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Chapter 0

Preliminaries

0.1 Abstract

The Spatial Λ-Fleming-Viot process (SΛFV) is a stochastic process developed to model the frequency
of genes occurring within a population inhabiting Rd (although with extra effort it can be defined in a
general Lusin space). It is essentially a spatial version of the generalised form of the Fleming-Viot process
due to Bertoin and Le Gall (2003).

In Chapter 1 we introduce the Fleming-Viot process and outline the major steps in its development.
We start from the original definition in Fleming and Viot (1979) and finish with a description of the
duality between the Λ-Fleming-Viot process of Bertoin and Le Gall (2003) and the Λ-coalescents of
Pitman (1999), Sagitov (1999) and Donnelly and Kurtz (1999a). From there we move on to our Chapter
2 which begins with a definition of the most basic version of the SΛFV process. We use this basic version
to introduce the state space, which has a non-trivial topology coming from Evans (1998), appropriate
duality and an informal discussion of existence. We then review the literature to date on the SΛFV
process and give our own, more general formulation of the process.

In Chapter 3 we give a proof of the existence of our formulation of the SΛFV process and characterise
it as the solution to a martingale problem. We are able to prove uniqueness (via duality) in the case
without selection but are unable to give a general proof of uniqueness.

In Chapter 4 we work with a family of processes which we call bursting processes. Bursting processes
are a spatially discretized version of a particular type of SΛFV process; they turn out to also be a
generalized version of the Voter model. In Cox et al. (2000) it was shown that in dimensions d ¥ 2 the
Voter model could be rescaled to super-Brownian motion and we give a proof (in d ¥ 3) extending this
result to bursting processes. Our final chapter discusses ideas for further work.

The first two chapters contain no new material and as such we will permit ourselves to discuss
known results in an informal style. Chapters 3 and 4 contain new results for which we adopt a properly
mathematical approach to our proofs.

0.2 Dependency of the chapters

Figure 1 outlines the dependency between the sections1. A solid arrow indicates an important dependency
(e.g. carried over notation) whilst a dotted arrow indicates a dependence that is helpful but non-essential.

The shortest self contained routes to understanding the statements of results in Chapters 3 and 4 can
be found via the thickened arrows on Figure 1.

The reader who is already familiar with the terminology of population genetics will have little difficulty
omitting our first chapter and beginning with Chapter 2. It is preferable but non-essential to be familiar
with the Λ-Fleming-Viot process discussed in Sections 1.3.2 and 1.3.3 before reading Chapter 2. A self
contained description of the Λ-Fleming-Viot process can be found shortly after Definition 1.3.11.

Chapter 3 cannot be read without understanding Chapter 2, in particular the construction of the
state space in Section 2.1.1 and the informal description of our version of the SΛFV process in Section

1Not including Chapters 0 and 5, all appendices, and introductory paragraphs at the start of some chapters.
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Figure 1: Diagram of dependency between sections.

2.3. In Chapter 3 we continue to use much of the notation set up in Chapter 2.
Chapter 4, on the other hand, stands on its own and (with the exception of the paragraph which

portrays bursting processes as a discretization of the SΛFV process) can be understood without having
read the preceeding chapters. This does not illustrate a marked change of topic in the thesis but rather
the fact that in Chapter 4 we work with a simplified spatially discretized version of the SΛFV process
and in order to do so we set up entirely new notation.

0.3 Notation

We will define all our notation when we come to it in the text, but we give here a list of common notation
which we use throughout the thesis. In each of the following definitions we use the space A as a dummy
space. In each case A is assumed to have the properties appropriate for the definition to make sense.
Most of this notation is in common usage, in fact the vast majority is that of Ethier and Kurtz (1986).

Spaces of measures. Let MF pAq denote the set of finite signed measures on A, equipped with the
weak topology (unless it is explicitly specified otherwise) and let PpAq denote the closed subspace of
probability measures on A. We denote the delta measure of a P A by δapBq � 1ta P Bu.

Spaces of functions. Let DAI denote the space of càdlàg paths f : I Ñ A, where I � R is an
interval (usually I � r0,8q). Equip DAI with the Skorokhod topology. Whenever we use the terms
‘vector space’, ‘Banach space’, etc, we refer to spaces over R with pointwise operations. Let CpAq denote
the vector space of continuous functions on A with the topology of uniform convergence on compact sets.
Let CpAq denote the continuous functions which are bounded. Then CpAq is a Banach space with the
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supremum norm || � ||8. Let ĈpAq denote the subspace of such functions which have compact support
and let C8

0 pAq denote the further subspace of continuous functions on A with compact support and
derivatives of all orders.

Multiplication operators. We denote product measure with the symbol
Â

and write pf�gqpx, yq �
fpxqgpyq (but, as normal, pfgqpxq � fpxqgpxq).

Integrals. We will use the notations
³
fpxqdx � ³

dx fpxq for integrals interchangeably; Mostly we
will write

³
fpxqdx but when we come to write down some especially long generators of jump processes

we will tend to use
³
dx fpxq.

Euclidean space. We use the letter d P N for dimension. We denote balls in Rd by Brpxq � tz P
Rd ; |z� x|   ru. The Borel subsets of Rd will be denoted Bd. We use L for Lebesgue (i.e. d-dimensional
Hausdorff) measure in Rd with the intention that the dimension should be clear from the context.

Other. We will often use superscripts to denote dependencies as well as powers and this also should
be clear from the context. Some of our notation has been chosen to agree with particular references. For
the SΛFV process these are Evans (1998) and Barton et al. (2010b) whereas for bursting processes we
use notation similar to Cox et al. (2000).

0.4 Acknowledgements

This thesis was written at the end of the first year of my D. Phil. at Oxford University under the
supervision of Prof. Alison Etheridge and Dr. Ben Hambly. I am very grateful also to Dr. Amandine
Véber and Prof. Ed Perkins for their hospitality and helpful discussion.
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Chapter 1

An introduction to Fleming-Viot
processes

In this Chapter we describe the development of Fleming-Viot processes, beginning with an informal
construction in the style of the original paper Fleming and Viot (1979) which we relate to the more
commonly cited definitions of Dawson and Hochberg (1982) and Etheridge (2000). We outline the dual-
ity between the Fleming-Viot process and Kingman’s coalescent before finishing our exploration of the
classical Fleming-Viot process with a basic version of the Donelly-Kurtz (1996) lookdown construction.

The SΛFV process finds its clearest connection to the literature via the generalised Fleming-Viot
process of Bertoin and Le Gall (2003). We outline their framework for general exchangeable coalescents
on N and the resulting duality between what, following Etheridge et al. (2010), we refer to as the Λ-
Fleming-Viot process and the Λ-coalescents of Pitman (1999) and Sagitov (1999). This same duality was
implicit in Donnelly and Kurtz (1999a).

1.1 Biological terminology

Let us begin with an informal description of some of the terminology of population genetics. Our intention
is to establish common language and we do not imply biological justification for the processes we consider.

In mathematical English, an individual is a single organism and a population is a set of individuals.
We remark that in contrast to the natural language meaning of ‘population’ we do not require all the
individuals in some population to exist at the same instant in time. The type space is the set of genetic
types an individual could assume. Usually we will choose our notation in such a way as an individual
can only assume a single type at any one time.

A coalesent is a stochastic process whose initial state is some population X and over time groups
the elements of X together. For example the initial state of the coalescent might be t1, 2, 3, 4, 5, 6u and
at some later time the state of the process might be tp1, 4q, 2, p3, 5, 6qu. Usually this represents looking
backwards in time and describing which individuals are descended from common ancestors.

If we view a coalescent in reversed time we see a branching process1, in which we start with some
individuals and over time the currently alive individuals give birth to more individuals. Usually when
new individuals are born at time t one or more individuals alive at time t� will pass on some of their
characteristics (which could constitute spatial position and/or genetic type). These individuals will be
referred to as the parents and the individuals who are born will be referred to as the offspring or children.
We will almost exclusively look at processes where each reproduction event involves only one parent. Any
occurrence within the process which potentially results in individuals being born or killed will be known
as a reproduction event.

We explain the canonical way in which a coalescent and a branching process are ideologically the same
object viewed respectively with time running in opposite directions via the following example. We will

1We use term informally here; we do not mean the Galton-Watson process specifically, just any process with a branching
structure. Similarly, by coalescent we refer to the concept rather than precise mathematics.
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usually parametrize time with the variable t and we will alternate between ‘forwards in time’ referring to
coalescents or branching processes as is convenient. Let Brpxq � ty P R ; |y � x|   ru.

Example 1.1.1 Let K be some set, which represents the different genetic types an individual may as-
sume. We define a process Ft which at any time takes its values in the set F of functions from R to
K. The interpretation is that at all times t P r0,8q we have a single individual at each x P R and Ftpxq
represents the type of the individual at x P R at time t P r0,8q.

The evolution of the process is specified as follows. Pick some initial state F0. Let Λ be a Poisson
point process with points pt, xq P r0,8q � R of intensity given by the Lebesgue measure dtb dx.

• If pt, yq P Λ then at time t the individuals at points x P B1pyq die and are replaced with new
individuals which have the type of the individual at y at time t�. In symbols, Ftpxq � Ft�pyq for
all x P B1pyq and Ftpxq � Ft�pxq for all x R B1pyq.

• For each x, in between the jumps caused as above sÑ Fspxq is constant.

Thus, forwards in time we have a branching process in which at a reproduction event pt, yq P Λ the
individual at x gives birth to individuals which instantaneously colonise the surrounding area B1pyq.

Backwards in time we obtain a coalescent: Fix some time T P p0,8q and represent the individuals
alive at time T as the set R. To each individual x P R associate a random walk pBxs qsPr0,T s with Bx0 � x
and dynamics as follows:

• If pT � s, yq P Λ then for all x P B1pyq set Bxs � y.

• For each x, in between the jump times caused as above s ÞÑ Bxs is constant.

Define the process
Cs � trxs�s ; x P Rdu

where �s is the equivalence relation x �s y ô Bxs � Bys and rxs�s is the equivalence class of x. Thus Cs
tells us which individuals had a common ancestor in the time interval rT, T � ss.

Let us use Example 1.1.1 to introduce the concept of an ancestral lineage. In non-spatial settings
the ancestral lineage from some individual at time T is the random walk which, looking backwards in
time, traces the line of ancestors back over rT, 0s. Since we consider processes where reproduction events
involve only one parent, this can be thought of as a random walk on the set of individuals which lived
in time r0, T s. The random walk (i.e. the lineage) moves only when, looking backwards in time, the
individual which is the current value was born and at this moment the walk jumps to the parent. In the
spatial setting of Example 1.1.1 since we have precisely one individual at any one point of space we carry
the same information if we trace the location of the ancestors. Thus in Example 1.1.1 Bx is the ancestral
lineage of x from time T .

Remark 1.1.2 It is customary to take ancestral lineages to be right continuous, even though it would
be mathematically more natural to have a left continuous process as the reversed time version of a right
continuous process. We will only look at coalescents driven by Poisson point process with a Radon measure
on the time component and therefore (by elementary properties of the Poisson point process) we always
have ancestral lineages which are stochastically continuous. In this case the left and right versions have
the same distribution so we can ignore technicalities and work with the right continuous version.

A multiple merger is said to happen if some reproduction event causes strictly more than two lineages
to coalesce. A simultaneous merger occurs if two or more reproduction events causing ancestral lineages
to coalesce happen in the same instant of time. A coalescent which sees multiple mergers but not
simultaneous mergers is known as a Λ-coalescent. A coalescent which sees simultaneous mergers (and
usually multiple mergers as well) is known as a Ξ-coalescent.

It is natural to consider branching processes in which the reproductive success of an individual depends
on its genetic type. Processes in which this occurs (both branching processes and coalescence) are said to
incorporate selection and processes in which it does not are said to be neutral. We say a process exhibits
mutation if the genetic type of a child depends on that of its parent and some additional randomness2.

2In this context it could be unclear what is meant by an ancestral lineage. We will only consider lineages in processes
without mutation.
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Let us conclude this section with some modifications to Example 1.1.1 which would be biologically
desirable. It would be natural if a reproduction event didn’t completely recolonise the area in which it
occurs. We should also to consider reproduction events of varying size and shape. Another noticeable
problem is that in Example 1.1.1 we have no sense of how many individuals might inhabit some region,
only a sense of genetic type.

It is clear in Example 1.1.1 that the individuals inhabiting any bounded region of space only change
at finite rate. From a mathematical point of view it is natural to ask if there are processes similar to
Example 1.1.1 which don’t posses this property. Clearly some sort of control over the rate is required
for the process to exist, but precisely how much? Destroying the homogeneity in time and space would
be an unpleasant step towards intractability, but a neat way to aim for ‘faster’ processes is to allow the
radius of the reproduction events to vary. In the style of Lévy processes, big events would have to happen
slowly since they affect large numbers of individuals, but small events could happen very fast. We will
return to this idea in Sections 1.3.3, 2.1.2 and 2.1.3.

1.2 The Fleming-Viot process.

In the genealogy of mathematics the SΛFV process is a direct descendent of the Fleming-Viot process.
Fleming and Viot were interested in modelling the frequency of genetic types found within a population.
They did not consider geographical effects; in fact for the duration of this chapter we will work only with
non-spatial models.

1.2.1 Rescaling the Moran model

Let K be a compact metric space, which plays the role of the type space. Let H be the generator of some
well behaved K-valued Markov process, H. We describe the Fleming-Viot process as a limit of Moran
models.

Definition 1.2.1 (Moran model) We construct a process with N particles (indexed by t1, 2 . . . , Nu)
moving around in K. The evolution is specified as follows.

• Each pair pi, jq P t1, . . . , Nu2 of particles carries an exponential clock of rate 1{2. When this clock
rings the particle j instantaneously moves to the location of the particle i, and both subsequently
continue independent motion according to H.

• In between jumps caused as above, each particle moves around K according to the process H, inde-
pendently of the other particles.

Let Y Ni ptq denote the type of the ith particle at time t.

The process Y N � pY Ni qNi�1 differs from the classical model of Moran (1958) in the respect that mutation
occurs continuously rather than in jumps coinciding with the times of reproduction events.

In Definition 1.2.1 the ‘position’ of an individual in K corresponds to its genetic type. The operator H
is said to be a mutation operator since it specifies the random mutation of the genetic types individuals. In
later sections we will be primarily interested in the case with no mutation (H � 0). The mechanism with
the exponential clocks is often known as resampling and corresponds to reproduction with interpretation
as follows. First let us note that since we are constrained to keep the population size constant if we are
to think of each child as having two parents then one of the parents must die at birth. Suppose the clock
corresponding to pi, kq rings. We take the individuals i and k to be parents. The parent i dies and the
child is born with the type of the other parent, k.

Fleming and Viot (1979) proposed a rescaling in which one keeps the rate at which individuals mutate
and resample constant but allows the number of individuals to tend to 8. As we have already noted,
they were interested in the frequency of genetic types rather than absolute numbers. In mathemetical
terms this means they were interested in the empirical distribution of the limiting model.

8



Definition 1.2.2 If W � pWiqNi�1 is a collection of K valued random variables then define the empirical
measure of W to be

EW � 1

N

Ņ

i�1

δWi .

If pWiptqq is a particle system write EW ptq for the PpKq valued process of the empirical measure of W ptq.

