy ] (4.5.4)

Lemma implies that (4.5.4)) is equal to

i, B[ (M (0 = M (02 = Y 0+ A (o)) T T2

k—oC

problem posed in Definition Therefore Q = QR +72), Ro® " Gince our limit point Q was arbitrary,

which is zero by the martingale properties of M stated in Lemma Thus X satisfies the martingale
j
it follows that Qy — QQO1+72 Ro® a5 claimed. |

4.6 The dual particle system.

The remaining two sections of this chapter will be concerned solely with proving Lemma [4.5.2
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We now consider tracing back the types of more than one site at once. In the Voter model when
two ancestral lineages coalesce only one of the lineages jumps. For bursting processes there is positive
probability of two lineages both moving from different sites to the same parent in a single reproduction
event. They do not have to coalesce in this way since the reproduction event causing coalescence may be
centered about the position of one of the walks. This leads us to the following realisation.

Remark 4.6.1 Let (B®))!_, denote the random walk tracing back the sources of opinions of the site ©
from time t. Then unless all the ®,, are one point sets, for x # y the lineages (B*N))!_, and (BYN))!_,
are not independent, even before they coalesce.

To see this, suppose x,y,z € Sy and n are such that x,y € z + ®Y and x # y. Then the information
as to whether the Poisson process AN (z,n) has jumped in (s,s + €] affects the motion of both the walks
(BEN))izo and (BEY)) (0.

We already denote the random walks of our coalescing dual process by B*" and we now go on to
specify the precise coupling between the movement of the lineages. The time reversibility and spatial
homogeneity of the underlying Poisson point process A permits us to describe our dual process as follows.

Definition 4.6.2 The dual of our bursting process over time [0,t] is a system {B%~}of coalescing ran-
dom walks which behave as follows. For s € [0,t]

o If AN (x,n) jumps at time s then for all y such that Bg;N ex+ @Y, BYN = 2.
e No other movement occurs.
That is, a reproduction event causes all affected random walks to mowve to the origin of the burst.

For x,y € Sy define
™ (z,y) = inf{s € [0,¢]; B®N = BY}

where as usual inf ¢J = 0. We suppress the dependence of B*" and 7V (z,y) on t since it will almost
always be obvious from the context. On the rare occasion that it is necessary to be particular (e.g. the
proof of Lemma we will say explicitly which time we are tracing back from.

Note that Definition defines a right continuous sytem of walks, whereas the ancestral lineages
are really left continuous. Recall Remark where we noted each lineage is stochastically continuous
and thus we can ignore this technicality.

Remark 4.6.3 The system {B*Y ; x € A} is translation invariant in the sense that
P[Vae A, BN =y,] =P[Vae A, B***N =y, + 2]
where y, € Sy, symmetric (by Lemma i the sense that
P[Vae A, B®N =0] = P[Va e A, B;*" =]
and time reversible in the senses that

P[BZN =y] =P[BY"N = 2]

and
P [Bf’N = u, BSZ7N = U,TN(y,Z) > s] =P [B;‘ = y,B:’N = z,TN(u, v) > s] .

This completes our description of the dual process. Recall that when we outlined the heuristics of the
proof in Section the following quantity played a major role.

Definition 4.6.4 Let ¢%, = N~/4.

Our first big step towards Lemma is the following, and we will spend the rest of this section
proving:
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Lemma 4.6.5 It holds that
sup NP [By,;N B3N = u] =0
y#z,u#0 €N N

where the supremum is over y, z,u € Sy such that y # z and u # 0.

Remark 4.6.6 By taking €% =t in the proof of this Lemma, one obtains P[BY;, — By, = u] < CN—3/2
for some constant C. We require only the stated result.

ProoOF: First we unravel the time and spatial rescaling. Let v = \/JV(y —z) # 0 and let
Cy =~/N (B} — Bj).
Then we must prove that for given u € aZ¢,
NP|Cps =] =0 (4.6.1)

uniformly over v # 0.

The Markov property and spatial homogeneity of bursting processes imply that for sake of investigating
a single jump of Cv, we need only be concened with its current value; that is to say Cv is Markov and
has independent increments. However the evolution of C" is not spatially homogeneous. For as long
as |C?| > 2L the bursting events controlling our two walkers are independent, and C* moves as a rate

0 A
2R > #(®,,)¢y random walk with jump distribution W. For |CY| < 2L the situation is not so simple.
n=1

When our two walkers are close enough together that a single bursting event could affect them both, v
is jumping at a slower rate with a different jump distribution and some probability of absorption at 0.

Definition 4.6.7 We say a random walk on oZ® is a standard motion if it jumps at rate 2R with jump
distribution W.

We can describe the transitions of a walker D in standard motion as follows. To each pair (b, n) such
that 0 € b + ®,, and each j € {1,2} we associate a Poisson process A(b,n,j) of rate a?¢,. When t is a
jump time of A(b,n, ), the transition

Dy =D;_ +b

is made. The reader may readily verify that this describes a standard motion (note that it requires (¢'2)).
We intend to couple C” to a system D of branching standard motions.

Remark 4.6.8 In what follows we have walks which are part of the ancestral lineages and walks which
are related in some way to the difference between two ancestral lineages. To distinguish verbally between
the two we will refer to the ancestral lineages as particles and the differences between ancestral lineages
as walkers.

Crucially, if we took two independent particles B(l) and 3(2) moving at rate Y, #(Py,) ¢, with jump
distribution W, a standard motion describes the walker B(1); — B(2),. We want to suppress jumps
of B(l) — 3(2) in such a way as constructs a walker moving according to the dependent dynamics of
BY — B?*. Tuake a standard motion in state a, and specify that the state 0 is absorbing. Suppress the jumps
corresponding to

{(b,’ﬂ,]) ;i=1a¢€ (I)n(b)}7

(that is, half the jumps which would cause the dependent system BY — B* to both move and coalesce), and
when a jump corresponding to
{(b;n,j); 5 =2, 0€ 2u(b+a)}

occurs (the other half of such jumps) we move straight to the site 0. (Of course, this is not the only way
to hit 0). The case j =1 corresponds to the first particle jumping and j = 2 to the second.
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We now construct a system DV of random walkers in standard motion. The general principle is that
whenever we have to suppress a jump we introduce a new walker, also in standard motion, to compensate.
At each time exactly one walker in the system DV will carry the title of youngest walker. Initially (at
time 0) there is a single walker D(1)¥ who is the first youngest walker, starts at v, and moves according
to a standard motion. At all times our system will involves a finite number of standard motions, D(-),
one of which is the youngest walker. The motion of the youngest walker is especially important and we
decompose it as above. As the name might suggest, at any fixed time the youngest walker is the particle
which was born most recently.

We now describe D from initial state v.

e Given the current positions of the currently existing walkers D(1)¥, D(2),..., D(m), they move as
a system of independent standard motions.

e When the youngest walker makes a transition out of state a, we use our decomposition to look
at which of the processes A(b,n,j) caused the transition to take place, and correspondingly the
following occurs:

1. Ifa#0,j=1and a¢ ®,(b), the transition occurs without additional consequences and the
youngest walker is unchanged.

2. fa#0,j=2and —a ¢ ®,(b), the transition occurs without additional consequences and the
youngest walker is unchanged.

3. Ifa#0,j=1and ae ®,(b), the youngest walker makes the transition and instantaneously
leaves behind a new walker D(m + 1) at a. This new walker takes over the title of youngest
walker.

4. Ifa # 0, j =2 and —a € ®,(b), the youngest walker makes the transition and instantaneously
leave behind a walker D(m + 1) at 0. This new walker holds the title of youngest walker.

5. As soon as the position of the youngest walker is 0 the system is frozen. The walkers remain
constant for all remaining time.

There is very little to prove in showing the process
D" ={D(1)",D(2),...,D(n)}

exists and has a right continuous version which is strongly Markov. We claim that the youngest walker
follows the random walk C'V; Thus we may couple our two systems together in such a way as

oV = D(ne)
(where D(1) = D(1)”). We will prove this claim below, but first let us prove (4.6.1).

Remark 4.6.9 Cases 1 and 2 correspond to reproduction events which only move one of the particles.
In case 3, the position of the youngest walker does not change, only which walker holds the title. This
corresponds to the suppressed jumps of Remark[[.6.8 In case 4 we create the jumps causing coalescence
(i.e. when the youngest walks hits 0) when both BY and B* move. The cases when coalescence is caused
by only one of the two particles moving occur as part of 1 and 2. Case 5 corresponds to the behaviour
after the particles have coalesced.

Let n; be (cadlag process of) the index at time ¢ of the youngest walker (which, if it is non-zero, is
also the number of walkers at t).

P[C’;)Ve’;\‘, =u] S}P’[Elme{l,...,nt}, D(m)NeK, =u]

s

< P[Hme{l,...,n}, D(m)NEJa;:u]P[nNt:n]

1

3
Il

11@ [D(m)NGI*V = u] P [nNex = n] (4.6.2)

3
Il
—_

/N
s
M=
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If we set T'(m) to be the birth time of D(m), then by Lemma A.3 in (Cox et al.| (2000)),

P[D(m)yex = u| <PID(m) g = Dm)rim)] = PIDY 5 = 0]

where DV is a standard motion started at 0. Continuing from (4.6.2)),

IF’[CA'X,E?:I = u] <P[D?\Ie;‘; = O] Z nlP [nNE;;; = n]

n=1

=P [ DY = 0] Elnys] (4.6.3)

which is a bound independent of w (but note n; depends on v!). E[”Ne;‘f, ] is defined for the positive

random variable n; and may (until we prove otherwise) be infinite. So we must estimate OV the

number of (moving) walkers in the system Dv. Let ny, = tlim ng denote the total number of walkers of
—00

DV over all time. Clearly
E[”Ne?f]] < E[ny] < Effis]

where 7i.. is the total number of jumps initiated by the youngest walker from a point within aZ?n Bar,(0).
We will shortly show that E[7,,] is bounded uniformly over v # 0. The standard local limit theorem

(see, for example, A.3 of |Cox et al.| (2000))) for simple random walks in d > 3 gives us a constant C such
that P[DY = 0] < Ct~%? and we then have that

NP[C? « =u] <CN(Nek) ™/ = CN78 - 0.

This proves (4.6.1)).
PROOF: [that E[7i,] < 00.] Let us consider briefly the situation at time ¢ when the youngest walker
D(ny) is at a € aZ? n Byr,(0)\{0}. Let

K = {a € aZ"\{0}; P[D} = 0]}

where T is the first jump of D%, a standard motion started from a. A new walker is created precisely
when the youngest walker jumps from within K. Of course by (1) K € aZ n By (0), and hence

ro =min{P[D? =0] ; a € K} > 0.

Thus if we are looking to wait until either the youngest walker has left K into aZ\{0} or has hit 0, we wait
at most a geometric number of jumps with success probability ry. After leaving /C up until it re-enters or
hits 0, the youngest walker moves as a standard motion. In particular, it moves as a random walk with
a bounded symmetric jump distribution. From well known facts concerning transience of random walks
in dimensions d > 3,

ri:=sup{P[3t > 0,Df e LU {0}];ac aZN\(K u {0})} < 1.

Thus the number of returns a standard motion may make to K\{0} is bounded above by a geometric
random variable with success probability 1 —rq > 0.

Combining these observations with the strong Markov property of DV, there are independent random
variables Ry (geometric with parameter 1 — 1) and Ro(k) (geometric with parameter rg) such that

Ro
ﬁoo < Z Rl(k)
k=0

and thus E[n..] < % Note that this does not depend on a. [ |

ro{l—r1

PROOF: [that the youngest walker in DV has the distribution of C’”] We show the two processes have the
same jump distribution and jump rate. Since the process D" is strongly Markov it suffices to consider a
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single jump of the youngest walker D(m) from some arbitrary a € aZ?. We first consider the total jump
rate out from a. Since this depends on a, let us write it J(a). Then J(0) =0, and for a # 0,

J(a) = a® ((Z 1{0 € By (b), a ¢ Pp(b)}dn + >, 1{0 € Dy (b), —a ¢ Dy, (b) } b

bn b,n

+ > 1{0e ®(b),—ac <I>n(b)}¢n>

b,n

_ ad<2 1{0 € B, (b),a ¢ Du(b)}dn + D 1{0 € Bp(b—a), —a ¢ Bp(b—a)}on

b,n bn

+ Z 1{0e ®(b—a),—a € D,(b— a)}cﬁn)

bn

= adbz ]]_{O € ‘I’(b) or a € (I)(b)}(bn

which is the jump rate of C®. The terms in the first line come from the movement in cases 1,2 and 4
respectively. For a # 0, if T is the time of the next jump of D(m),