Definition 1.2.3 (Fleming-Viot process) The Fleming-Viot process is the (unique) limit of the pro-

cesses EY
N ptq as N Ñ8. The limit is taken in the weak topology on the space PpDPpKqr0,8qq.

Definition 1.2.3 does not include the precise technical requirements for the Fleming-Viot process to
exist. Fleming and Viot (1979) obtain the same process from a different sequence of prelimiting models
in which the mutation process was taken to be Brownian motion. Note also that Definition 1.2.3 is
different to that found in Chapter 1 of Etheridge (2000) (which in turn is that of Section 5 of (Dawson
and Hochberg, 1982)) since we wish to allow ourselves a general type space. In Etheridge (2000) K is
taken to be Zd and the mutation process (L) is taken to be the simple random walk. This corresponds to
using the stepwise mutation model of Kimura (1953) in place of Definition 1.2.1. Then in addition to the
rescaling involved in Definition 1.2.3, space and time is rescaled in such a way as one recovers Brownian
mutation in the limit. The limit is then a PpRdq valued process. To obtain the same limiting process
via Definition 1.2.3 one simply takes H � 1

2∆ as the generator for Brownian motion in K � Rd.

Remark 1.2.4 The Fleming-Viot process has been shown to be a diffusion approximation to many of the
classical population models. For example, Section 3 of Ethier and Kurtz (1993) obtains the Fleming Viot
process as a limit of rescaled Wright-Fisher models. We will not discuss results of this type.

In Fleming and Viot (1979) the Fleming-Viot process is characterized by a generator type martingale
problem whereas in Etheridge (2000) it is characterised by a superprocess type martingale problem3. In
both of these formulations existence is proved as a limit of particle systems and uniqueness of the process
is proved with duality.

1.2.2 Kingman’s coalescent

For the duration of this subsection let us suppose H � 0. In other words no mutation occurs and the
Moran models of Definition 1.2.1 change state only at resampling events.

Let PN be the space of partitions of N and PN be the space of partitions of t1, . . . , Nu. We will usually
drop any brackets around a singleton when write down a partition as a set, for example t1, p2, 3q, 4u would
be the same partition as tp1q, p2, 3q, p4qu. In words we say this partition has blocks p1q, p2, 3q and p4q and
that p2, 3q was the coagulation of p2q and p3q.

For the moment suppose we fix some (deterministic) time T P p0,8q and finite N P N. We are
interested in the genealogy of an N -particle Moran model, that is we are interested in viewing the
process backwards in time and recording precisely which individuals were born of which parents and
when. Over time it is clear that this defines a binary tree where forwards in time we see branching and
backwards in time we see coalescing.

Let us suppose we are looking at a Moran model at time t and we see n individuals (or lineages)
which we label t1, . . . , nu. Then, looking backwards in time, for each pair pi, jq at rate 1 the lineages
corresponding to i and j coalesce (at rate 1{2 i gave birth to j and at rate 1{2 j gave birth to i). We
then are down to considering only n� 1 lineages.

Definition 1.2.5 (n-lineage Kingman’s coalescent) Define a PN valued process κt as follows. Ini-
tially π0 � t1, . . . , Nu. Then specify the evolution as follows.

3A generator type martingale problem is the well known fpXtq �
³t
0 Lf pXsqds type, the theory of which is developed

in Ethier and Kurtz (1986). A superprocess type martingale problem is, as one might expect, the form usually used to
characterise superprocesses. An example of this type (the martingale problem for super-Brownian motion) is given as
Definition 4.1.5 in Chapter 4, and a discussion of how to relate it to the superprocess can be found in Section 4.1.4
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• Enumerate the blocks of κt currently in existence as t1, . . . ,mu. To each pair of blocks pi, jq currently
alive associate an exponential clock of rate 1. When the clock for the pair pi, jq rings coagulate the
blocks labelled i and j, obtaining a partition with m � 1 blocks. Relabel the blocks t1, . . . ,m � 1u
and repeat.

• In between jumps causing coagulation as above the process is constant (recall H � 0).

Note that by looking at the lineages of only a subset of m particles in the n particle Moran model
we obtain a Kingman coalescent with m lineages embedded inside one for n lineages. This observation
suggests that we take a projective limit of the n-lineage Kingman coalescent as nÑ8. We will refer to
the projective limit as Kingman’s coalescent and we characterize it as follows.

Theorem 1.2.6 (Kingman (1982)) There is a PN valued process Kt with initial value N (i.e. the
partition of N into singletons) such that for any finite subset A of N the lineages back from A are well
defined and constitute a |A|-lineage Kingman coalescent.

Since the n-lineage coalescent describes the genealogy of the pre-limiting Moran models we naturally
expect Kingman’s coalescent to describe a particle system carrying the Fleming-Viot process as it’s
empirical measure. Finding a way to formally express this (without going via the pre-limiting processes)
is not trivial and will be the subject of our next section. Note that, in contrast to Kingman’s coalescent,
we cannot readily embed an N -particle Moran model inside an pN � 1q-particle Moran model.

1.2.3 The lookdown process

Donnelly and Kurtz (1996) were concerned with constructing the Fleming-Viot process in such a way as
keeps track of the genealogy in the measure valued limit. They did so via a particle system known as the
lookdown process. In many ways the lookdown process resembles a Moran model but it contains more
structure. Since the original (1996) paper the lookdown construction has been greatly extended to very
general settings (see Donnelly and Kurtz (1999a), Donnelly and Kurtz (1999b) and Birkner et al. (2009)
for example).

We have already described the Moran model in Definition 1.2.1. Following Donnelly and Kurtz (1996),
we will define the particle system which is now known as the (first version of the) lookdown process and
show that the limit of its empirical measures is the Fleming-Viot process. We conclude the chapter by
using the lookdown process to describe the genealogy of the Fleming-Viot process.

Definition 1.2.7 (The (Original) Lookdown Process.) We construct a branching system of parti-
cles moving around in S. This system will have countably many particles which we will think of as ranked
into levels labelled according to N. At all times each level i P N contains exactly one particle. The
evolution is as follows.

• In between jumps, each particle moves around K according to the process H, independently of the
other particles.

• Each pair pi, jq of levels such that i   j carries an exponential clock of rate 1. When the clock rings
the particle at level j ‘looks down’ on level i; which means the particle in level j at time t� dies and
is instantaneously replaced by a new particle with the same type as its parent in i at t�.

Let Xiptq denote the type of the particle at the ith level at time t.

The idea of the lookdown process is as follows. If one starts both the Moran model and the lookdown
process from the same initial configuration Y p0q � Xp0q and this configuration is exchangeable then for
all time the first N particles of the lookdown process will have the same empirical measure as those of
the N particle Moran model. Let us state this as a theorem.

Theorem 1.2.8 Let pXip0qqiPN be an exchangeable sequence of S valued random variables. Fix N P N
and let Y � pYiqNi�1 be the Moran model with initial configuration Yip0q � Xip0q. Let X � pXiqiPN be the
lookdown process started from Xp0q. Then

EXptq is equal in disitribution to EY ptq
for all t ¥ 0.
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Sketch of Proof: Let us start from X and use it to drive a third particle system W . W will contain
N particles and be a stochastic reordering of pXiqNi�1. That is for all t ¥ 0 there will exist a permutation
τ of t1, . . . , Nu such that pXiptqq � pWτtpiqptqq. We will then argue that W is a process with the same
distribution as Y , from which the result follows.

To be precise, let Wip0q � Xip0q and define the permpNq valued process σt as follows. When (in the
process X) j ¤ N looks down on i we sample an independent Bernoulli random variable with success
probability 1{2 and on a success we exchange i and j. That is, if j ¤ N looks down on i at time T , with
probability 1{2 we do nothing and with probability 1{2 set σT � σT� � πij where πij P permpNq is the
permutation exchanging i and j. Define Wiptq � Xσtpiqptq for all t ¡ 0.

We now argue that W is a Moran model in the sense of Definition 1.2.1. Clearly in between jump
times W has the correct evolution. Let T be a jump time of X, and let us examine the ways in which
pairs of particles Wi and Wj could change type. Without loss of generality consider i   j. Clearly Wi

and Wj can only be a pair involved in the same reproduction event if it is the clock for pi, jq which rang
in the process X, so suppose this happens at time T . In that case, with probability 1{2 (a failure) we set
WjpT q � WipT�q and leave Wi unchanged, and with probability 1{2 (a success) we do the same thing
with i and j swapped; That is we set WipT q � WjpT�q and leave Wt unchanged. Thus we see that
at rate 1{2 (the particle at) j takes on the type of i and with rate 1{2 i takes on the type of j. This
completes the argument. �

With rather more formal notation, Theorem 2.1 of Donnelly and Kurtz (1996) also shows that for
each t, σt and Y ptq are independent, whence it follows that X has an exchangeable distribution for all
time. We will not prove this but it is certainly something one would expect; Suppose we knew the global
distribution of initial types but not their positions, and let us run the lookdown process. Then (ignoring
mutation) and tracking the types of individuals, exchangeability implies that any pair of types (descended
from the initial state) are equally likely to be ordered above/below one another, so providing we start in
an exchangeable state it would be equally likely for any one type in the pair to be looking down on the
other. The lookdown mechanism of reproduction thus generates one exchangeable state from another.

Theorem 1.2.9 Providing the initial distribution X0 is exchangeable, the empirical measure of X given
by

EXptq � lim
NÑ8

1

N

Ņ

i�1

δXiptq

exists and is the Fleming-Viot process.

Proof: This follows from Theorem 1.2.8 and the fact the Fleming-Viot process is obtained as a limit
of Moran models in Definition 1.2.3. �

Let us briefly set H � 0 again and observe that if we look at the first n particles of the lookdown
process backwards in time, their genealogy is precisely that of an n-particle Kingman coalescent. Note
also that the evolution backwards in time of these first n particles is not affected by the particles in
levels j ¡ n. Thus Theorem 1.2.9 tells us that providing X0 is exchangeabe Kingman’s coalescent is the
genealogy of the Fleming-Viot process. We can also view the genealogy of the lookdown process as a
spine decomposition of the Fleming-Viot process; note that the particle in level 0 does not change type.

We conclude this subsection by obtaining a representation for the generator of the Fleming-Viot
process in its particle form. Fix m P N. For f P BpKmq write

rHf � m̧

i�1

Hif

where Hif denotes H applied to f as a function only of its ith coordinate. Define Ff : PpKq Ñ R by

Ff pµq � xf, µbmy
where µbm is the m-fold product measure of µ and xg, κy denotes integration of g with respect to κ.
Then the generator A : CpPpKqq Ñ CpPpKqq of the Fleming Viot process is characterized by

AFf pµq � x rHf, µbmy � ¸
1¤i j¤m

�
xΦijf, µbpm�1qy � xf, µbmy

	
(1.2.1)
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where Φij : BpKmq Ñ BpKm�1q corresponds to setting the i and jth coordinates of f equal and renum-
bering the coordinates (so for example for fpx1, x2, x3q, Φ12fpx1, x2q � fpx1, x1, x2q and Φ13fpx1, x2q �
fpx1, x2, x1q).

The first term on the right hand side of (1.2.1) corresponds to mutation and the second term corre-
sponds to resampling.

1.3 The generalized Fleming-Viot process

A framework for studying general exchangeable coalescents on N was provided in Bertoin and Le Gall
(2003) where it was shown that all such coalescents can be represented with coagulation driven by a
suitable Poisson point process. Building on ideas from Kingman (1982) and Kallenberg (1973) they were
able to show that all exchangeable Λ-coalescents on N could be represented in this way. The duality
between the Λ-Fleming-Viot process and Λ-coalescents was first proven in Bertoin and Le Gall (2003)
(although it was implicit in the earlier modified lookdown construction from Donnelly and Kurtz (1999b)).

In this section we give an outline of some results from Bertoin and Le Gall (2003). We discuss general
exchangeable coalescents before specializing our treatment to Λ-coalescents in Section 1.3.2.

1.3.1 Exchangeable coalescents on N
Definition 1.3.1 An exchangeable coalescent pπtqt¥0 on N with initial state η is a PN valued process
such that πo � η and

• For all t ¥ 0, b P η implies there is some b1 P πt such that b � b1.

• For all t ¥ 0, πt is an exchangeable partition of N.

Central to the methods of Bertoin and Le Gall (2003) is the idea of an (exchangeable) bridge, which
originated in Kallenberg (1973).

Definition 1.3.2 A bridge B is a DRr0, 1s valued random variable such that

1. With probability one, Bp0q � 0, Bp1q � 1 and B is both right continuous and non-decreasing.

2. r ÞÑ Bprq has exchangeable increments.

Results in Kallenberg (1973) show that every bridge is equal in distribution to a Cpr0, 1sq valued random
variable of the form

B̂prq � β0r �
8̧

i�1

βi1tUi ¤ ru (1.3.1)

where βi are r0, 1s valued random variables such that βi ¥ βi�1 for i P N, P
�°8

i�0 βi � 1
� � 1 and pUiqiPN

are i.i.d. uniform random variables (on r0, 1s).
We will shortly establish a correspondence between bridges and exchangeable partitions of N. We will

then define what it means to coagulate partitions (this corresponds to blocks combining together) and
represent it in terms of bridges. We finish this section with a theorem to the effect that any exchangeable
coalescent on N can be represented in terms of composition (as functions) of bridges.

Definition 1.3.3 For each π P PN define an equivalence relation i
π� j ô Db P π such that i, j P b.

Theorem 1.3.4 (The ‘paintbox scheme’ of Kingman (1982)) Let B be a bridge and let B�1 de-
note the (right continuous) inverse of B. Let pViqiPN be a sequence of i.i.d. uniform random variables on
r0, 1s and define a PN valued random variable π by

i
π� j ô B�1pViq � B�1pVjq

Then π is an exchangeable partition of N. Further, (a random variable with the distribution of) any
exchangeable partition of N can be constructed this way.
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Sketch of Proof: The first statement, the forwards direction, of Theorem 1.3.4 is easy enough to
understand. The sections of B which are linear give rise to the singletons and the jumps give rise to
infinite blocks. Note that we do not obtain finite blocks with more than one element. The reverse
direction is slightly harder to understand. If π P PN then the asymptotic frequency of b P π is defined by

|b| � lim
nÑ8

#pbX t1, 2, . . . , nuq
n

,

provided the limit exists. It can be shown that every exchangeable partition of N is made up of blocks with
asymptotic frequencies. Given some exchangeable partition π of N the asymptotic frequencies of b P π,
reordered in order of decreasing size, are taken as the pβiqiPN in (1.3.1) and one sets β0 � 1�°

iPN βi. It
is a fact that the only finite blocks of an exchangeable partition are singletons. It is now apparent that
the construction of in the statement of this theorem produces a partition with the law of π. �

Thus we have a correspondence between (the laws of) bridges and (the laws of) exchangeable partitions
of N. Let us refer to the partition constructed from B by Theorem 1.3.4 as πpBq.

Definition 1.3.5 Let π, π1 P PN. The coagulation of π by π1 is coagpπ, π1q P PN defined as follows. Write
π � tbi ; i P Nu where the blocks bi are ranked in order of their smallest element. Then set

coagpπ, π1q �
#¤
iPc
bi ; c P π1

+
.

Thus, π1 acts as a set of instructions for which blocks of π we coagulate. An obvious question is to
ask what coagulation means in terms of bridges. The answer is as follows.

Lemma 1.3.6 Let B and B1 be independent bridges. Then coagpπpBq, πpB1qq is an exchangeable parti-
tion of N with the same distribution as πpB �B1q.