= J(Z) (Z 1{0 € ,(a)}dn + Y L{—a € D(0)}pn + Y 1{0 € Dy (b),a € (Dn(b))qﬁn)
" n b,n

which is the same as for C®. Again the terms come from cases 1, 2 and 4 respectively. The first two
terms are the coalescence where only one of the two particles jumps. For ¢ # 0,

o
P[D(nr)7 = ] = T@ (Z {0 € @, (b),a ¢ ®u(b)}dn + ), 1{0 € Dp(b),—a ¢ <I>n(b)}¢n>
b,n b,n
where again matches up to the transitions of C”. Here we obtain only terms from cases 1 and 2. ]
This completes the proof of Lemma [ ]

4.7 The mean field simplification

In this section we use the estimates of Section to take the limit of the square bracket term M ()
from our martingale decomposition. There are two main results we need in order to do this, which are
given as Lemmal[f.7.1]and Lemma[1.7.5] Then finally we give the proof of Lemma[4.5.2]and thus complete
the argument leading to our main result. Lemma [4.7.1]is relatively easy to prove and is very similar to
an argument from |Cox et al.| (2010). Lemma @ is proof of the mean field simplification and will take
us much longer.

Let 7N be the filtration generated by £V. With mild abuse of notation let &} also refer to the initial
set of 1s (i.e. the set {x € Sn; {5 (z) = 1}).

Lemma 4.7.1 Let €%, <ty <ty <T. Then there exists C € (0,00) such that for all N € N
N

to .
E l(f E [miv’i(sa) Fl_ *] -m, () d8>
t 1—€N s—€xn

fori=1,2.

< Cel(ta — )T (1 + X{7(1)?) (4.7.1)

PROOF: Note that whenever sy > s1 + €&, mY{(¢) — E [mﬁvi(@)|‘7:5176§] is FS]Z%* measurable, and
N

S1
hence

E[(mi(e) — E [mXH(@)|FY_i ) (mii () — B [mi )| FY_. ])] = 0.

51_5N SQ—EN
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Hence is equal to
to (s1+eN /\tg N N
| f [(m2* (o)~ B [m¥ ()
t

<2f2 f(al+eN)At2E[(mgvi(¢)_E[m e )_7-'5\1’ 63’3]) (mi\;’i(go)—]E[m (o )]__5\2, G*D]dSstl

FN s ]) (mi o) —E [ mii(e)

S1—€n

}-N—ej{‘]])] dsads;

2

Applying Lemma [£.4.7] the above is less than or equal to

2[|¢|l5. QE J’J XN XN (1)dszdsy

t1<31€82<(81+€§)/\t2
By Lemma [1.4.5E [ XY (1)|FY] = XN (1) and thus
E[XN)xN1)] =E[E[XY0)FN] xN¥1)] = [( ))2] .
which gives us that is less than or equal to
to
200lQ | ELXNP] (¢ A (t2 = 50)) doy
ty

1)

<ol [ BIXE W2 ds:

t1

Using Lemma [£.4.6] completes the proof. [ |
Let

FY{V = Z (Zﬂ'{o’eeq)g(f)}djn)P[TN(O,B) $€TV,TN(O7f) >67V]

e,feSN n

v = Z (Z 1{e, fe @} ¢n) P[rN(0,e) > ek, 7N(0, f) > €k ]

e,feSn n

Lemma 4.7.2 Forp=1,2, as N - o, 7}1)\[ - Yp.

PrOOF: Since Ne¥, — o0 we simply note

"= (Z I{e, fe <I>n}¢n> P[r(0,¢) < Ne&, (0, f) > Nek]

e, feaZd \n
and the result follows. The argument for ~» is no different. |
Let
ry(z, 2) QZ# m@N( ))¢n if x # 2

and rx(0,0) = 0. Let R be an aZ? valued random variable such that P[R = w] = (0, w) with the
convention that r = rq.

We next give a result which will be used to prove the crucial Lemma [£.7.5] This result essentially
says that as far as our limiting process is concerned, if a pair lineages moves for time [0, €% ] and are
conditioned to finish in the same (finite) set of sites then that pair of lineages will coalesce.
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Lemma 4.7.3 Let ¢ : R? — R be bounded and measurable. Then there exists a constant C € (0, 00) such
that

d
a .. .
N Z p(x)p(2)P [B Neel ,B VeV mN(x,2) > EN] Qqn(y, z, 2) (4.7.2)
T,Y,2
<ol X r (v s 2[B5Y -y <))
uFv,w#0 EN €N

Remark 4.7.4 Lemma is designed to pair up with Lemma[{.6.5

PROOF:

Let us first note that
—221{0 we dN(y) o, =1

ZTNO'LU
n y,w

by the same calculation as (4.4.5). Now, >, gn(y,,2) = rn(z, 2) so (4.7.2) is less than or equal to

el 2 Qa ZP[BwNefo ,BzNeg

™ (x,2) > ej‘v] ry(z, 2)

= |lell2 Qa Z &' (u [BﬁN =u, B3N = v,V (z,2) > e}“\,] ry(z, 2)
x,z,u,v eN EN
2 &' ()& (v)P [BZQN = %BZLN =z, 7V (u,v) > e*N] rn(z,2)
T,2,u,v N N
_ OédgN df B
< gl Qo) S0 (W % NZP[ 2, By = 2| rn(@,2)
<|| ||2Q —dzadfév u) dfo NZ (0, ZP[BuN BUN n ]
X ([Pl & N N TN w =, =xr4+w
_ adgN( ) df u, N v,N
= ll¢l1% Qo d;} ]OV ](1[ NZTNOU})P[BG;%I _Bej"f, =w]
<ol Qa X (v s PBEY - 55 = u))
u#zv,w#0 GN N

where we used Remark to get from the second to third lines, and set z = x + w to get from the
fourth to fifth. |

We now have the crucial Lemma.

Lemma 4.7.5 Let ¢ : R — R be bounded and Lipschitz. There exists C € (0,00) such that for p = 1,2
and all s € (€%, 00),

‘E [miv’p(‘P) fsfv—e;s] - Q%Xs_e;f;(@Q)‘

1 1
<0||¢||<+ +N s IP[B“N

v,N __ N N
s Y s BB B =] ) X0

SCN

where |[]| = [l (lellip + [[l]) + 122 lip-

Remark 4.7.6 It will be important to keep track of different times and as such we need to consider the
dependence of the system of walks {B%N},es, on the time at which we trace the lineage back from. For
the proof of Lemma we adopt the convention that BN refers to tracing lineages back from the fized

time s € (0, 00).