The coagulation of one exchangeable partition by another is exchangeable.

One of the main results of Bertoin and Le Gall (2003) (which they state as Theorem 1) was establishing
the following theorem, relating flows of bridges to exchangeable coalescents.

Definition 1.3.7 A flow of bridges is a collection tBs,t ; �8   s ¤ t   8u of bridges such that

1. For every s   t   u, Bs,u � Bs,t �Bt,u.

2. The law of Bs,t depends only on t� s.

3. For s1   s2   � � �   sn, the random variables Bs1,s2 , Bs2,s3 , . . . , Bsn�1,sn are independent.

4. B0,0 is the identity function and and B0,t Ñ B0,0 in probability as tÑ 0.

Theorem 1.3.8 (Bertoin and Le Gall (2003)) Let Bs,t be a flow of bridges. Then pπpB0,tqqt¥0 is
an exchangeable coalescent on N starting from the partition of N into singletons. Further pπtqt¥0 has a
time homogeneous Markov semigroup and is stochastically continuous.

Conversely, if pπtqt¥0 is a stochastically continuous exchangeable coalescent on N with a (time homo-
geneous) Markov semigroup, there is a flow of bridges tBs,t ; �8   s ¤ t   8u such that pπpB0,tqqt¥0

and pπtqt¥0 have the same finite dimensional distributions.

1.3.2 The Λ-Fleming-Viot process and Λ-coalescents

As yet, there is nothing to say the coalescent πpB0,tq constructed from Theorem 1.3.8 is a Λ-coalescent.
From Lemma 1.3.6 we see that whether or not πpB0,tq is a Λ-coalescent is related to whether or not the
bridges feature multiple discontinuities.

For u, x P r0, 1s define B P Cpr0, 1sq by

bu,xprq � p1� xqr � x1tu ¤ ru (1.3.2)
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and note that if U is a uniform random variable on r0, 1s, BU,xprq is a bridge. In fact we can take this idea
much further. Let M be a Poisson point process with points pt, x, uq P R � p0, 1q � p0, 1s with intensity
dtbdxbνpduq where ν is a finite measure on p0, 1s. Then the atoms of M are almost surely countable and
without limit points so we may enumerate them ordered by their time coordinate ti P R as pti, xi, uiqiPZ.
For the remainder of this section we consider the flow

BMs,t � bxj ,uj � bxj�1,uj�1
� � � � � bxk,uk

where tj�1   s ¤ tj ¤ � � � ¤ tk ¤ t   tk�1. The following result is easy to prove.

Lemma 1.3.9 tBMs,t ; �8   s ¤ t   8u is a flow of bridges.

Let us describe the evolution of the resulting coalescent Πt � πpBM0,tq. Clearly t is a jump time for Πt

only if there is a point of M in ttu � p0, 1q � p0, 1s, and Πt is constant in between its jump times. The
jump times occur at rate νpp0, 1sq and at each jump u is independently distribution uniformly on r0, 1s.

Now let us say t is such a jump time corresponding to pt, x, uq P Λ and thus Πt� � πpBM0,t�q denotes
the state of the coalescent immediately preceding the jump. Enumerate the blocks of Πt� as pbiqiPN,
ranked in order of their smallest elements and associate an independent uniform r0, 1s random variable
Vi to each block. Then to obtain Πt we must coagulate together all blocks for which b�1

x,upUiq � b�1
x,upUjq.

From the form of bx,u this means precisely those blocks for which

p1� xqu ¤ Ui   p1� xqu� x

are coagulated into a single block, and all other blocks remain unchanged. Thus Πt is a Λ-coalescent.
By exchangability (in particular, by Lemma 2 of Bertoin and Le Gall (2003)) we can reformulate this

as follows; Label the blocks of Πt� as pbiqiPN (the order does not matter) and to each block associate
an independent Bernoulli random variable ξi with success probability x. Coagulate all blocks for which
ξi � 1 into a single block and leave all the blocks for which ξi � 0 unchanged.

Let us now look at time in the other direction.

Definition 1.3.10 We define the dual flow of BMs,t to be B̂Ms,t � BM�t,�s.

Note that B̂M is not quite a flow of bridges. Since B̂M travels in reversed time one has B̂t,u�B̂Ms,t � B̂Ms,u
for s   t   u, but all other properties a flow of bridges are carried over from BM .

Definition 1.3.11 Define a Ppr0, 1sq process ρt by

ρtpr0, ysq � B̂M0,tpyq
(and extension from the algebra generated by tr0, ys ; y P r0, 1su to the Borel sets of r0, 1s).

We will shortly see why it is natural to view ρt as a generalised version of the Fleming-Viot process and
we will adopt the terminology of Etheridge et al. (2010) in calling the family of processes obtained from
Definition 1.3.11 Λ-Fleming-Viot processes. Let us first make the important observation that, strictly
speaking, ρt is a measure valued process and not a branching process. By looking at the mechanism by
which the composition of bridges controls the coagulation of r0, 1s we see that ρtpAq is the mass of the
descendants of the set A � r0, 1s at time t. Having realised this is it natural to think of ρt as corresponding
to a branching process and hope for a duality relationship between πt and ρt. As we have commented,
flows of bridges are jump processes. It is straightforward to deduce that ρt is also a jump process and
hence has càdlàg version, which we will work with from now on.

From the definition of the flow BMs,t we get the following evolution for ρt.

• Reproduction events occur at rate νpp0, 1sq and in between reproduction events the process ρt is
constant.

• At a reproduction event we sample an independent random variable U according to νp�q{νpp0, 1sq
and an independent random variable X with law ρt. The change is given by

ρt � p1� Uqρt� � UδX . (1.3.3)
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That is, a parent type X is sampled according of the distribution of the current population and a random
proportion U , with law ν, of the population are replaced with that type. The individuals alive at time t
are reduced in number through a factor p1� Uq.

In this formulation ρt looks similar to the Fleming Viot process of Section 1.2, but with multiple
branching instead of reproduction events producing a single individual. It is also in this form that we
will eventually see the clearest connection to the SΛFV process. Note the strong similarity between ρt
and the process tracking the total mass of a single type in Example 1.1.1.

From our description of the evolution of ρt and the standard theory of Markov process it follows that
the generator of ρt is given by the bounded linear operator G : CpPpr0, 1sqq Ñ CpPpr0, 1sqq defined by

Gφpρq �
» 1

0

ρpdkq
» 1

0

νpduq �φ�p1� uqρ� uδk
�� φpρq� (1.3.4)

and that the process is characterised as the solution to the following martingale problem.

Definition 1.3.12 The generalised Fleming Viot process is the unique càdlàg Ppr0, 1sq valued process
such that for all φ P CpPpr0, 1sqq,

φpρq �
» t

0

dsGφpρsq

is a martingale.

Remark 1.3.13 Expressions corresponding to the generators of jump processes should be interpreted as
follows. The integrals at the start of the expression are selecting a reproduction event and the integrand
is the change exacted by that reproduction event seen through the eyes of the test function. The mass
involved in the measures for the integrals corresponds to the rate of the different possible reproduction
events.

The first integral in (1.3.4) is selecting a parent type and the second integral is selecting the proportion

of children to be born of that type. The total rate of events is
³1

0
νpduq ³1

0
ρpdkq � νp0, 1q.

We now establish the duality between Πt and ρt. The generator for Πt can be characterised as follows.
Let Pp denote the space of partitions of t1, 2, � � � , pu and write Πp

t for the restriction of Πt to t1, . . . , pu
(obtained by simply deleting the natural numbers ¡ p). Then Πp

t is a Markov process. For ψ : Pp Ñ R
and π P Pn define

G�ψpπq �
¸

J�t1,...,nu,|J|¥2

βn,|J| rψpmJπq � ψpπqs (1.3.5)

where π � tbi ; i � 1, . . . , nu, mJπ denotes π with the blocks corresponding to i P J coagulated and

βn,|J| �
» 1

0

νpdsq s|J|p1� sqn�|J|.

Then G� is the generator of Πp
t . Note that, in keeping with our discussion of how to interpret generators

of jump processes, the summation in (1.3.5) chooses which blocks coagulate, βn,|J| specifies the rates
at which the reproduction events corresponding to coagulating the blocks with indices in J occur, and
ψpmJπq � ψpπq is the resulting change to Πt viewed through the test function ψ.

For each p P N and f P Cpr0, 1spq define Φf : Ppr0, 1sq � Pp Ñ R by

Φf pρ, πq �
»
r0,1sn

ρpdx1q . . . ρpdxnqf pYπpx1, . . . , xnqq

where n � |π| is the number of blocks of π and Yπ is defined by Yπpx1, . . . , xnq � py1, . . . , ypq where
yj � xi if (and only if) i P bj where π � tbj ; j � 1, . . . , pu are the blocks of π ordered by least element.

The duality relationship between Πt and ρt is formally stated as follows.

Lemma 1.3.14 It holds that
GΦf pρ, πq � G�Φf pρ, πq (1.3.6)
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for all p P N, f P Cpr0, 1spq, ρ P Ppr0, 1sq and π P Pp. On the left hand side of (1.3.6) G acts on Φf as
a function of its first coordinate whereas on the right hand side G� acts on Φf as a function of its second
coordinate.

Hence,
E rGΦf pρt,Π0qs � E rG�Φf pρ0,Πtqs (1.3.7)

for all t ¥ 0.

Sketch of Proof: The reader can verify (1.3.6) with straightforward (but messy) algebra and the
second statement follows from (1.3.6) and the theory of martingale problems (e.g. Section 4.4 of Ethier
and Kurtz (1986)). See Lemma 4, Bertoin and Le Gall (2003). �

Equation (1.3.7) expresses the duality between Πt and ρt. Essentially, the mechanism by which Πt

evolves forwards in time can be recovered from looking at how ρt evolves backwards in time (and vice
versa). This is sufficient to obtain uniqueness to the relevant martingale problems.

1.3.3 Infinite rate coalescents

By allowing a more general form for (1.3.2) we can adapt the method of Section 1.3.2 to generate a wider
class of coalescents. See Section 4 of Bertoin and Le Gall (2003) for details. A natural question to ask
is whether or not one can relax the requirement that ν be a finite measure. If ν is infinite then we are
unable to label the atoms of ν in order of time coordinate with the integers, and cannot carry through
the representation of Section 1.3.2. However, if ν is an infinite measure we can approximate it with a
sequence of finite measures and take a limit. We lose the neatness of the representation in the limit but
we are able to construct a large family of infinite rate coalescents.

Remark 1.3.15 Note that the measure ν was constrained to be a measure on p0, 1s instead of the more
natural r0, 1s. In Bertoin and Le Gall (2003) the framework is developed in such a way as when ν is
point mass at t0u one obtains precisely Kingman’s coalescent (of Section 1.2.2). A general exchangeable
coalescent on N can then be viewed as a having an evolution which is a mixture of Kingmans coalescent
and a Ξ-coalescent which corresponds to the dynamics induced by a flow of bridges and a suitable Poisson
point process.

Clearly we cannot allow ν to be any infinite measure and we should ask precisely what the right
condition on ν is for the approximations with a sequence pνnqnPN of finite measures to generate a sequence
of processes with a unique limit point. If existence of the limit process is given, uniqueness can be covered
using the same sort of duality as is exhibited above for the finite rate processes. Thus we are really only
concerned with existence of the limit.

The correct condition (with the flows of bridges as in Section 1.3.2) is that» 1

0

u2νpduq   8. (1.3.8)

Note that νppu0, 1sq   8 for all u0 ¡ 0 but the mass apportioned by ν might blow up around 0. This
reflects a principle which is best known in the context of existence of Lèvy processes; if we fix a threshold
u0 ¡ 0 and look at the rate of events which have a total effect of magnitude above u0 we see it must be
finite. However, the overall rate of events may still be infinite. We will not discuss why the condition
(1.3.8) is precisely the right one but it is essentially a compensation very much in the style of Lèvy
processes. For full details see Pitman (1999).
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Chapter 2

The Spatial Λ-Fleming-Viot Process

In this chapter we give two informal definitions of the SΛFV process. First, in Definition 2.1.1 we give
the most basic formulation and in this context we discuss some important aspects of the process. In
particular, we construct the state space Ξ (which comes from Evans (1998)), give a representation of
the duality in a similar style to Barton et al. (2010b) and discuss the mechanism by which reproduction
events occur at infinite rate. We will then survey the current literature featuring the SΛFV process before
giving own own formulation in Definition 2.3.1. Our formulation will feature selection and we give a brief
description of why duality then fails in Section 2.3.1.

2.1 The SΛFV process (basic form)

Recall K is a compact metric space which for us plays the role of the type space. Let us associate a
PpKq valued process ρtpxq to each x P Rd.

Definition 2.1.1 (Spatial Λ-Fleming-Viot Process, Basic Form) Let Λ be a Poisson point process
with points pt, y, r, uq P r0,8q � Rd � p0,8q � r0, 1s of rate

dtb dy b µpdrqνrpduq
where dt and dy correspond to Lebesgue measure and µpdrqνrpduq corresponds to a measure on p0,8q �
r0, 1s such that such that for each r, νr P Ppr0, 1sq and»

p0,8q�r0,1s
urdµpdrqνrpduq   8. (2.1.1)

From some initial state ρ0 the evolution is specified by

• Whenever pt, y, r, uq P Λ, sample k according to ρt�pyq. Set

ρtpxq � p1� uqρt�pxq � uδk (2.1.2)

for all x P Brpyq.
• For each x P Rd, in between the jump times caused by reproduction events (as above) the process
ρtpxq is constant.

We refer to pt, x, r, uq as a reproduction event occurring at time t about y with radius r and killing
proportion u. We refer to y as the parent site and k or δk as the parent type.

It can be seen from (2.1.1) that we are allowing choices for µ and νr such that any open set A � Rd is
hit (by which we mean intersected) by reproduction events at infinite rate. In fact, we even allow some
µ, νr such that points are hit at infinite rate. We will discuss this in Sections 2.1.2 and 2.1.3.

Infinite rate occurrences cause a potential problem in defining the process. The result is that for any
time t P r0,8q we can only define ρtpxq for almost all x P Rd. It is not known if the exceptional set
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of points can be taken independent of time, or even if it needs to be non-empty. We will not formulate
proper existence/uniqueness theorems for the SΛFV process until Chapter 3, but we will informally
discuss existence and (2.1.1) in Section 2.1.3.

Remark 2.1.2 We stress that the measure Λ is not intended to correspond to the measure Λ involved in
specifying a Λ-coalescent in the formulation of Pitman (1999). However they do share the characteristic
that they control the mechanism of reproduction events, which explains our choice of notation.

Remark 2.1.3 Most authors do not take the parent type to sampled from the measure at the center of
the reproduction event. Our concern for the moment is to discuss the basic features of the process, and
to do so Definition 2.1.1 will be quite adequate. See 2.1.4 for possible generalizations of Definition 2.1.1.
In Section 2.2 we review the literature to date on the SΛFV process.

The measure ρtpxq should be thought of as representing the local distribution of genetic types. The
process is not concerned with the quantity of individuals present in a spatial location, only the relative
frequencies of their genetic types. Until further notice (which means, up until Definition 2.3.1) we refer
to the process characterised by Definition 2.1.1 as the SΛFV process. We will eventually give a more
general definition; this chapter is concerned with understanding the process and for that Definition 2.1.1
will be quite sufficient.