This convention also affects the coalescence times

N(m,y) = inf{t > 0; Bf’N = Bf’N}.
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PROOF: For now let us concentrate on the case p = 1. Note that
[N @)l (€N () | FY o | =P 0 (BY) = 1,6) 4 (B3 = 1,6Y 4 (B = 0| FY 4 |-
N N N N N
Thanks to the Markov property the lineages B*»"V in the above expression, which run back over time
[s,s — €], are independent of .FN . Of course also fN ot € ]-'jv %5 and therefore the conditioning
ek p

P[---|FN ,] acts as normal expectation with respect to only the random variables {B;” N N
S—€n
We thus have

E[md ) | 7Y |
N
d
(0%
=5 2 ¢@)e(2)Qav(y, z, 2)P [B;;N eeN . BiN e . BEY ¢l
N N N N N N

z,Y,z

*
SiEN]

The proof will come in four stages. First we will use smoothness of ¢ to change the ¢(z)p(2) to p(z)2.
Then we will apply Lemma twice to change the P[---|FY ] into
S*EN

S— 6N:|

_Zg ]P[B” N(m,z)Se}“V,T (z,y) > €}

Py e el itV (@,2) < chirV(ay) >

Ay
_Zg [B“"N N(x,z)éej‘v,TN(x,y)>e}“V].

Our third stage will be a change of variables and rearrangement using translation and symmetry. This

will leave us with a term which as our fourth and final stage we can take a limit of. In essence, the

YL Y 4 (uw) will become XV , and the remaining »’ vz 0(2)%Qq(y, z, 2)P[- - -] will become Q~y1p(u)?.
S*EN S*GN 19

Along the way we will gradually accumulate error terms which we will record as &Y, Y .. .. The term
which gives a non-zero contribution we keep track of as ¥V, 2 .. ..
PART ONE: Let

N N N N N N
o 2 Qan(yw, 2P | B el b BN el By ¢ o

zyz

*
5751\7]

and then E [mév’l(ga)) ‘ FN *] — %N = &N where

STSeN

d
«@ xT z
€1 < Qllglle e D le(@) = o) Qan(y 2, 2P | B € €Y o BEY e €N
N N N N

T,Y,2

Q||sa||,||sa||hpNZZss o P [BEY = | FY | Yan @,y )l - 2]
Y,z
u]ZrN(x,z)|x—z|
di ’
= Gllell-lelhin X — 5 — ZP[B“N=x]ZrN<o,w>|w|

R
= Qlellllelln X s 0| L]

= Qllelle el 5 N Zés o ZIP [B’C’N

c N
< — .
= Wii@”%“‘p”th 76;{\:](1)

where w = z — z. E[|R|] < o0 by (¥4).
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PART Two: Let

ad

% = 2 #0)Qan(y,z,2)P [B;:N e&l w7V (@, 2) < ek, BYY ¢ i | FN 6*]
Z,Y,% N v N v N
and then Eé\' + &N = 2V where
~ Z 2)*Qan(y. 2, )P B e € o B e o rV(w2) > ek, BYY ¢ €l [ FY 4 |-

ryz

Dropping By’ ¢ §N ot and using Lemma [4.7.3| (applied with the zero time of Lemma [4.7.3| taken to be

what is Currently time s — € N

€2 < Cllell5 XY o (1) (N sup PP [B“,;N ~-B%Y = wD :

u#v,w#0 €N N

We cut away one last error term. Let

N
o 2 PQan(y,2, )P [BYY € €Y .7V (@,2) < e mV (@,y) > €
x,Y,z

*
S*EN:|

and then ¥3" = XY + &N where

AT Z QqN Y, T, Z)P I:B:I%N € é—sN_e?:faTN(va) < ENa‘By7 € fg €>!= ) N(xay) > 6*

T,Y,2

% .
S—EN]

By essentially the same application of Lemma we obtain

1< ClIB XY 0 (N s P[B5Y - 55 =]
uFv,w#0 €N

PART THREE: Note that

o 2 V2Qan(y,w,2) D6 o (WP [BEY = w7V (,2) < ko 7V (0, y) > e

N
T,Y,z u

* .
s_eN:|

By the Markov property at time s — €%, translation, symmetry and translation again

*
S*GN]

=P BI,;N = u77—N(x,z) < 6*N7TN(x,y) > e}"v]

N
B|BGY =urN(e2) < kN (2y) >

:[P’[BON—u—xT (O,z—x)<e}“V,TN(O,y—x)>e}’°\,]

€N

=P BON—I—UT (O,x—z)SETV,TN(O,x—y)>e§‘V]

N

=P B:j,,;VNzx,TN(ux—z+u) €N T N(u,x—y+u)>e}‘°\,]
N
=IP’[B?§ =z, 7V (u,e +u) < €, 7 N(u,f+u)>e}’°\,]
where e = x — z and f = z — y. Note also

1{z,z € @g(y)} =1{z,x—ee€ <I>71:[(:1c - N}
— 1{0,—c ¢ &Y (—/)}.
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In our new variables,

d
2 =% 3 el@?€) s (Qan(—f,0,—eB [BYY = 2,7V (e +u) < e, 7V (. [ +u) > e

N
z,e, f,u

dgN

=257€N(QZ(]N (—=f,0,—e)E [ (B:%N)Q]]_{T (u,e+u) < ek, (u,f+u)>ej‘v}].

Applying the Markov property at time s — €},
aleN L (u

S—€ )
EévzziNquN —£,0, ) (u)QIP’[ Nu,e +u) < e, 7V (u, f +u) > ey
= XY . (Pgﬁso)QZqN(—f,o,—@ [7¥(0,e) < k. 7V (0, £) > €]
:Xiv_g?\‘,( %@)QZqN fa ,—6) [N(Ov_e)ge?VvTN(Ov_f)>6;kV]

= X;\;* (796* 4 ) Q'71
N N
It is this expression that we deal with.

PART FOUR: For the remainder of the proof let us write ¢?(u) instead of p(u)2. The idea is that
thanks to the spatial rescaling PEI,,\{ (¢?) & ¢?. We note
N

Pet = etw] = B[ (85) ']

< el [| B
, 9T\ 1/2
<l (| |52 ])
0.1 9 1/2
Ney

2
= S E
”@ ”1P VGV

~1/4

since recall we have eX, = N . Note C does not depend on u. Therefore,

ad
25 =YX 1 (%) = @Y S Y s () [PE %) — 2(w)|
x
< Ol lip X2 oy (N
Finally,
XY 4 (D)@Y = XN 4 (D) < CligliZ Y =] X en (D).