The SΛFV process is a much generalized version of Example 1.1.1. To see this, take νi � δt1u and
start from a state where for each x there is some kx such that ρ0pxq � δkx . Then it is natural to think
of the process as associating a single type to each point and represent the process as a random function
mapping each point to a type rather than a probability measure on the type space. We refer to the case
νi � δt1u as total killing. We will study this special case in Chapter 4.

Note also the similarity between (2.1.2) and (1.3.3). From this relationship we see that the Definition
2.1.1 is a natural spatial version of the Λ-Fleming-Viot process. In Subsection 2.1.2 we will describe the
dual process associated to the SΛFV process and this will be reminiscent of the duality seen in Theorem
1.3.7.

2.1.1 The state space Ξ

In this section we set up the state space for the SΛFV process and characterise its topology. The results
of this section are essentially due to Evans (1998). We will relegate all the proofs of results in this Section
to Appendix A.

We do not yet have a clear idea of what it means to be an individual in the SΛFV process, but for
now let us tacitly assume these individuals will live in Rd, each individual will have a single genetic type
and the types of individuals will be drawn from the compact metric space K. Equip MF pKq, the space
of finite signed measures on K, with the total variation norm || � ||TV . Since K is compact this induces
the weak topology on MF pKq.

Let

L8pRd,MF pKqq �
 
ρ : Rd ÑMF pKq ; ρ is measurable and esssup

 ||ρpxq||TV ; x P Rd
(   8(

.

Then L8pRd,MF pKqq is a vector space with seminorm

||ρ|| � esssup
 ||ρpxq||TV ; x P Rd

(
. (2.1.3)

We set
ρ1 �1 ρ2 iff tx P Rd ; ρ1pxq � ρ2pxqu is Lebesgue null,

and define L8pRd,MF pKqq to be the quotient of L8pRd,MF pKqq under the equivalence relation �1.
Then L8pRd,PpKqq is a Banach space. Let rρs�1

denote the equivalence class of ρ under �1.

Definition 2.1.4 Define

Ξ �  rρs�1
P L8pRd,PpKqq ; for almost all x P Rd, ρpxq P PpKq(

and note this is both well defined and a norm-closed subspace of L8pRd,PpKqq.
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The space Ξ is the state space of the SΛFV process, but with a different topology to the subspace
topology inherited from L8pRd,MF pKqq. We characterise the topology on Ξ in Proposition 2.1.7. We
will abuse notation in the standard fashion by writing ρ P Ξ instead of rρs�1 P Ξ.

Our test functions will be as follows.

Definition 2.1.5 We say Φ : pRdqn Ñ CpKnq is of the form p�, nq if it may be written as

pΦpzqq pk1, . . . , knq � ψpzq
n¹
i�1

χipkiq

where ψ : Rd Ñ R is continuous with compact support, and χi P CpKq. We say Φ is of the form p�q if Φ
is constant or Φ is of the form p�, nq for some n P N.

Remark 2.1.6 Whenever we say ‘let Φ be of the form p�, nq’ we implicitly associate the functions ψ and
χ to such Φ.

Recall our convention for multiplication operators, in particular that pf � gqpx, yq � fpxqgpyq and b
denotes product measure. For any n P N and Φ : pRdqn Ñ CpKnq such that

³
pRdqn ||Φpxq||8dx   8 we

define Inp� ; Φq : Ξ Ñ R by

Inpρ; Φq �
»
pRdqn

C
Φpx1, . . . , xnq,

nâ
j�1

ρpxjq
G
dx1 . . . dxn.

where x�, �y denotes integration over Kn. If Φ has the form p�, nq then this becomes

Inpρ; Φq �
»
pRdqn

ψpx1, . . . , xnq
C

n¡
j�1

χj ,
nâ
j�1

ρpxjq
G
dx1, . . . , xn.

Let
I � lin tInp�; Φq ; Φ is of the form p�qu .

Proposition 2.1.7 (mostly Evans (1998)) There exists a metric r for Ξ such that

1. pΞ, rq is a compact, complete, separable metric space.

2. I is a dense subset of CpΞq.
3. I is both a separating and convergence determining class of CpΞq.
4. If ρm, ρ P Ξ, then rpρm, ρq Ñ 0 if and only if for all ψ : Rd Ñ R continuous with compact support

and χ P CpKq, »
Rd
ψpxq xχ, ρmpxqy dxÑ

»
Rd
ψpxq xχ, ρpxqy dx.

Proof: See Appendix A. �

From this point on, we use the topology on Ξ induced by r. In general this topology is not the topology
induced by (2.1.3). The topological properties of Ξ given by Proposition 2.1.7 make it a convenient space
to work with.

The topology on Ξ is also natural from the point of view of biological sampling. Consider the test
function; first one chooses some n P N corresponding to how many sites one wants to consider sampling
at once. Then choose ψ : Rd Ñ R integrable and χj : K Ñ R measurable and bounded. The function

ρ ÞÑ
»
pRdqn

ψpx1, . . . , xnq
C

n¡
j�1

χj ,
nâ
j�1

ρpxjq
G
dx1 . . . dxn

tells us the amount of n-tuplets of Rd (i.e. pxjqnj�1 P pRdqnq which in state ρ have the genetic types

weighted according to χj (for the type of the jth individual) and ψ (for locations). With these test
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functions one can extract complete information about the distribution of genetic types in any non-null1

spatial region.
For biological reasons one wants such functions to be continuous on the state space, whereas from an

analytic point of view one wants fewer open sets (since this is what leads to simpler topological structure
and easier definition of probability measures etc.). Proposition 2.1.7 says that with Ξ and I we have
achieved the best of both worlds.

Remark 2.1.8 Using the space Ξ gives us a weak formulation of the process with regards to genetic type
but a strong formulation with regards to location. By a ’weak formulation’ we mean that we lose track of
individuals and can only obtain information about them through looking at large subsets of them via the
measures ρtpxq. However, we maintain precise knowledge of which types exist where in Rd.

2.1.2 Duality

In Example 1.1.1 it was easy to identify what it meant to be an individual and correspondingly we
could define an ancestral lineage. In Definition 2.1.1 it is not immediately clear what one should call
an individual. The rate at which a single point x P Rr is hit by reproduction events in the process of
Definition 2.1.1 is (up to a constant corresponding to the volume of a d dimensional unit ball)» 8

0

rdµpdrq (2.1.4)

which is potentially infinite, even if (2.1.1) holds. However, a point x is associated to a probability
measure ρtpxq on K which corresponds to the local distribution of genetic types. The interpretation is as
follows; At each site x we have a local neighbourhood containing uncountably many individuals indexed
by r0, 1s. The measure ρtpxq specifies the distribution of types of these individuals. Each individual
has a single genetic type. At each reproduction event pt, y, r, uq a parent type individual whose type is
the variable k is sampled from ρt�pyq. The variable u specifies what proportion of the individuals at
x (for x P Brpxq) are replaced by the parent type k. Note that each genetic type present in the local
neighbourhood represented by ρt is replaced to an equal extent.

In this notional formulation (terminology which we use for the remainder of this section), individuals
have a single genetic type and are born/killed at finite rate. In this notional world there are uncountably
many individuals associated to each site (and there are uncountable many sites). It is sensible to expect
that existence of the SΛFV process is a delicate question.

The notional formulation suggests a way to just define what it means to be an ancestral lineage.
The relationship between the dual process and the SΛFV process will then be expressed as a functional
identity as in (1.3.7), instead of embedding the lineages directly into the forwards in time model.

Definition 2.1.9 (A dual to the basic SΛFV process) Let Π be a Poisson point process with points
pt, x, rq P r0,8q � Rd � p0,8q � r0, 1s of rate

dtb dxb µpdrqνrpduq.
Fix N P N. We will define a system of N particles (which we refer to as lineages) moving around Rd.
Let Bnt denote the position of the nth lineage at time t ¥. We will also need a process �t, taking values
in the equivalence relations on t1, . . . , Nu. Fix some initial state pBn0 qNn�1 P Rd and define the evolution
as follows.

• If pt, x, r, uq P Π, let A denote the set of equivalence classes of �t�. For each a P A, write Bat � Ba0t
where a0 P a, and note this does not depend on the choice of a0 P a.

For each a P A, if Bat� P Brpyq then, independently of all else, sample a Bernoulli random variable
with success probability u and on a success set Bnt � y for all n P a. Coalesce the blocks a P A
which saw a success to obtain �t from �t�. On a failure do nothing.

• In between reproduction events causing jumps as above, the lineages do not move and t ÞÑ�t is
constant.

1By this we mean, of positive Lebesgue measure.
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The first thing to observe is the effect of the equivalence relations, which keep track of blocks of
coalesced lineages. If at any point in time two lineages Bmt and Bnt are involved in the same reproduction
event (i.e. the Bernoulli random variable described above is sampled for the relevant blocks and is a
success in each case), they coalesce and remain together for all further time. Having realized that, in
order to understand Definition 2.1.9 one needs only to understand the motion of a single lineage. If the
lineage B is at the point Bt� � x and is hit by a reproduction event pt, y, r, uq, which means x P Brpyq,
then with probability 1�u the lineage stays put and with probability u it moves to z sampled uniformly
from within Brpyq.

Since µpdrqνrpduq is potentially an infinite measure we must check that (2.1.1) implies the system in
Definition 2.1.9 is well defined. First note that if two lineages are at separation z P Rdzt0u then they
coalesce at rate »

Rd

» 8

0

» 1

0

1t0, z P Brpyquy2 νrpduqµpdrqdy. (2.1.5)

Performing the integration with respect to y and using the bound Lrp0, zq ¤ Cdr
d where Lrpx, yq denotes

the volume of Brpxq XBrpyq and Cd is the volume of a d dimensional unit ball we get

(2.1.5) ¤ Cd

» 8

0

» 1

0

u2rd νrpduqµpdrq.

Since u2 ¤ u the condition (2.1.1) is more than sufficient to guarantee (2.1.5) is finite. A similar calculation
can be done for multiple coalescence events.

Secondly, a lineage jumps with increments given by a Poisson point process rΠ with points pt,∆xq P
r0,8q � Rd and intensity

dtb
» 8

0

» 1

0

1t0 P Brpxquuνrpduqµpdrq dx.

Thus a lineage would correspond to a well defined Lèvy process t ÞÑ °
ps,∆xqPrΠ 1ts   tu∆x if»

Rd
p1^ |x|2q

�» 8

0

» 1

0

1t0 P Brpxquuνrpduqµpdrq


dx

was finite. In fact, equation (2.1.1) gives us something much stronger; it says the lineages jump at a finite
rate, in particular»

Rd

» 8

0

» 1

0

1t0 P Brpxquuνrpduqµpdrqdx � Cd

» 8

0

» 1

0

rdu νrpduqµpdrq.

These two checks, whilst not a formal proof, establish beyond reasonable doubt that the dual system is
well defined. We might also suspect that (2.1.1) is in fact too strong. This leads us to our next section,
but first let us record a proper statement of the duality.

Let Bt � pBtpmqqnm�1 be the dual system of Definition 2.1.9 ran for time t from initial state B0.
Define an equivalence relation �t on t1, . . . , nu by n �t m ô Bt�pnq � Bt�pmq. Suppose �t has lptq
equivalence classes and let them be enumerated as At � tat1, . . . , atlptqu. Note Bt�patkq is well defined for

k ¤ lptq. For any bounded measurable F : r0, 1sn Ñ R and ρ P Ξ define Υn by

Υnpρ,Bt;F q �
»
Klptq

F pk1, . . . , klptqq
lptqâ
i�1

ρpBtpatiqqpdkiq.

Let EtB0pmq�xmu denote expectation on the probability space of the n-particle dual system of Definition
2.1.9 with initial state B0pmq � xm for m � 1, . . . , n. Let Eρ0 denote expectation on the probability
space of the basic SΛFV process ρt with initial condition ρ0 P Ξ.

Theorem 2.1.10 The semigroup of the basic SΛFV process is characterized by the relation

Eρ0 rInpρt,Φqs �
»
pRdqn

EtB0pmq�xmu
�
Υn

�
ρ0, Bt; Φpx1, . . . , xnq

��
dx1 . . . dxn

for all Φ of the form p�, nq.
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The above theorem essentially comes out of the construction in Section 4 of Barton et al. (2010b)
(which is really about a very slightly different version of the SΛFV process but the modifications are
trivial). We will discuss the construction of Barton et al. (2010b) in more detail in Section 2.2.

2.1.3 The rate of reproduction

Let us compare (2.1.1) to the corresponding equation (1.3.8) for the Λ-Fleming-Viot process. As we have
already noted a point x P Rd is hit by reproduction events at rate» 8

0

rdµpdrq

which is potentially infinite. One might examine (1.3.8) and (2.1.4) and guess that condition for existence
of the basic SΛFV was »

p0,8q�r0,1s
u2rdµpdrqνrpduq   8. (2.1.6)

instead of (2.1.1). This would certainly be enough to handle the dual process of Definition 2.1.9 but
equation (2.1.6) turns out to be a bad guess. In Section 2.1.2 we saw a notional formulation of the
process in which (2.1.1) corresponds to ancestral lineages jumping at finite rate, obtaining a dual system
of coalescing compound Poisson process. As one might imagine from our discussion in Section 1.3.3,
equation (2.1.6) corresponds to replacing this with a system of coalescing Lèvy processes. We run into
difficulty trying to weave together all the lineages into dynamics driven by a Poisson point process. This
is most easily seen if we attempt to write down the generator of the basic SΛFV process.

Let us do so on the test function I1p�; Φq for some Φ of the form p�, 1q. The dynamics of definition
2.1.1 suggest that the result will be

GI1pρ,Φq �
»
Rd
dy

» 8

0

µpdrq
» 1

0

νrpduq
»
K

ρpyqpdkq
»
Rd
dx�

φpxq1tx P Brpyqqu
�
xχ, p1� uqρpxq � uδky � xχ, ρpxqy

	�
.

Recall our advice in Section 1.3.2 on interpreting the generators of jump processes. The first three
integrals select the parameters py, r, uq of a reproduction event. The integral over K selects a parent
type k according to ρpyq. The remaining pieces are the change the process would experience in the
corresponding reproduction event as seen through the test function Φ. A little rearrangement leads us to

GI1pρ,Φq �
»
Rd
dy

» 8

0

µpdrq
» 1

0

νrpduq
»
Rd
dx

�
φpxq1tx P Brpyqqu

�
xχ, ρpyqy � xχ, ρpxqy

	�
The best bound on the terms in large round brackets is in general 2||χ||8. Since ||φ||1   8 and³

Rd 1tx P Brpyqudy � Cdr
d we see that (2.1.1) is precisely the right bound for GI1 to be well defined. A

similar calculation can be carried out for any I P I .
In the Λ-Fleming-Viot process we took essentially the test function I1 without the spatial component,

but in the generator (1.3.4) we did not encounter a finiteness problem since without space the parent was
selected from ‘the same site’ as it reproduces into.

Remark 2.1.11 We end this section with the comment that it is known (but unpublished) that versions
of the SΛFV exist with a corresponding notional formulation in which the ancestral lineages are infinite
rate pure jump Levy processes. Since the Poisson point process representation breaks down it is not known
how to characterise these processes forwards in time. Very little is known about such processes.

Expressing the SΛFV process as driven by reproduction events taking place in finite regions where each
location is affected equally puts a limitation on the type of interaction between the ancestral lineages. As
a consequence the Poisson point process driven SΛFV cannot support a sufficiently complex dependency
between the ancestral lineages as would be needed for a system of coalescing infinite rate Lèvy processes.
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2.1.4 Generalizations

Some possible generalisations of the basic SΛFV are as follows.

1. The parent location in the reproduction event pt, x, r, uq could be sampled according to some dis-
tribution on Brpxq. We will refer to this general form as non-central parenting. The sampling of
parents as in Definition (2.1.1) we refer to as central parenting and if the parent is selected uniformly
at random from Brpyq we refer to it as uniform parenting.

2. We could vary the shape of the region affected by a reproduction event with parent y and radius r.
We refer to this as reproduction events of varied shape. In this case we would no longer be able to
parametrise the relevant axis of Λ (which is p0,8q Q r) as a radius and would require some indexing
space.

3. Multiple parents z1, . . . , zm could be sampled. Then, sampling ki according to ρt�pziq, we would
have

ρtpxq � p1� u0qρtpxq �
m̧

i�1

uiδki

where Λ is modified so as puiq is sampled with u0 �
°m
i�1 ui as the analogue of (2.1.2).

4. We could allow the killing proportion u to depend on the distance of some affected site from the
parent site.

5. We could introduce spatial motion in between reproduction events.

6. We could incorporate selection so as the type δk chosen to be the parent type affects to what extent
the reproduction event takes place.

7. We could introduce mutation. It would be interesting to let ρtpxq evolve randomly in between jumps
caused by the reproduction events. It is more realistic biologically to have mutation occurring as
part of the reproduction events.

Many other generalizations would be possible, beyond those we list above. With applications in
mind, it is sensible to think of SΛFV processes as a framework rather than a particular process. Our
construction in Chapter 3 (see also Definition 2.3.1) will include a mechanism selecting event shape and
parent location, and will also incorporate selection. We could easily modify the prelimiting particle
systems of Definition 3.2.4 in Chapter 3 to generate an SΛFV process with all of the above modifications.
Doing so would require even more unwieldy formula than those which already appear in Chapter 3, but
would not add significant difficulty to the analysis.

2.2 SΛFV literature

The SΛFV was first introduced in Etheridge (2008) in the form of Definition 2.1.1 but with uniform
parenting. A construction of this version of the SΛFV process on a torus, the only published construction
to date, was given in Barton et al. (2010b).

1. Etheridge (2008) was a survey of models used in modern population genetics. It contains a short
section introducing the SΛFV and a list of suggestions of possible generalizations of the process.

2. Berestycki, Etheridge, and Hutzenthaler (2009) considers a process which is intended to
approximate the SΛFV with only finitely many individuals in any bounded region. In contrast to
most finite population models the individuals in their model exhibit correlated reproduction. The
article is concerned mostly with discussing the long term survival and ergodicity of such models.
Proof that these models really do converge to the SΛFV process is to appear in Etheridge and
Kurtz (In Preparation).
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3. Barton, Etheridge, and Véber (2010b) features the first construction of the SΛFV process,
in the form of Definition 2.1.1 but on a Torus with uniform parenting. Neither of these features is
crucial to their construction, which is an adaptation of Evans (1998) and relies heavily on ancestral
lineage duality. The primary aim of Barton et al. (2010b) is to investigate the asymptotic properties
of the dual. Note that for the case with uniform reproduction a dual can be defined analogously
to our Definition 2.1.9; on a pt, y, r, uq reproduction event sample a parent site uniformly from
Brpyq rather than always taking it to be y. Under different scaling limits they obtain a Kingman
coalescent, a general Λ-coalscent and a system of coalescing Brownian motions with a non-local
coalescence mechanism.

4. Limic, Véber, and Wakolbinger (2010) is work in progess and is intended to provide a lookdown
construction of the SΛFV process. They also give a natural way to express the SΛFV process as a
measure valued process (i.e. a MpRd �K valued process) but using a non-standard topology on
MpRd �Kq induced by a bijection with Ξ.

5. Berestycki, Etheridge, and Véber (2010) is also work in progress and looks at scaling limits of
two versions of the SΛFV process. Firstly, a one dimensional version with a heavy tailed distribution
on the radii of reproduction events. Secondly (and in all dimensions d), a case where the ancestral
lineages are required to have finite variance and are rescaled to Brownian motion. If (in dimensions
d ¥ 2) the initial conditions are suitable sparse, the scaling limit of the SΛFV is a super-Brownian
motion. We will explore this ourselves in Chapter 4. Berestycki et al. (2010) covers the non-sparse
case.

6. Barton, Etheridge, and Kelleher (2010a) is concerned with the biological effects the SΛFV
was designed to model. A simulation package (which is used in the paper) can be found at http:

//homepages.ed.ac.uk/jkellehe/qps.php. They consider a version of the process in R2 where
each reproduction event affects all of Rd, and the proportion u of individuals replaced at a site y is
the value of a Gaussian centred about the parent location.

2.3 Our formulation

Let us first note that the action of the reproduction events in Definition 2.1.1 is homogeneous in both
space and time. Suppose we had non-central parenting in the process of Definition 2.1.1 and suppose
the site x P Rd is a parent site in the reproduction event pt, x, r, uq. We could write down an expression
for the conditional distribution of the area in which the reproduction event occurs. Thus we see that
specifying the distribution by which the parent is chosen inside a reproduction event is really the same
thing as fixing the parent site in the event pt, x, �, uq to always be x and specifying how the shape of the
reproduction events vary. In fact, this second formulation is the more general.

Informally for now, let I be some set and for each i P I let Ei be some open subset of Rd. We then
specify the rate of the different shape events with a measure on i. A reproduction event pt, x, i, uq occurs
in the region x� Ei. We will not require 0 P Ei.

We will also incorporate viability selection. For us this means that in a reproduction event once we
have selected the parent type δk we then carry out a further test in which only we permit the reproduction
event to take place with some probability Spi, kq. We will call this the selection test.

Sampling some parameters of a reproduction event from the Poisson point process and others in a
more informal fashion corresponds formally to using a larger Poisson point process. As we will see in the
next chapter, selecting all the parameters of a reproduction event properly from a Poisson point process
makes for complicated notation. For now let us record a statement of our version of the process in the
informal style of Definition 2.1.1. Again, to ‘each’ point x P Rd we associate a PpKq valued process
ρtpxq.

Definition 2.3.1 (Spatial Λ-Fleming-Viot Process, Our Version) Let pI, Iq be a measure space
and let µpdiqνipduq be a measure on I � r0, 1s such that for each i P I, νi P Ppr0, 1sq. Let E : I Ñ Bd be
some function such that for each i P I, Epiq � Ei is an open set of Rd . Suppose that»

I�r0,1s
uDpiqdµpdiqνipduq   8. (2.3.1)
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where Dpiq � supt|x � y| ; x, y P Eiu is the (maximal) diameter of Ei. Let S : I �K Ñ r0, 1s be some
function. Let Λ be a Poisson point process with points pt, y, i, uq P r0,8q � Rd � I � r0, 1s of intensity

dtb dy b µpdiqνipduq.
From some initial state ρ0 we specify the evolution

• If pt, y, i, uq P Λ then select k according to ρt�pyq. Sample an independent Bernoulli random variable
with success probability Spi, kq. Then, on a success, for each x P y � Ei set

ρtpxq � p1� uqρt�pxq � uδk.

On a failure do nothing.

• In between the jump times caused by reproduction events affecting x which pass the selection test
the process ρtpxq is constant.

We call pt, y, u, iq a reproduction event at time t in the region y � Ei with parent site y, parent type k,
killing proportion u and selection success probability Spi, kq.

As with Definition 2.1.1 there are technicalities to do with the topology on the state space which will
hold us back from giving a formal definition in this chapter. We have additional technicalities to cope
with in Definition 2.3.1 concerning measurability of functions mapping out of I. These issues will be
addressed in Chapter 3.

Note that we have replaced (2.1.1) with (2.3.1). Writing

Cd

» 8

0

» 1

0

urdνrpduqµpdrq �
» 8

0

» 1

0

uLpBrp0qqνrpduqµpdrq

(recall L denotes Lebesgue measure) we expect that the natural analogue of (2.3.1) in the setting with
pI, Eq specifying non-central parenting would be»

I

» 1

0

uLpEiqνipduqµpdiq. (2.3.2)

Whilst this is probably the correct condition, our construction in the following chapter of the process
corresponding to Definition 2.3.1 will require the stronger (2.3.1). Since our construction is the only
construction to date that deals with selection, we stick to stating (2.3.1) (but see Remark 3.1.3). Note
that if the reproduction events are circular and the reproduction is parent centred then (2.3.1) and (2.3.2)
are the same condition. In fact (2.3.1) permits one to construct almost all useful examples of the process.
We will state a proper existence theorem (with other, less important conditions too) as Theorem 3.1.8.

2.3.1 The effect of selection on duality

It is very important that at this point we make a note of the influence of selection on the duality
expressed in Subsection 2.1.2. As a general principle throughout mathematical genetics, selection and
ancestral lineage duality are not happy companions.

The reason for this is that when we are tracing back an ancestral lineage in order to know where to
jump next we need to know how strongly the potential parents were competing to give birth. If this
competition was influenced by genetic type then in order to know the distribution of where to jump we
need to know the distribution of types at a time which (because we are tracing in reverse time) is in the
future. This causes duality relationships to break down. Thus the construction of the SΛFV in Barton
et al. (2010b) is not able to deal with selection.

Remark 2.3.2 Fleming and Viot (1979) and Etheridge (2000) both obtain uniqueness of the Fleming-
Viot process with selection via a Dawson-Girsanov transform of the neutral case. However, Dawson and
Kurtz (1982) gives an example of a Fleming-Viot process with a particular type of selection where a
dual can be found. A tool especially worthy of note in this approach is the modified lookdown process of
Donnelly and Kurtz (1999a) which deals with both selection and mutation.
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Another idea to get around these issues is the ancestral selection graph, introduced in Krone and
Neuhauser (1997). It is known (but unpublished) that a dual exists for the SΛFV process with a particular
type of (biologically reasonable) selection, involving a choice between two potential parents. This duality
corresponds to an ancestral selection graph with random numbers of branches, and we will not describe it
in detail here.

As is well documented in Section 4.4 of Ethier and Kurtz (1986), duality is the major tool for proving
uniqueness to martingale problems. This will cause us trouble in the next section where we deal with
proving existence/uniqueness for our version of the SΛFV process. In this chapter we have studiously
avoided mentioning a martingale problem for the SΛFV process, but we will do so in Chapter 3.
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Chapter 3

A construction of the Spatial
Λ-Fleming-Viot process

In this chapter we give a construction of the SΛFV process defined informally in Definition 2.3.1. We
will characterise the process as the solution to an appropriate generator type martingale problem but we
will only be able to prove uniqueness in the case without selection. As we suggested by calling Definition
2.3.1 ‘our formulation’, existence of this process is a new result. We now switch out of the informal style
of Chapters 1 and 2 to giving fully rigorous proofs of our results. The final section of this chapter is the
subject of ongoing work.

We ask that before beginning this chapter the reader becomes familiar with the construction of the
state space Ξ in Section 2.1.1 and Proposition 2.1.7 which characterizes the topology of Ξ. We will use
the notation from Section 2.1.1 in this Chapter without comment. We ask also that the reader have read
Section 2.3, although we will recall the notation used in our formulation of the SΛFV (Definition 2.3.1)
at the start of Section 3.1.1.

3.1 Introduction

The only published construction of the SΛFV process to date has already been mentioned and can be
found in Barton et al. (2010b). The construction is indirect and relies heavily on ancestral lineage type
duality; as it such cannot be extended to the case with selection. In this chapter we construct the SΛFV
process of Definition 2.3.1 forwards in time, as a limit of discrete particle systems.

Our construction is extremely flexible and could be easily extended to include essentially any super-
position of effects discussed in 2.1.4. It also would be relatively easy to adapt the convergence arguments
in this chapter into showing that the SΛFV process (as a DΞr0,8q valued process) is continuous in both
its initial conditions and its parameters. With regards to the parameters which are measures this would
correspond to the appropriate weak topology.

Whilst the strategy of the proof is simple, the expressions involved in dealing with the SΛFV generators
are unwieldy. We restrict ourselves to only the existence of the SΛFV process of Definition 2.3.1.

3.1.1 Parameters and conditions

We recap the ingredients of Definition 2.3.1. Let pI, I, µq be a measure space equipped with a σ-finite
measure µ. Let E : I Ñ Bd be a function, and let us write Ei � Epiq and

Eipyq � y � Ei � ty � z ; z P Eiu.

Let Epdi, duq � µpdiqνipduq be a σ-finite measure on I � r0, 1s such that the conditional measures νipduq
are probability measures on r0, 1s. Let S : I �K Ñ r0, 1s be a measurable function.

Remark 3.1.1 I is just an index for different shapes of reproduction event and E is the function mapping
the index to the event shapes. The measures µ and νi control the event rate and the killing proportion.
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S specifies which types in K are at a selective advantage. A high value of Spi, kq increases the chance
that a parent of type k has a reproduction event affecting an area of shape Ei. We are consistent with
terminology of Definition 2.3.1; the probability that a a reproduction even corresponding to pt, x, i, uq with
parent type chosen to be k passes the selection test is Spi, kq. If S is constant the process is neutral (i.e.
without selection).

Remark 3.1.2 The same construction as given below is valid if S is also allowed to depend on u.

We intend all the action to take place over some probability space pΩ,F ,Pq which will, for the most
part, remain in the background. As normal, elements of the sample space Ω are denoted by ω.

Let κ be a Ξ valued random variable, which will be our initial state. Recall

Dpiq � supt|x� y| ; x, y P Eiu
is the (maximal) diameter of Ei.

The parameters pI, E, µ, ν, S, κq must satisfy

(H 1) Each Ei is bounded and open.

(H 2) For each x P Rd, iÑ 1tx P Eiu is measurable.

(H 3)
³
I
µpdiq ³1

0
νipduquDpiqd   8.

(H 4) The set  
x P Rd ; Dpxmq � Rd, xm Ñ x and κpxmq Ñ κpxq in MF pKq

(
is almost surely a Lebesgue-null subset of Rd.

Obviously there is something to prove here in that (H 2) guarantees enough measurability for (H 3)
to make sense. We will prove this (and more) in Lemma B.1. We will not make further comment on
matters of I-measurability; All the I-measurability required in what follows can be easily deduced from
Lemma B.1 and the standard algebra of measurable functions. (H 4) is what we require for the natural
sequence of lattice approximations to κ to converge to κ.

Remark 3.1.3 The fact that we require (H 4) is a limitation of the discrete space particle system ap-
proach. It is the regularity one needs to make the appropriate lattice approximation for the initial states.
To get existence (potentially without particle system approximations) the natural condition to expect is
simply κ P Ξ. (H 4) poses little restriction from a biological point of view, since if Rd can be divided into
countably many regions with say, Lipschitz boundary, and on each region xÑ κpxq is continuous, (H 4)
clearly holds.

For our purposes, condition (H 3) could be replaced with the weaker (but unwieldy) condition that for
some β P p0,8q, »

I1

µpdiq
» 1

0

νipduquDpiqd   8 and

»
I2

µpdiq
» 1

0

νipduquLpEiq   8

where I1 � ti P I ; Dpiq   βu and I2 � ti P I ; Dpiq ¥ βu. In other words, it is enough to have the bound
with uLpEiq for the large events but for the small events we must use the stronger uDpiqd.