Collecting all the error terms together completes the proof for p = 1.
THE p = 2 CASE: The argument is the same strategy as the p = 1 case and we will only give an
outline. Let us recycle our notation &Y, ¥, .... First obtain

=N o(z)p(2)an (y, T, 2)P [BZ%N ¢ fﬁe B5N ¢ &N i ’By, c gN

z,Y,z

% |-
76N:|
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We then change ¢(z)p ( ) to o(y)2. This is best done in two steps, and if one makes the first step the
transition from o(x)p(z) to (x)(p( ) then the error term £ is controlled essentially as before. Note
that by (¢2) (as in (4.4. 5), Lan(y,z,2) =Y, #(®,)1{x € @Y (y)} ¢, and by (€'1) #(P,,) < C(L/a)?
for some constant C € (0, 00) hus

d
N - N - ¢N
N1 < Qlielllellin Ty D P [BY e € o
Y

aleN , (u)
Q||so||7||¢||hp2iﬂm[3” u] NIy = AC L (y, )

N | Dty 2)ly—
T,z

d¢N

«Q fs_e* (u)
< OLQllellllellip 3 — 50— NP (B = 4] 3 JwlOLpx ()

Y

1
CLdQH‘PHooH‘PHIipXﬁE;\k](DWE (w1l

The error term €3 arising from changing ¢(z)p(y) to p(y)? can be controlled in exactly the same way.
This leaves us dealing with
"t

In the same way as in the case p = 1 we can transform this with two applications of Lemma to

N N N
- Z Paw(y. 2, 2P | BYY ¢ €Y o BV ¢ € o, BY €€l o

$y7

£y = 2 Paw(yz2)P [N (y,2) > ek, T (9,2) > & B e € o | FY |
:cyz
d
Q
=% 2 P an e ) Yy WP [BEY = um(y,2) > e, 7V (. 2) > e |
x,Y,2

We then note that
P [By,;N =u,mV(y, ) > e}"V,TN(y,z) > 6}“\,] =P [Bu,;N =y, 7V (u,u+e) > e}"V,TN(u,u +f) > 6}“\,]
ex €N
]l{.Z‘,Z € q)nN(y)} = ]l{_ea _.f € q)nN}

where e = y — x and f = y — 2. Proceeding in the same fashion as the case p = 1 we reach

« u
2 =% Y ewQan(—e,—~f0P [BYY =y (wute) > kN (wu+ f) > e

u,y,e,f
di

= Z = EN QZqN OE (B2 P[rY(0,¢) > e, 7V (0, ) > e§]
dgiv €N (u) N 2 N * N *

- Z 1’1:7410 (U)QZ qN(_67 _f7 O)P [T (07 _e) > €Ny T (05 _f) > 6N]

e f

= Xé\ie* (PeN* 902> Q'Yév

N N
The remainder of the argument proceeds exactly as in part 4 of the p = 1 case. |

Combining our results from Sections [4.6] and [£.7] allows us to finally prove Lemma
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PROOF: [of Lemma [4.5.2] Recall (M (p))s = §; m2N1 () + m2(p)ds. We use the decomposition

t t
[ )+ mi )t = Qo+ ) [ X2 (62 (473
0 0
ex At e]’lf] vt
<2 (f m¥rlds || mi o)~ E[md (o) | 7Y, | ds
p=1,2 0 e?:, N
e?f,vt t
+ f E [mév’p(¢) ‘7:51\15* ] - Q’préV_E* (go)‘ ds + Q’YPJ Xs(g02)ds)
N N N (t—ek)+

We estimate the first term (inside the sum) with Lemma and the third with Lemma m The
fourth we estimate with the bound XN (?) < ||p||2XN(1). Taking expectations and estimating the
second term using E[|Z|] < (E[Z?])*/? and Lemma gives us

‘| |

1/2
< ACHPIEE [sup XX (1] + (ekte n RICalele 1+ X5 1)7))

t t
f m () + m (o)ds — Q +w>f XN (?)ds
0 0

1 u, N v,N _ N N
+ | o+ e+ Vs B [BEY = BEY = w] + Y =] JiCsllelE Le&“ﬁ PRar1e
w#0 NN
+ enCuE [Sup Xév(l)] :
s<t

In the above, using Lemma on the first, third and fourth terms, Lemma and Lemma
on the third, and finally the fact that €%, — 0 on the first, second and fourth, we obtain that the whole
expression tends to zero as N — 0. [ |
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Chapter 5

Future work

We outline some ideas for future work.

5.1 Directly related to this thesis
5.1.1 Related to Chapter

e Address the question of uniqueness to the martingale problem for the SAFV process (see Definition
. In the absence of any obvious duality it is hard to gauge the difficulty of this problem. One
approach might be to use a lookdown construction similar to [Donnelly and Kurtz (1999a)) in order
to get duality; another idea would be to use a Dawson-Girsanov transform of the neutral process
(although it seems unlikely this would cover all cases).

e Look for a way to understand the versions of the SAFV process which cannot be characterized using
Poisson point processes (see Remark [2.1.11)).

5.1.2 Related to Chapter

e Remove the condition that size the reproduction events of the bursting process must be uniformly
bounded above by L (part of (¢1)).

e Do the necessary adaptations to prove bursting processes also rescale to super-Brownian motion in
dimension 2.

5.2 Further ideas

5.2.1 A deposition-type model

Let A be a Poisson point process with points (¢, 2,7, p) € [0,00) x R? x {—1,0, 1} of rate dt ® dz ® pu(di) ®
v(dn). One could study the process

Hyx)= > pl{s<tzeB.(y)}

(t,y,r,p)eA

When Sof“ réu(dr) < oo and v € 2{—1,0,1} this defines (almost everywhere) a function which can be
thought of as a d-dimensional surface. If u is an infinite measure and p is not a point mass the surface
will be rough. For example if v puts mass 1/2 on both —1 and 1, for each c € Z the set of x € R? such
that Hy(x) = ¢ will be a totally disconnected set.

This process might be interesting to rescale, for example if we scale in such a way as t — H(x)
becomes a Brownian motion then we obtain a Gaussian field.
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5.2.2 On the hierachical group

In Dawson and Greven| (1993)) a model of interacting diffusions is considered with the geographical space
as the hierarchical group (in place of the usual R?). We will not include references to this area in our
own bibliography and refer the interested reader to|Dawson et al.| (1996) and [Dawson and Greven|(1999)),
amongst others.