3.1.2 Results

Definition 3.1.4 Define a linear operator G : I Ñ CpΞq by

GαpInpρ,Φqq �
»
Rd
dy

»
I

µpdiq
» 1

0

νipduq
»
K

ρpyqpdkq
»
pRdqn

dx1, . . . , dxn

Spi, kqψpx1, . . . , xnq
�� ¹
tj ; xjREipyqu

xχj , ρpxjqy
�


�
�� ¹
tj ; jPEipyqu

xχj , p1� uqρpxjq � uδky �
¹

tj ; jPEipyqu
xχj , ρpxjqy

�
,
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and Gpfq � 0 if f P CpΞq is constant.

Note that this is precisely the generator we would expect to correspond to Definition 2.3.1. The first
four integrals select a location y, a shape reproduction event i (in the form of Ei), a killing proportion
u and a parent type k. The term Spi, kq modifies the rate at which reproduction events corresponding
to y, i, u, and k can take place. The remainder of the expression is the change we would expect to see at
such a reproduction event as viewed through the test function Inp�; Φq.

We define the Spatial Λ-Fleming-Viot process to be the solution to the following martingale problem.
We say ‘the’ somewhat tongue in cheek since there is currently no proof of uniqueness in the case with
selection.

Definition 3.1.5 (Martingale Problem for the SΛFV process.) The Spatial Λ-Fleming-Viot pro-
cess with initial distribution κ is the càdlàg Ξ valued process tÑ ρt such that Prρ0 � κs � 1 and

φpρtq �
» t

0

Gspφqpρsqds

is a martingale for all φ P I .

Our pre-limiting particle systems are indexed by α P p0, 1s and can be informally described as follows.
We will give a formal description as Definition 3.2.2. Note that they are not formulated as Ξ-valued
processes, which is an issue we will address in Section 3.2.

Define
Iα0 � ti P I ; Dpiq   α or 1{α   Dpiqu

and let µα be the measure on pI, Iq given by

µαpAq � µpAzIα0 q.

Remark 3.1.6 We could use any sequence fpαq such that fpαq Ñ 8 as α Ó 0 in place of 1{α in the
definition of Iα0 . The point of µα is that we remove the small events and the large events.

Definition 3.1.7 Fix α P p0, 1s. To each x P αZd associate a K valued process t Ñ ξαt pxq with initial
state defined by the relation δξ0pxq � κpxq. Let L be a Poisson point process in r0,8q � αZd � I � r0, 1s
of rate

dtb αddxb µαpdiqνipduq
where dt corresponds to Lebesgue measure on r0,8q and dx corresponds to the measure giving each point
of αZd mass 1. Define the dynamics as follows.

• If pt, y, i, uq P L then, independently of all else, sample k according to ρtpyq and a Bernoulli random
variable S with success probability Spi, kq. Do the following.

– If S is a success, for each x P Eipyq X αZd, independently of all else, take a uniform random
variable U and if U   u set ξαt pxq � ξαt�pyq.

– If S is a failure, do nothing.

• The process tÑ ξαt pyq is constant in between the jumps caused by the reproduction events above.

Our main results are:

Theorem 3.1.8 The martingale problem for the Spatial Λ-Fleming-Viot process has a solution. In fact,
any limit point (in PpDΞr0,8qq) of the set of particle systems defined in Definition 3.1.7 is a solution.

Theorem 3.1.9 If S is constant the martingale problem for the Spatial Λ-Fleming-Viot process has at
most one solution. In this case, the particle systems of Definition 3.1.7 have a unique limit point.

Remark 3.1.10 As we have already commented, we believe Theorem 3.1.9 to be true without the condi-
tion that S be constant.
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We discuss the pre-limiting processes in Section 3.2. Proof of Theorem 3.1.8 is given in Section 3.3
and proof of Theorem 3.1.9 is given in Section 3.4.

Recall that at the end of Section 2.2 we remarked that our pre-limiting particle systems would allow
for easy modification to produce even more general version of the process. We will not describe the precise
modification for each case but hope that the principles of how to discretize the desired limit process are
now clear. The convergence argument in each case will be essentially the same as that given below.

The estimates involved in the proof of Theorem 3.1.8 require a huge amount of notation, and the
reader who does not wish to verify the proof is advised skip the remainder of this chapter.

3.2 The pre-limiting processes

In this section we set up the pre-limiting particle systems and prove some results about their generators.
For the duration of this section fix α P p0, 1s. We prove existence and characterize the generator,

formulated as a KαZd valued process. Then we translate these results into statements about the Ξ valued
version of the same system and take a limit as αÑ 0.

For x P Rd define
rxsα � y where y P αZd and x P ry � α{2, y � α{2qd.

to be (off a null set) the nearest neighbour in αZd of x P Rd.
In order to properly describe our pre-limiting particle systems of Definition 3.1.7 we need a method

for constructing countably many uniform random variables within a larger Poisson point process. Let

U � tf : αZd Ñ r0, 1s ; f is measurable.u

with the || � ||8 norm and corresponding σ-field. The following result is well known.

Lemma 3.2.1 There exists a measure U on U such that if F is a U valued random variable with law U ,
the set of functions tω ÞÑ F pxqpωq ; x P αZdu is a set of independent random variables, each of which is
uniform on r0, 1s.

Our initial state for the limiting process is κ P Ξ. For each α P p0, 1s there is a (unique, in distribution)

KαZd valued random variable satisfying the relation

δξα0 pxq � κpxq (3.2.1)

Our pre-limiting processes are described as follows.

Definition 3.2.2 Fix α P p0, 1s. The αth process pξαt q8t�0 takes values in KαZd and its value at time
t P r0,8q will be denoted ξαt . The initial state ξα0 is given by (3.2.1). Let Λα be a Poisson point process
(independent of κ) with points pt, x, i, u, f, gq in

r0,8q � αZd � I � r0, 1s � r0, 1sαZd � r0, 1sαZd

of rate
dtb αddxb µαpdiqνipduq b Updfq b Updgq

where dt is Lebesgue measure on r0,8q and dx is the measure assigning mass 1 to each lattice point of
αZd. The dynamics are

• If pt, y, i, u, f, gq P Λα, then for every x P Eipyq X αZd, if S
�
i, ξαt�pyq

� ¡ fpyq and u ¡ gpxq set
ξαt pyq � ξαt�pxq.

• The process tÑ ξαt pyq is constant in between the jumps caused the the reproduction events as above.

Remark 3.2.3 By Lemma 3.2.1 this defines the same particle system as Definition 3.1.7.
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Let
Y � Rd � I � r0, 1s � U2

be the underlying space for Λα without the time component. For x P Rd, py, i, u, f, gq P Y and ζ P KαZd

let

T px, y, i, u, f, g, ζq � 1

!
rxsα P Ei prysαq , u ¡ g prxjsαq , S pi, ζprysαqq ¡ f prysαq

)
.

We will usually permit ourselves to suppress dependence on all but x and write T px; q. In words, T px; q is
a test to see if the reproduction event p�, y, i, u, f, gq is successful in overwriting the type of x from state
ζ. Let

T̂ px; q � 1� T px; q .
be the corresponding test for failure.

We equip the space CpKαZdq of continuous real valued functions on KαZd with the || � ||8 norm (which

is defined since K is a metric space) and corresponding topology. For η P KαZd set

ηy,i,u,f,gpxq � T px; qηprysαq � T̂ px; qηpxq.

In words, ηy,i,u,f,g is η after being affected by a reproduction event p�, y, i, u, f, gq.

Lemma 3.2.4 The KαZd valued process ξαt p�q is well defined by Definition 3.2.2. Further, ξα has Markov
pre-generator Ωα defined by

ΩαJpηq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
U2

UpdfqUpdgq �Jpηy,i,u,f,gq � Jpηq�
for J P ∆α where

∆α �
#
J P C

�
KαZd

	
;

¸
xPαZd

sup
!
|Jpηq � Jpζq| ; η, ζ P KαZd and for y � x, ηpyq � ζpyq

)
  8

+
.

The closure Ω : CpKαZdq Ñ CpKαZdq of Ω is a Markov generator.

Proof: Our proof of this Lemma will rely on results from Ligget (1985). See Appendix C. �

We now move straight on to considering the particle system of Definition 3.2.2 as a Ξ valued process.
Define a process tÑ ραt by

ραt pxq � δξαt prxsαq.

Note that taking t � 0 gives ρα0 pxq � κprxsαq. Let

X α � tρ P Ξ ; for almost all x P Rd, ρpxq � ρprxsαq and for some kx P K, ρpxq � δkxu.

Lemma 3.2.5 tÑ ραt is Ξ valued and almost surely càdlàg . For all t, ραt P X α.

Proof: The fact that ραt P X α � Ξ is immediate from the definition of ρα. It remains only to prove
that ρα almost surely has càdlàg paths. Let ψ : Rd Ñ R be continuous with compact support and let
χ P CpKq. By Definition 3.2.2 for each α P p0, 1s the rate of reproduction events affecting the bounded
region supppψq is finite and so

P r@t P r0,8qDε ¡ 0@s P rt, t� εq, ρspxq � ρpxq for all x P supppψqs � 1.

Hence

P
�
@t P r0,8q, as s Ó t,

»
Rd
ψpxq xχ, ραs pxqy dxÑ

»
Rd
ψpxq xχ, ραt pxqy dx

�
� 1

so by Lemma 2.1.7,
P r@t P r0,8q, if s Ó t then ραs Ñ ραt s � 1.
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A similar argument covers the left limits. �

For ρ P X α, let pρpyq � k where k P K is unique such that ρpyq � ρprysαq � δk. Note in particular
that by Lemma 3.2.5,

δpρtpyq � ρtpyq.
With mild abuse of notation let us write

T px, y, i, u, f, g, ρq � 1 trxsα P Ei prysαq , u ¡ g prxjsαq , S pi, pρprysαqq ¡ f prysαqu .

for ρ P X α and similarly for T̂ px; q � 1� T px; q.
Let Gα be the linear operator defined on I Ñ CpΞq by

GαpInpρ; Φqq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
U2

UpdfqUpdgq
»
pRdqn

dx1 . . . dxn

ψpx1, . . . , xnq
#C

n¡
j�1

χj ,
nâ
j�1

�
T pxj ; qρ prysαq � T̂ pxj ; qρ

�rxjsα��
G

�
C

n¡
j�1

χj ,
nâ
j�1

ρprxjsαq
G+

(3.2.2)

and GpI0q � 0 if I0 P CpΞq is constant.

Remark 3.2.6 We will not prove whether or not Gα extends to a Markov generator. It is relatively
easy to show (using, for example, Theorem 2.2 of Ligget (1985)) that Gα is an unbounded Markov pre-
generator.

Proposition 3.2.7 For all h P I ,

hpραt q �
» t

0

Gαhpραs qds (3.2.3)

is a martingale.

Proof: Since a linear combinations of martingales is a martingale it suffices to prove (3.2.3) for h �
Inp�; Φq where for some n P N Φ has the form p�, nq.

So let Φ have the form p�, nq. Define Jαn p�; Φq : KαZd Ñ R by

Jαn pη; Φq �
»
pRdqn

ψpx1, . . . , xnq
C

n¡
j�1

χj ,
nâ
j�1

δηprxjsαq

G
dx1 . . . dxn.

Note that δξαt prxjsαq � ραt prxjsαq and so

Jαn pξαt ; Φq � Inpραt ; Φq. (3.2.4)

By Lemma 3.2.4,

ΩαJnpξαt ; Ψq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
U2

UpdfqUpdgq
»
pRdqn

dx1 . . . dxn

#
ψpx1, . . . , xnq

�
�C

n¡
j�1

χj ,
nâ
j�1

δT prxjsα;qξαt prysαq�T̂ prxjsα;qξαt prxjsαq

G
�
C

n¡
j�1

χj ,
nâ
j�1

δξαt prxjsαq

G�+
.

Since ραt P X α,

δT prxjsα;qξαt prysαq�T̂ prxjsα;qξαt prxjsαq � T prxjsα; qραt prysαq � T̂ prxjsα; qραt prxjsαq,
so as

ΩαJnpξαt ; Ψq � GαInpραt ; Ψq. (3.2.5)
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Using (3.2.4) and (3.2.5), (3.2.3) is a martingale if and only if

Jαn pξαt q �
» t

0

ΩαJαn pξαs ; Φqds (3.2.6)

is a martingale.
Recall that our definition of the form p�, nq required ψ to have compact support. Hence if x P

αZdz supppψq and ηpyq � ζpyq for all y � x we have Jαn pη; Ψq � Jαn pζ; Ψq. Note also that for any

η P KαZd ,

|Jαn pη, ; Ψq| ¤ ||ψ||1
n¹
j�1

||χj ||8.

From these two observations it follows that

sup
!
|Jpηq � Jpζq| ; η, ζ P KαZd and for y � x, ηpyq � ζpyq

)
¤ 2#pαZd X supppψqq||ψ||1

n¹
j�1

||χj ||8   8

and hence Jαn p�; Ψq P ∆α. In Lemma 3.2.4 we showed that the closure of the pre-generator Ωα is a
Markov Generator for ξαt . By the Hille-Yosida theorem there is a semigroup corresponding to this
Markov generator. The fact that (3.2.6) is a martingale now follows from Lemma 2.1.7 of Ethier and
Kurtz (1986). �

Let
Aαn �

 
x P pRdqn ; @j � k, rxjsα � rxksα

(
.

As αÑ 0 note that 1Aαn Ñ 1 pointwise.

Lemma 3.2.8 Let n P N. There exists a bounded real valued function bαn such that for all ρ P X α and
all Φ of the form p�, nq

GαpInpρ; Φqq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
K

ρpyqpdkq
»
pRdqn

dx1, . . . , dxn#
1tpxjq P AαnuSpi, pρpyqqψpx1, . . . , xnq

�� ¹
tj ; rxjsαREiprysαqu

xχj , ρpxjqy
�


�
�� ¹
tj ; rxjsαPEiprysαqu

xχj , p1� uqρpxjq � uδpρpyqy �
¹

tj ; jPEiprysαqu
xχj , ρpxjqy

�

� 1tpxjq R Aαnubαnpx1, . . . , xn, y, i, u,Φq

+
. (3.2.7)

where

|bαnpx1, . . . , xn, y, i, u,Φq| ¤ u1
!
Dj, rxjsα P Eiprysαq

)
|ψpx1, . . . , xnq|2n

n¹
j�1

||χj ||8   8. (3.2.8)

Further, there exists Cn P p0,8q such that for all ρ P Ξ and Φ of the form p�, nq,

|GαpInpρ; Φqq| ¤ Cn||ϕ||1
n¹
j�1

||χj ||8. (3.2.9)

Proof: We first note that 1tSpi, pρprysαq ¡ gprysαqu does not depend on j, so if Spi, pρprysαq ¤ gprysαq
we have C

n¡
j�1

χj ,
nâ
j�1

�
T pxj ; qρ prysαq � T̂ pxj ; qρ

�rxjsα��
G
�
C

n¡
j�1

χj ,
nâ
j�1

ρprxjsαq
G
� 0
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and thus from (3.2.2),

GαpInpρ; Φqq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
U2

UpdfqUpdgq
»
pRdqn

dx1 . . . dxn

ψpx1, . . . , xnq1tSpi, pρprysαqq ¡ gprysαqu

�
#C

n¡
j�1

χj ,
nâ
j�1

�
T 1pxj ; qρ prysαq � T̂ 1pxj ; qρ

�rxjsα��
G
�
C

n¡
j�1

χj ,
nâ
j�1

ρprxjsαq
G+

(3.2.10)

where
T 1px; q � T 1px, y, i, u, f, g, ρq � 1 trxsα P Ei prysαq , u ¡ g prxjsαqu

and T̂ 1px; q � 1� T 1px; q. For m � 0, 1 define

σpmq � tj P t1, . . . , nu ; rxjsα P Eiprysαqu
(we supress dependence on α, n, pxjq and y) and then

GαpInpρ; Φqq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
U2

UpdfqUpdgq
»
pRdqn

dx1 . . . dxn

ψpx1, . . . , xnq1tSpi, pρprysαqq ¡ gprysαqu
� ¹
jPσp0q

xχj , ρprxjsαqy
�

�
#C ¡

jPσp1q
χj ,

â
jPσp1q

�
1tu ¡ fprxjsαquρprysαq � 1tu ¤ fprxjsαquρprxjsαq

�G

�
C ¡
jPσp1q

χj ,
â
jPσp1q

ρprxjsαq
G+

. (3.2.11)

We seek to perform the integration over U2. In the above expression we have isolated the piece depending
on g, and by Lemma 3.2.1,»

U
Updgq1tSpi, pρprysαqq ¡ gprysαqu � Spi, pρprysαqq. (3.2.12)

We have also isolated the piece depending on f , namely the expression in curly brackets making up third
and fourth lines of (3.2.11). Note that the term from the fourth line does not depend on f and UpUq � 1
by Lemma 3.2.1. We now approach the term from the third line. Let

Kσp1q � tτ : σp1q Ñ t0, 1uu
and define

T1px, y, uq � 1tu ¡ fprxjsαqu,
T0px, y, uq � 1� T px, y, uq,

S1px, yq � ρprysαq and finally S0px, yq � ρprxjsαq. Then»
U
Updfq

#C ¡
jPσp1q

χj ,
â
jPσp1q

�
1tu ¡ fprxjsαquρprysαq � 1tu ¤ fprxjsαquρprxjsαq

�G+

�
»
U
Updfq

# ¸
τPKσp1q

»
K|σp1q|

â
jPσp1q

Sτpjqpx, yqpdkjq
�� ¹
jPσp1q

χjpkjqTτpjqpx, y, uq
��+

�
¸

τPKσp1q

»
K|σp1q|

â
jPσp1q

Sτpjqpx, yqpdkjq
���� ¹

jPσp1q
χjpkjq

�
»
U
Updfq

# ¹
jPσp1q

Tτpjqpx, y, uq
+�� . (3.2.13)
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To obtain (3.2.13) from the line immediately preceding (3.2.13) we note that all the products over j are
separate entities and we are not really overusing the variable j. We are now able to evaluate the integral
in (3.2.13) over U , but recalling Lemma 3.2.1 and the definition of Tmpx, y, uq we require to know which
of the xj are such that rxj1sα � rxj2s. Looking at the case where the rxjsα are distinct we obtain from
Lemma 3.2.1 that

1tpxjq P Aαnu
»
U
Updfq

# ¹
jPσp1q

Tτpjqpx, y, uq
+
� 1tpxjq P Aαnuu|τ | p1� uq|σp1q|�|τ | (3.2.14)

where we define |τ | � °
jPσp1q τpjq. For the case involving 1tpxjq R Aαnu we create the error term bαn

described in the statement of this Lemma. So, by (3.2.14)

1tpxjq P Aαnu � (3.2.13)

� 1tpxjq P Aαnu
¸

τPKσp1q

»
K|σp1q|

â
jPσp1q

Sτpjqpx, yqpkjq
���� ¹

jPσp1q
χjpkjq

�
u|τ |p1� uq|σp1q|�|τ |
��

� 1tpxjq P Aαnu
¸

τPKσp1q

»
K|σp1q|

â
jPσp1q

S 1τpjqpx, yqpkjq
�� ¹
jPσp1q

χjpkjq
��

� 1tpxjq P Aαnu
C ¡
jPσp1q

χj ,
â
jPσp1q

�
uρprysαq � p1� uqρprxjsαq

�G
(3.2.15)

where S 11px, yq � uρprysαq and S 11px, yq � p1 � uqρprxsαq. We now look to be in good shape! Putting
(3.2.12) and (3.2.15) into (3.2.11) and creating an error term to account for using 1tpxjq P Aαnu in (3.2.14),

GαpInpρ; Φqq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
pRdqn

dx1, . . . , dxn#
1tpxjq P AαnuS pi, pρprysαqqψpx1, . . . , xnq

�� ¹
tj ; rxjsαREiprysαqu

xχj , ρprxjsαqy
�


�
�� ¹
tj ; rxjsαPEiprysαqu

xχj , p1� uqρprxjsαq � uρprysαqy �
¹

tj ; jPEiprysαqu
xχj , ρprxjsαqy

�

� 1tpxjq R Aαnubαnpx1, . . . , xn, y, i, uq

+
. (3.2.16)

where bαn is given by

bαnpx1, . . . , xn, y, i, u, ρ,Ψq �
»
U2

UpdfqUpdgq
#
ψpx1, . . . , xnq1tSpi, pρprysαq ¡ gprysαqu

�
�C

n¡
j�1

χj ,
nâ
j�1

�
T pxj ; qρ prysαq � T̂ pxj ; qρ

�rxjsα��
G
�
C

n¡
j�1

χj ,
nâ
j�1

ρprxjsαq
G�+

.

(3.2.17)

The fact that ρ P X α means that for almost all y P Rd,
³
K
ρpyqpdkq � δpρprysαq � δpρpyq. Thus (3.2.16) is
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equal to

GαpInpρ; Φqq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
K

ρpyqpdkq
»
pRdqn

dx1, . . . , dxn#
1tpxjq P AαnuS pi, kqψpx1, . . . , xnq

�� ¹
tj ; rxjsαREiprysαqu

xχj , ρprxjsαqy
�


�
�� ¹
tj ; rxjsαPEiprysαqu

xχj , p1� uqρprxjsαq � uδkqy �
¹

tj ; jPEiprysαqu
xχj , ρprxjsαqy

�

� 1tpxjq R Aαnubαnpx1, . . . , xn, y, i, uq

+
.

which is precisely (3.2.7).
All that remains to do is prove (3.2.8) and (3.2.9). Let us note first that if rxjs R Eiprysαq for each

j � 1, . . . , n then the term in the second line of (3.2.17) is zero. Similarly if u ¤ fprxjsαq for all j Then
the second line of (3.2.17) is zero. So from (3.2.17) we obtain

|bαnpx1, . . . , xn, y, i, u, ρ,Ψq|

¤
»
U2

UpdfqUpdgq
#
1

!
Dj, rxjsα P Eiprysαq

)
1

!
Dj, u ¡ fprxjsαq

)
|ψpx1, . . . , xnq|2

n¹
j�1

||χj ||8
+
.

Carrying out the integral»
U2

UpdfqUpdgq1
!
Dj, u ¡ fprxjsαq

)
¤

»
U2

UpdfqUpdgq
ņ

j�1

1tu ¡ fprxjsαqu

�
ņ

j�1

»
U
Updfq1tu ¡ fprxjsαqu

� nu

by Lemma 3.2.1 proves (3.2.8). Similar considerations obtain from (3.2.10) that

|GαpInpρ,Φqq| ¤
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
pRdqn

�
u1

!
Dj, rxjsα P Eiprysαq

)
|ψpx1, . . . , xnq|2n

n¹
j�1

||χj ||8
�
.

We note that »
Rd
dy 1

!
Dj, rxjsα P Eiprysαq

)
¤

»
Rd
dy

ņ

j�1

1trxjsα P Eiprysαqu

�
ņ

j�1

»
Rd
dy 1t�rysα P Eip�rxjsαqu

�
ņ

j�1

»
Rd
dy 1t�rysα P Eiu

� n

»
Rd
dy 1t|y| ¤ Dpiq � αu
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which gives us

|GαpInpρ,Φqq| ¤ 2n2

�
||ϕ||1

n¹
j�1

||χj ||8
�»

I

µαpdiq
» 1

0

νipduqu
»
Rd
dy 1t|y| ¤ Dpiq � α, i R Iαn u

¤ 2n2

�
||ϕ||1

n¹
j�1

||χj ||8
�»

I

µαpdiqu
»
Rd
dy 1t|y| ¤ 2Dpiqu

¤ 2n2C

�
||ϕ||1

n¹
j�1

||χj ||8
�»

I

µαpdiquDpI qd   8

where to get from the second to third lines we used that i P IzIα0 implies α ¤ Dpiq. Finiteness follows
from (H 3). �

The corresponding result for G is much easier to prove. But note that we have an extra term in
(3.2.18) since we are also comparing µ to µα.

Lemma 3.2.9 Let n P N. There exists a bounded real valued function bn such that for all ρ P Ξ and all
Φ of the form p�, nq

GpInpρ; Φqq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
K

ρpyqpdkq
»
pRdqn

dx1 . . . dxn#
1tpxjq P AαnuSpi, pρpyqqψpx1, . . . , xnq

�� ¹
tj ; xjREipyqu

xχj , ρpxjqy
�


�
�� ¹
tj ; xjPEipyqu

xχj , p1� uqρpxjq � uδky �
¹

tj ; jPEipyqu
xχj , ρpxjqy

�

� 1tpxjq R Aαnubnpx1, . . . , xn, y, i, u,Φq

�
�

2n||ϕ||1
n¹
j�1

||χj ||8
�»

Iα0

µpdiq
» 1

0

νipduquDpiqd
+
. (3.2.18)

where

|bαnpx1, . . . , xn, y, i, u,Φq| ¤ u1
!
Dj, xj P Eipyq

)
|ψpx1, . . . , xnq|2

n¹
j�1

||χj ||8. (3.2.19)

Further, there exists Cn P p0,8q such that for all ρ P Ξ and Φ of the form p�, nq,

|GαpInpρ; Φqq| ¤ Cn||ϕ||1
n¹
j�1

||χj ||8. (3.2.20)

Proof: First let us split off the comparison between µ and µα. To ease the length of our formulae let

Fnpy, i, u, k,Φq �
»
pRdqn

dx1, . . . , dxn

�
Spi, kqψpx1, . . . , xnq

�� ¹
tj ; xjREipyqu

xχj , ρpxjqy
�


�
�� ¹
tj ; jPEipyqu

xχj , p1� uqρpxjq � uδky �
¹

tj ; jPEipyqu
xχj , ρpxjqy

�
�
.

If for all j � 1, . . . , n one has xj R Eipyq then the second line of the above is expression zero and if j0 is
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such that xj0 P Eipyq, ������
¹

tj ; jPEipyqu
xχj , p1� uqρpxjq � uδky �

¹
tj ; jPEipyqu

xχj , ρpxjqy
������

¤

���2
n¹
j�1
j�j0

||χj ||8

��
xχj0 ,�uρpxq � uρpyqy

¤ u

�
2

n¹
j�1

||χj ||8
�

Thus we have the bound

|Fnpy, i, u, k,Φq| ¤ u

»
pRdqn

dx1 . . . dxn

�
1tDj, xj P Eipyquψpx1, . . . , xnq2

n¹
j�1

||χ||8
�
. (3.2.21)

From Definition 3.1.4, recalling that µαpAq � µpAzIα0 q,�����GpInpρ; Φqq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
K

ρpyqpdkqFnpy, i, u, k,Φq
�����

�
»
Rd
dy

»
Iα0

µpdiq
» 1

0

νipduq
»
K

ρpyqpdkqFnpy, i, u, k; Φq

¤
»
Iα0

µpdiq
» 1

0

νipduq
»
pRdqn

dx1 . . . dxn�
u

ņ

j�1

�»
Rd
dy 1txj P Eipyqu



ψpx1, . . . , xnq2

n¹
j�1

||χ||8
�

¤
�

2n||ψ||1
n¹
j�1

||χ||8
�»

Iα0

µpdiq
» 1

0

νipduq ruLpEiqs (3.2.22)

where we used (3.2.21) to get from the second to third lines.
We now split off the term with 1tpxjq P Aαnu. From (3.2.22) we obtain that (3.2.18) is satisfied with

bαnpx1, . . . , xn, y, i, u,Φq � Spi, pρpyqqψpx1, . . . , xnq
�� ¹
tj ; xjREipyqu

xχj , ρpxjqy
�


�
�� ¹
tj ; xjPEipyqu

xχj , p1� uqρpxjq � uδpρpyqy �
¹

tj ; jPEipyqu
xχj , ρpxjqy

�

We bound this using the same technique as we did on F py, i, u, kq. The bottom line of the above
expression is only non zero if for some j � 1, . . . , n we have xj P Eipyq. Fix j0 to be such a j. So

|bαnpx1, . . . , xn, y, i, u,Φq| ¤ 1tDj, xj P Eipyqu|ψpx1, . . . , xnq|

���2
n¹
j�1
j�j0

||χj ||8

��
�� xχj0 ,�uρpxq � uρpyqy ��
¤ 1tDj, xj P Eipyqu|ψpx1, . . . , xnq|

�
2

n¹
j�1

||χj ||8
�
u
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which proves (3.2.19). Similar considerations applied to the expression in Definition (3.1.4) give us that

|GInpρ,Ψq| ¤
»
Rd
dy

»
I

µpdiq
» 1

0

νipduq
»
K

ρpyqpdkq
»
pRdqn

dx1 . . . dxn

u1tDj, xj P Eipyqu|ψpx1, . . . , xnq|
�

2
n¹
j�1

||χj ||8
�

¤
»
I

µpdiq
» 1

0

νipduq
»
pRdqn

dx1 . . . dxn

u|ψpx1, . . . , xnq|
�

2
n¹
j�1

||χj ||8
�

ņ

j�1

»
Rd
dy1txj P Eipyqu

¤ 2n||ψ||1
�

n¹
j�1

||χj ||8
�»

I

µpdiq
» 1

0

νipduquLpEiqd   8

as required. Finiteness follows from (H 3). �

3.3 Existence

Proposition 3.3.1 The set of processes tρα� ; α P p0, 1su is tight in DΞr0,8q.

Proof: We look to use the Aldous-Rebolledo Criterion which is recalled as Theorem D.2. Our process
ρα is Ξ valued rather than real valued and to remedy this we use Theorem D.1. Fix some sequence
pαmqmPN � p0, 1s such that αm Ó 0 as m Ñ 8. and write ραmt � ρmt for the duration of this proof.
Proposition 2.1.7 gives us that Ξ is separable and hence DΞr0,8q is also separable. Thus it suffices to
check that tρm ; m P Nu is tight for the arbitrary sequence αm Ó 0.

Ξ is compact by Proposition 2.1.7 and thus ρm automatically satisfies the compact containment
condition of Theorem D.1. Also by Proposition 2.1.7, I is dense in CpΞq under the || � ||8 topology, so it
is certainly dense in the topology of uniform convergence on compact sets. Thus by Theorem D.1 and the
fact that a linear combination of tight processes is necessarily tight, tρm ; m P Nu is tight as a DΞr0,8q
valued process if and only if for every n P N and Ψ of the form p�, nq, tInpρm� ; Ψq ; m P Nu is tight as a
sequence of DRr0,8q valued processes.