The Hierarchical group is best thought of as a tree like structure which describes the spatial structure
of an infinite collection of colonies of individuals. The interactions occurs on different spatial scales which
are set up in such a way as on each spatial scale the interaction is of a particular asymptotic rate and
(as the system size tends to infinity) can be isolated on a unique time-scale. [Dawson and Greven| (1993)
obtained results about duality, clustering, the nature of the non-trivial equilibria, and a highly technical
result concerning a fixed point of the rescaling procedure. Dawson and Greven| (1993)) worked with a
system of interacting (via migration) Wright-Fisher diffusions. In the later papers (Dawson et al.| (1996)
and Dawson and Greven| (1999)) it was shown that the system can be analysed in more detail using a
general type space and Fleming-Viot processes in place of Wright-Fisher diffusionsﬂ

Most population models are restricted to dealing with local effects (i.e. selection, mutation) superim-
posed on a particle system which on its own would exhibit ancestral lineage duality. One advantage of
the multi-scale approach is that one can analyse superimposed effects in which individuals interact over
a large spatial scale, providing the interaction occurs in such a way as it depends only on (i) local things
and (ii) the global average of types from the large spatial scale.

Therefore, it seems likely that one could use these tools to provide a mathematical formulation for
individuals within competing populations cooperating. The idea one wishes to capture is that if, in some
large region, there are disproportionately many type 1 individuals and very few type 2 individuals, the
type 1s are able to Kkill off the type 2s at an increased rate. Let us give an example of what this means
on a single spatial scale, in the style of [Dawson and Greven| (1993).

Fix N € N and let ¢,b € [0,00). Let t —> :L‘;V(t) for j € {1,...,N} be a system of interacting diffusions
defined by the equations

da (1) = e [TV (0) = 2 ()] + b [z (01 = 2 ()] + /2 ()1 — 2} ()W (1) (5.2.1)
N0 = 2l 0)

where (WjN )j,n are independent Brownian motions. The interpretation is that at each site j we have
individuals with type taken from {0,1}, and ¥ (¢) specifies the proportion (so 0 <z} () < 1) of type 1s
at time ¢ in site j.

The final term in is Wright-Fisher noise. The first term of corresponds to migration;
individuals migrate out of the global average into site j at rate ¢. The middle term is intended to model
cooperation. It has a high value (corresponding to a force increasing the number of type 1s at j) when

N

x;' (t) is low (i.e. when there are few type 1s at j) but the global average of type 1s is high.

In the limit as N — oo the global average Z" (t) of type 1s is expected to converge (as a consequence
of strong law of large number effects) to some constant § € [0,1]. Thus the dynamics of the limiting
diffusions are expected to be

daj(t) = c(0 = z; (1)) +00(1 — (1)) + 4/, ()(1 — ;(£))dW; (D).

where W;(t) are independent Brownian motions. Note that the processes at different sites have decoupled

in the limit, leaving us with a system of (countably many) independent identically distributed diffusions.
It might also be interesting to analyse the system where the type 0s are given a selective

advantage (which introduces another term into (5.2.1))) to compensate their cooperative disadvantage.

5.2.3 Connections to the Brownian web

Again, we will not include references to this area in our own bibliography. The connection is that,
suitably represented, the dual of the one dimensional SAFV process rescales to the Brownian web. This

1Recall that the two type Fleming-Viot process has the Wright-Fisher diffusion describing the total mass of a single type
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was essentially proved in [Ferrari et al|(2005)). However, connections between the SAFV process and the
Brownian web remains unexplored and it is possible that useful techniques could be transferred between
the two.
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Appendix A

The topology on =

We go about placing a topology on = and proving the results in Section Let
C(K)={f: K —R; f is continuous},

equipped with the supremum norm || - ||o. Let
LYRY"™, C(K™)) = {(D :(RH™ - C(K™); ® is measurable and f [|®(2)]]|dz < oo}
(Rd)n

and let
By ~g By iff {z € (RN)"; ®1(2) = Py(2)} is Lebesgue null.
Let L'((RY)™, C(K™)) be the quotient of L((R%)"™, C(K™)) by ~5. Then L'((R%)" C(K™)) is a Banach
space equipped with the norm ||®|| = S(Rd)n [|®(2)]|cdz.
For ease of notation let us write

bl

L* = L”(R?, Mp(K)) and L'[n] = L' (RY)", C(K™)).
Write also L' = L[1].

Proposition A.1 (Evans| (1998)) L* is isometrically isomorphic to a closed subspace of the dual of
L' via the action

J (P(z), p(x))dx,
where (®(x), p(z)) = §, (@ ) (p(z)(dk)).

We induce the weak-star topology on E € L” from this identification.

Remark A.2 [t is in general not true that L™ is isomorphic to the whole dual of L*. By Theorem IV.1.1
of | Diestel and Uhl (1977), isomorphism holds if and only if Mp(K) has the Radon-Nikodym property
with respect to (R, L) (see the remarks following Definition II1.1.3 of (Diestel and Uhl, |1977)). This
fails, for example, if K = {0,1}" (with the usual o-algebra generated by cylinder sets).

From the separability of L' and the Banach-Alaoghu theorem we obtain

Proposition A.3 (Evans| (1998)) Z is a compact metrizable space.

Let C(E) denote the continuous functions from = — R equipped with supremum norm || - ||.c. Then
C(E) is a Banach space. An application of the Stone-Weierstrass theorem identifies a suitable class of
test functions:

Proposition A.4 (Evans| (1998))) . is dense in C(E).
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PROOF: Evans proves this without the restriction that for ¥ of the form (*,n), 1) has compact support.
The modification required to prove our stated result is minimal. |

Proposition A.5 . is a seperating, convergence determining class of =.

PrROOF: Evans proves that .# separates points of Z=. By Lemma 4.3 of [Ethier and Kurtz (1986) the
compactness of = implies that M < C(Z) is separating iff M is convergence determining. [ |

Proposition A.6 If p™,p € = and for all U of the form (1,%) (in other words, 1 : RY — R continuous
with compact support and x € C(K)) we have

f () G o™ (2)) dr — f () v pla)y da
R4 R4

as m — o0, then p™ — p in Z.

PRrROOF: We write || - || for the norm on L!. Lemma A.2 of Evans (1998) shows that functions of the
form x — (z)x(-) where 1 : R? — R is integrable and y € C(K) are dense in L'. A straightforward
modification of the argument allows us to assume that ¢ is continuous with compact support.

Let ® € L. Let € > 0 and and choose 1, x as above so as ||®(-) — 1(-)x|| < ¢/3. By our assumptions
we may choose M such that for all m > M, |{p. ¢¥(x) (x, p™(x))yde — §pu ¥(x) {x p(2)) de| < €/3. A
straightforward use of the triangle inequality now shows that for all m > M

J]Rd <&>(x), pm($)> du = J,Rd <<T>(m), P($)> dz

Thus, in the terminology of Proposition (p™, \Tl) - (p, \TJ) for all ¥ € L! and we have the result. W

We have now proved all the statements of Proposition [2.1.

< €.
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Appendix B

Z-Measurability

Lemma B.1 The set I§ is a measurable subset of I. The function
(x,i) - I{z € E;}
defined on R% x I is (B ® T)/B measurable. The functions
i — a%#(aZ  E;) i — L(E;) i— (i)
are /B measurable.

Proor:

Since E; is Borel the function x, — 1{x € E;} is measurable. By (#2), for each = € R the function
i — 1{z € E;} is measurable. Measurability of (z,i) — 1{z,e E;} now follows (by Lemma 8.1(d) of
Williams| (1991), for example).

Let us note also that

QB o2 = ot T ye B} = | 1B e Bildy

yeaZd

and by (J#2) this is a measurable function of i. By dominated convergence (domination is easily achieved
since by (1) E; is bounded),

J 1{[y]a € E;}dy — ,[ Iy € Eijdy = L(E;).
Rd ]Rd

This expresses i — L(E;) as a pointwise limit of Z/B? measurable functions, which implies i — £(F;) is
measurable.
Note that
2(i) =lim sup |z|l{x € E;}
0 geqzd
because F; is open. Thus, again by the algebra of measurable functions, i — &; is measurable. It follows
from this that I§ € 7. |

73



Appendix C

Proof of Lemma 3.2.4

Lemma C.1 For each a € (0,1],

L,uo‘(di) Jl vi(du)u2(i)*? < oo.

0

PRrROOF: In fact we will prove something a bit stronger. Let 0 < 81 < B2 < o0. Note

1 1
fu(dz')f vi(du) up{1{By < 2(1) < B2} < f u(dz‘)f vi(du) u2 (i)' 1{p1 < 2(i) < Ba}
I I

0 0
1
< J u(di) J vi(du) u2 ()", (1)
I 0
By (/3),
1
| ut@i | tdwyuris < 901) < ) <o
I 0
The stated result follows by taking 51 = «, 2 = 1/ and noting that a < 2(i) < 1/aif i ¢ I§. [ ]

Proor: [Of Lemma We seek to use Theorem 3.9 of Ligget| (1985)), from which the stated results
will follow, and to do so we must check equations (3.3) and (3.8) of [Ligget| (1985). There are some other
minor conditions required to check that our setting really satisfies the setup of |Ligget| (1985) but we will
omit those details. In order to check (3.3) and (3.8) of [Ligget| (1985) we must express our system in the
notation of |Ligget| (1985). Let

A ={H < aZ’; H+# @ and Ji € I,z € aZ* such that H € E;(z)}

be the set of all possible combinations of sites that a single reproduction event could overwrite. Let us
write

7 (y) = aZ? n Ei(y).
For A € K set

1
en(c. )= [ ay [ ptai) | wiaw) | vianvian)

0

{w{ c @f‘([y]a)}( I T(w;)> (H T(a: ))
NH

28 ([yla xeH

x [T [T 13 e A,n(@) = )}t + T(:)1En € An(e) = c(@}]}

zeH

which is the rate at which the sites in H change type to a state n € A if the process is in state (. Note
that if A = K the bottom line of the above expression is just 1.
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Remark C.2 We do not ‘double count’ events; The term
1{H < Ei([y]a)}< [T 2 )) <H T(l’))
€@ ([yla)\H veH

checks that H € aZ% n E;([y]a) and the sites which are overwritten by the event (y,i,u, f, g) are precisely
H. But note that we do not care whether or not the type of the overwritten site was ‘changed’ to the type
it already had. This is in keeping with the notation of |Ligget, (1985).

We note the slightly shorter form,

en(c. )= [ ay [ wrta) | wtaw | vianvian)
{B{HE q’?([y]a)}( I ) (H T(z;)1{3n e A, n(z) = C(y)}) }

zedP ([yla \H zeH

Equation (3.3) of [Ligget| (1985)) is the statement that a single site must only change type at finite
rate. Since the action of Definition |3.2.2|is spatially homogeneous we need only check the following.

2 Sup{cH(C,KH) ;CEKQZd}

{Hex# ; H30}
< J o [ et [t [ v

{Heﬁf’ H>0}

x I{H < ‘D?([y]a)}< [ 1us< f(fﬂ)}> <1—[ H{u > f(fﬂ)}>
N

ze®¢ ([y]a)\H zeH

= J o e [ i | van o s B
X Z ]]-{H c q)?([y]a)}< H Il{u < f(;[;)}) (H ]]_{u > f(x)})

{Hest ; H30} zed¢ ([yla \H z€H

= | v | wmtai) | wian) | o) 10 < 0210103
< Mz f<0>}( [ s f(:r)}> (H L{u > f(x)}>
N{o} zed([

Gee ([y]a Y1\ (G {0}) ©eG
(C.2)
We note that by Lemma [3.21]
| vtan v <)}< n{usfm}) (H 1{u>f<x>})
Gcw([y MO} €@ ([y]a)\(G{0}) ©€G
—u 3 WHO) (1 )@ (IWa)\Cn(0])
G2 ([y]a)\(0}
#(®F ([y]o))—1 )
. D WHE) (1 ) #(® ([a) -1 #(C)
m=0 Gear([ula)\(0}
#(G)=
#(®F ([y]a))—1 o
—u Y (#(‘I% ([vla)) — 1)um(1 ) ([la)) = 11=m
m=0 m
=u (C.3)
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Putting (C.3) into (C.2) gives

> sup {CH (¢, K");¢e Kazd} < fRd dyLu“(di) fl vi(du) 1{0 € @7 ([y]a}u

{He# ; H30} 0

<[ ' vi(dupu | vitnl< 26+

0

= [ wian [ vi(du)u | it < 20) i 1)

0

< [wan [ vi(du) [ av1tvl <290

0

1
= C’f ,u(di)f vi(du)u2(i)* < 0.
I 0

where we used that ¢ € I\I§ implies o < (i) to get from the third to fourth lines. Finiteness in the
above follows from (4#3) and thus (3.3) of [Ligget| (1985) holds. Note that (up to a constant) this is
precisely the bound we would expect from the dynamics of Definition [3.2.2

We now approach (3.8) of Ligget| (1985)), which is a condition to the effect that long range dependence of
the reproduction mechanism is small. Again, since the action of Definition [3.2.2]is spatially homogeneous
we need only check that

3 > sup{lICH(CG) = Ca(B iy 5 C(w) = Blu) for all we aZ\fw} } (C.4)

{He " ;0eH} weaZd\{0}

is finite. We begin with the estimate that if ((u) = S(u) for all u # w,

ICH (¢, A) = C(8, A)] ©5)
<[] u“(dz’)jo vi(di) L U(df)
L{H < 32 ([y])} ( [ s f(a:)}> (H 1{u > f(x)})
we®s ([l \H veH

x (H L{Ine A ) =Cw)} - [ [ 1{Ene An(x) = B(y))}>

zeH zeH

< JRd dy L 1 (di) Ll vi(di) L U(df)

{H < 7 ([yla)} ( [T 1us< f(w)}) (H 1{u > f(w)})
v ([yla)\H weH

x 21{we H}

<2 f Ly j 1 (di) f a(di) L U(df){1{07w€ % ([yla)}

ze®¥([y] xzeH

HH < 97 ([y]a)} ( [I s f(x)}) (H Hu > f(fc)}> : (C.6)
o\H
Noting that the final line above does not depend on A we have

sup {|ICi(C. ) = Car (8, Iy s C(w) = Blu) for all u e aZ\fw} | <
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and putting this into (C.4)) gives

€@ <2 || e f i) | Utd) {H{Owe@“([] )

weaZd\{O}

Y, UHHcS ([l ( [T 1< f(w‘)}) (H H{u > f(fc)}> }
NH

{Hes# ;0eH} 2P ([Y]a zeH

_p JRd dyj (di) Ll vi(di) 140, w € B2 ([ ]")}L U df)

weaZd\{O}

D ﬂ{u>f<o>}( I1 11{u<f(w)}> (HH{U>f(w)}>
N0} ze@y ([

G % ([y]a yla)\(GU{0}) zeG
1
1
1

2 [ i (ai j wdiyu | dyrioe @?([ymwm;\{o}ﬂ{w e 7 ([ya.)}
2 [ i) [ iy | auniclole e 930) | de1ilele e 95(ol)
<2 Iuo‘(di)L z/i(di)u(fRd dyL{ly| < 2(i) +a,z'¢16’}>2

< 2L/f’(di) Ll ui(di)u< y dyl{|y| < 2@(2')})2

<C ,ua(di)J vi(di) u2 (i)™
I

0

where we used to get from the second to third lines and then the fact that ¢ € I*\0 implies a < 2(4)
to get from the fourth to the fifth. This is finite by Lemma[C.1]

Thus we may use Theorem 3.9 of [Ligget| (1985)). In particular the system of Definition is well
defined by its dynamics and has a Markov pre-generator % whose closure Q is a Markov generator. All
that remains to do is show that the pre-generator 2% matches our expression in the statement of the
Lemma. From Proposition 3.2(a) of |Ligget| (1985), the pre-generator for J € A% as

)= 3 [, cntnan[) - o]

where n°(2) = n(z) for x ¢ H and n®(x) = B(x) for z € H. Considering the term relating to J(n),

2 J 777d5 2 J CH 777 )
Hesw

Hes

— 3 | dy | e Gai f du) LZ Udf)U (dg)

> 1{H§<I>§"([y]a)}< aﬂ T(m;)) (]‘[ T(:U;))

Hext o ([yla \H xeH

=3 | dy | ueta f du) LQ Udf)U (dg).

The last line of the above follows since for each (y,1i,u, f, g) there is precisely one H € 5 such that

1{H c @?([y]a)}< [T T )) (H T(x;)> =

ze®¥ ([y]la )\H zeH
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namely H = {z € ®%([y]o); T(z;) = 1}. Now the term relating to J(n”). Writing out and swapping
some of the integrals gives us

c B
3 |, cntwanod)

- fRd dy L 1%(di) L 1 vi(du) L2 U(df)U(dg) >, 1{H < ®([yla)}

Hest

( [T 7 )) (H T(sm))f { (H 1{3y € B, n(z) = C(y)}> }J(nﬁ) (C.7)
zEDY o \H zeH KT xeH

([v]
As before, with (y,4,u, f, g) fixed there is precisely one H € J# such that
1{H < @?([y]a)}< [ 7@ )) <H T(w;)> =1,
ze®¥ ([y]la )\H zeH
namely H = {z € ®¥([y]a); T(x;) = 1}. For this H,
,[ { (H 1{In e dB,n(x) = C(y)}> }J(nﬂ) = J (" I9)
KH zeH

since the measure we are integrating with becomes a point mass on 8 € K where 5(z) = n(y). Putting
both these observations into (C.7)) gives

%)

Hew VK

1
cu(n,dB)J (") = fw dy L p (di) L vi(du) L2 U(df)U (dg)J (n*"79)

H

which completes the proof. |
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Appendix D

The Aldous-Rebolledo criterion

We give a statement of a very useful tightness criterion which is not commonly found in the literature.
Let A be a complete separable metric space. Recall that C'(A) denotes the space of real valued continuous
functions of A.

Theorem D.1 (Theorem 9.1, Ethier and Kurtz| (1986)) Let {Y™; m € N} be a sequence of cadlag
A walued processes. Suppose the sequence Y™ satisfies the compact containment condition in A; for each
T < 0 and € > 0 there exists a compact set I'e 7 of A such that

sup P[for allt <T,Y" ¢Tcr] <e.

Let © be a dense subset of C(A) in the topology of uniform convergence on compact sets. Then {Y™; m €
N} is relatively compact if and only if for each f € O, {f(Y™); m € N} is relatively compact as a set of
processes in Dg[0, ).

Theorem D.2 (Aldous-Rebolledo Criterion, Rebolledo| (1980)) Let {Y™; m € N} be a sequence
of real valued processes. Then {Y"} is tight in Dy, (r)[0,0) if the following conditions are satisfied.

(1) For each fized t € [0,00), {Y;" }men i tight (as a sequence of real valued random variables).

(2) Let € > 0 and T < o0, and for each m let 7, < T be a stopping time with respect to the filtration
of Y™. Then there exists § > 0 and mg < o0 such that

sup sup P[[V .s—Y!|>¢| <e

mzmo §€[0,6]

Remark D.3 There is a useful specialization of the criterion for the case where Y™ is a semimartingale.
IfY™ = M™ + A™ is a decomposition of the semimartingale Y™, where M™ is a local martingale and
A™ has locally finite variation, then it suffices to check (2) for both ({M™))men and (A™)men, where
(M™ is the bracket process of M™.
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