Since Ξ is compact condition (1) of Theorem D.2 is automatic. We now check (2). Note that

E
� ��Inpρmt�θ; Ψq � Inpρmt ; Ψq�� �

�
»
pRdqn

dx1 . . . dxnψpx1, . . . , xnqE
�C

n¡
j�1

ξj ,
nâ
j�1

ρmt�θpxjq
G
�
C

n¡
j�1

ξj ,
nâ
j�1

ρmt pxjq
G�

.

Let
Amn pθ, x1, . . . , xnq � tρmt pxjq � ρmt�θpxjq for all j � 1, . . . , nu.

be the event that each of the sites ραt pxjq does not change type over the time interval pt, t � θs. By the
dynamics of Definition 3.2.2, the rate at which any fixed site is hit by reproduction events is bounded

above by
³
I
µαpdiq ³1

0
νipduquαd#pEi X αZdq. By Lemma 3.3.2 there is a constant C such that for all m

PrAmn pθ, x1, . . . , xnqs ¤ exp

�
�nθC

»
I

µpdiq
» 1

0

uDpiqd


.

Note also that off the event Amn pθ, x1, . . . , xnq � tρmt pxjq, for all j ρmt�θpxjq � ρmt pxjq so as

E

�C
n¡
j�1

ξj ,
nâ
j�1

ρmt�θpxjq
G
�
C

n¡
j�1

ξj ,
nâ
j�1

ρmt pxjq
G���Amn pθ, x1, . . . , xnqc

�
� 0.
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Hence

E
� ��Inpρmt�θ; Ψq � Inpρmt ; Ψq�� � ¤ ||ψ||1

�
n¹
j�1

||χj ||8
�

exp

�
�nθC

»
I

µpdiq
» 1

0

uDpiqd



which tends to 0 uniformly in m as θ Ñ 0. (2) follows by Markov’s inequality, completing the proof. �

The following Lemma essentially states that, ignoring whether or not the selection test passes, the
rate of reproduction events occurring in the pre-limiting processes converges to that of the SΛFV process.

Lemma 3.3.2 As α Ó 0, »
Iα0

µpdiq
» 1

0

νipduquLpEiq Ñ 0 (3.3.1)

and for some constant C P p0,8q, for all α P p0, 1s, ³
Iα0
µpdiq ³1

0
νipduquLpEiq ¤ C.

Proof: Note that by (H 1)
1ti P Iα0 uuLpEiq Ñ 0

pointwise, as α Ñ 0. Also note that LpEiq ¤ CdDpiqd where Cd is the volume of a d dimensional unit
ball and thus by (H 2) we have»

I

µpdiq
» 1

0

νipduq1ti P Iα0 uuLpEiq ¤
»
I

µpdiq
» 1

0

νipduquCdDpiqd   8

By the Dominated Convergence Theorem we have the result. �

Let Qα P PpDΞr0,8qq be the law of ρα� .

Proposition 3.3.3 Any limit point of the set tQα ; α P p0, 1su � PpDΞr0,8qq is the law of a Ξ valued
process which solves the martingale problem for the Spatial Λ-Fleming-Viot process.

Proof: Suppose Q is a limit point of tQα ; α P p0, 1su. Then there exists a sequence αm Ñ 0 such
that Qαm Ñ Q. By Lemma 3.3.1 and Skorokhods theorem (3.1.8 in Ethier and Kurtz (1986)) there is
a probability space pΩ̂, F̂ , P̂ q equipped with DΞr0,8q valued random variables ρ̂m with law Qαm and ρ̂
with law Q such that Qαm Ñ Q in PpDΞr0,8qq. By passing to a subsequence we may assume

ρ̂m Ñ ρ̂ (3.3.2)

almost surely as mÑ8.
By Proposition 3.2.7, for all m P N and Ψ of the form p�, nq

Inpρ̂mt ; Ψq �
» t

0

GαmInpρ̂ms ; Ψqds (3.3.3)

is a martingale. We aim to take a limit of this expression as m Ñ 8. Proposition 2.1.7 gave us
Inp�; Ψq P CpΞq and thus by (3.3.2) we have

Inpρ̂mt ; Ψq Ñ Inpρ̂t; Ψq (3.3.4)

almost surely. Note that this convergence is dominated by the constant ||ψ||1
±n
j�1 ||χj ||8. By Lemma

3.2.5 we have ρα P X α and so we may apply Lemmas 3.2.8 and 3.2.9 to get

|GαmInpρ̂s; Ψq �GInpρ̂s; Ψq|

¤
»
Rd
dy

»
I

µpdiq
» 1

0

νipduq
»
pRdqn

dx1 . . . dxn

#
1

!
pxjq R Aαmn

)
u

�
2n|ψpx1, . . . , xnq|

n¹
j�1

||χj ||8
��

1

!
Dj, rxjsα P Eiprysαq

)
1

!
i R Iα0

)
� 1

!
Dj, xj P Eipyq

)	+

�
�

2n||ϕ||1
n¹
j�1

||χj ||8
�»

Iα0

µpdiq
» 1

0

νipduquDpiqd.
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The term in the final line of the above expression tends to zero as α Ó 0 by Lemma 3.3.2. We bound the
other term of this expression (which makes up the second and third lines) as follows.

. . . ¤ Cpn,Ψq
»
Rd
dy

»
I

µpdiq
» 1

0

νipduq
»
pRdqn

dx1 . . . dxn

u1
!
pxjq R Aαmn

)
|ψpx1, . . . , xnq|

ņ

j�1

1

!
|y � xj | ¤ 2Dpiq

)
� Cpn,Ψq

»
I

µpdiq
» 1

0

νipduqu
»
pRdqn

dx1 . . . dxn

1

!
pxjq R Aαn

)
1

!
pxjq R Aαmn

)
|ψpx1, . . . , xnq|

ņ

j�1

»
Rd
dy1

!
|xj � y| ¤ 2Dpiq

)
¤ C 1pn,Ψq

»
I

µpdiq
» 1

0

νipduqu
»
pRdqn

dx1 . . . dxn1
!
pxjq R Aαmn

)
|ψpx1, . . . , xnq|Dpiqd

¤ C2pn,Ψq
»
pRdqn

dx1 . . . dxn1
!
pxjq R Aαmn

)
|ψpx1, . . . , xnq| (3.3.5)

where to get from the second to third lines we used that i P IzIα0 implies α ¤ Dpiq and to get from

the fifth to the sixth lines we used (H 3). Since ||ψ||1   8 and 1

!
pxjq R Aαmn

)
Ñ 0 as m Ñ 8, by the

Dominated Convergence Theorem we obtain

|GαmInpρ̂s; Ψq �GInpρ̂s; Ψq| Ñ 0 (3.3.6)

as mÑ8. By Lemma 3.3.2 and (3.3.5) this convergence is bounded by the some constant C3pΨ, nq. It
follows from (3.3.2) and the dominated convergence taking place in (3.3.4) and (3.3.6) that if L P N and
for l � 1, . . . , L, bl : Ξ Ñ R is bounded and measurable and 0   r1, . . . , rL ¤ s   t,

E

��
Inpρ̂t; Ψq � Inpρ̂s; Ψq �

» t
s

GInpρ̂a; Ψqda

 L¹
l�1

blpρ̂mrl q
�

� lim
mÑ8E

��
Inpρ̂t; Ψq � Inpρ̂ms ; Ψq �

» t
s

GInpρ̂ma ; Ψqda

 L¹
l�1

blpρ̂mrl q
�
.

Since (3.3.3) is a martingale the above line is equal to 0. Hence

Inpρ̂t; Ψq �
» t

0

GαmInpρ̂s; Ψqds

is a martingale. Since a linear combination of martingales is a martingale it follows that

φpρtq �
» t

0

Gspφqpρsqds

is a martingale for all φ P I .
It remains only to show that ρα0 Ñ κ. Recall that the initial states ρα0 are given by ρα0 pxq � κprxsαq.

According to Lemma 2.1.7 it suffices to show that for each Inp�,Φq of the form p�, nq, Inpρα0 ,Ψq Ñ Inpκ,Ψq.
By (H 4) we have

P
�||ρα0 pxq � κpxq||TV Ñ 0 for almost all x � pxjqdj�1 P Rd

� � 1

(recall || � ||TV denotes the total variational norm on PpKq). Hence,

P

�C¡
j�n

χj ,
nâ
j�1

ρα0 pxjq
G
Ñ

C¡
j�n

χj ,
nâ
j�1

κpxjq
G

for almost all x � pxjqdj�1 P Rd
�
� 1.

It now follows by dominated convergence that Inpρα0 ,Ψq Ñ Inpκ,Ψq almost surely. �

Proof: [Of Theorem 3.1.8] This now follows from Propositions 3.3.1 and 3.3.3. �
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3.4 Uniqueness

As we have already said, proof of uniqueness to the martingale problem of Definition 3.1.5 is work in
progress.

Proof: [Of Theorem 3.1.9] In Section 2.1.2 we constructed a dual for the basic version of the SΛFV
process. Essentially the same method constructs a dual in the case with non-central parenting and since
one of our assumptions was that there is no selection, this dual is then enough to prove uniqueness of
solutions to the martingale problem. We do not give the details here since a full proof of uniqueness is
hoped for at a later date. �
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Chapter 4

Super-Brownian motion is a scaling
limit of bursting processes

In Section 4.1.2 we define a discrete model, which we call a bursting process, for spatial competition
between different types of individuals. The process is essentially the Spatial Λ-Fleming-Viot process with
typespace K � t0, 1u, uniform killing (that is, νi � δt1u) and discretized space. It can equally well be
thought of as a generalization of the Voter model in which sites reproduce by imposing their type on
some collection of the other sites (rather than just a single site). In this chapter we show that suitably
rescaled, in dimension d ¥ 3, bursting processes converge to super-Brownian motion.

4.1 Introduction

4.1.1 Some background

It is now well known that in dimensions d ¥ 2 the Voter model can be rescaled to super-Brownian motion.
This was proved initially in Cox et al. (2000) and was later generalised (to a stochastic Lotka-Volterra
model) and refined in Cox and Perkins (2008) and Cox et al. (2010). Many other processes are also known
to rescale to super-Brownian motion, for example see Cox and Klenke (2003), Durret and Perkins (1999)
or van der Hofstad and Slade (2003). A common feature (which is almost a necessity) in processes which
rescale to super-Brownian motion is the ability to rescale an ancestral lineage to a Brownian motion; thus
ancestral lineages in the pre-limiting processes must have finite variance. For the SΛFV process, a case
where they do not is explored in Berestycki et al. (2010) and gives rise to a quite different scaling limit.

All of Cox et al. (2000), Cox and Perkins (2008) and Cox et al. (2010) (and our own proof) operate
via deriving a superprocess type martingale problem and taking a suitable scaling limit. In both Cox
and Perkins (2008) and Cox et al. (2010) the main differences to the original paper Cox et al. (2000) are
the extra drift terms. In our case the argument for this term is only cosmetically different to Cox et al.
(2000) but the argument for convergence of the square bracket term (Sections 4.6 and 4.7) takes more
effort.

We will work in dimensions d ¥ 3, and combine the strategies of Cox et al. (2000) and Cox et al.
(2010). Our argument is in spirit closest to that of Cox et al. (2000) but we will use the much improved
method of Cox et al. (2010) to approach what in Cox et al. (2000) was the upgrading of L1 estimates to
L2 ones (Section 4 of Cox et al. (2000)). We require some new ideas to obtain the asymptotic properties
of the dual in Section 4.6. With these in hand we can approach the difficult part of the proof (the mean
field simplification in Section 4.7) using a combination of techniques from Cox et al. (2000) and Cox et al.
(2010).

This chapter presents a neater template for convergence to super-Brownian motion than can be found
anywhere in the literature. We will give a heuristic explanation of the proof in Section 4.1.4, which
includes precise details of where the extra complications lie.

Remark 4.1.1 As for the Voter model, we expect that in dimension d � 2 a rescaling (with different
particle mass to account for the clustering which occurs in two dimensions) that takes bursting processes

43



to super-Brownian motion. Dimension d � 1 will not work for the same reasons as the d � 1 Voter model
does not; see the introduction of Cox et al. (2000). The case d � 2 is more delicate than d ¥ 3 but we do
not expect the necessary modifications to the argument given here to be huge.

We will work on a lattice αZd where α P p0, 1s instead of just Zd. Our rescaling to super-Brownian
motion will be indexed by N .

Remark 4.1.2 We thus obtain some dependency on α of the limit obtained as N Ñ8. Some versions of
the Spatial Λ-Fleming-Viot process are expected to rescale to super-Brownian motion and these versions
can be constructed as a (measure valued) limit of bursting processes as α Ñ 0. If in our limiting super-
Brownian motion we let αÑ 0, and the parameters converge to something finite and non-zero, we produce
strong evidence (but not a proof) that suitable versions of the Spatial Λ-Fleming-Viot process will rescale
to super-Brownian motion.

4.1.2 Definition of bursting processes

A bursting process is parametrized by

1. a mesh size α ¡ 0 for the lattice αZd,

2. a sequence pφnqnPN � r0,8q,
3. a sequence pΦnqnPN of bounded subsets of αZd such that 0 R Φn.

and the resulting process ξ we will call a pα, φ,Φq-bursting process. At each time t P r0,8q we assign a
random type ξtpxq P t0, 1u to each site x P αZd. The corresponding measure valued process is

Xt � αd
¸

xPαZd
ξtpxqδx (4.1.1)

and we denote integration of ϕ against this measure by Xtpϕq. The factor αd is the volume of x �
r�α{2, α{2qd, which is the section of Rd to which we notionally assign the type of ξtpxq. Set

Φnpxq � x� Φnpxq
and define the dynamics as follows. Let Λ be a Poisson point process with points pt, x, nq in r0,8q�αZd�N
of rate

dtb αddxb dφpnq. (4.1.2)

Here dt corresponds to Lebesgue measure on r0,8q, dx corresponds to the measure giving unit mass to
each point of αZd and dφpnq to the measure on N where tnu has weight φpnq. Then

• if pt, x, nq is a point of Λ then at time t the sites x� Φn adopt the type ξt�pxq.
• in between the times tt ; pt, x, nq P Λ, y P Φnpxqu, ξ�pyq does not change.

This is known as a reproduction event (of Φn about x at t).
We require the parameters of the bursting process to satisfy the following.

(C 1) •
°
n
φn   8

• There exists L P p0,8q such that for all n P N, Φn � BLp0q.
(C 2) For all x, y P αZd, ¸

n

1tx P Φnpyquφn �
¸
n

1ty P Φnpxquφn.

(C 3) There exists σ ¡ 0 such that�
1°

n
#pΦnqφn


¸
n

φn
¸

xPαZd
xixj1px P Φnq � δijσ

2

where x � pxkqd1 P Rd, δij � 1 if i � j and δij � 0 otherwise.
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Two immediate consequences of (C 1) are that
°
n #pΦnqφn   8 and

°
n #pΦnq2φn   8. When we

wish to use these facts we will simply refer to (C 1).

Remark 4.1.3 We also assume that
°
n #pΦnqφn ¡ 0 (if it is zero the bursting process is constant and

rescales to the constant process of super-Brownian motion with zero diffusion and zero branching).

Remark 4.1.4 In fact the condition
°
n #pΦnq2φn   8 is all that is necessary for the process to exist.

This can be checked using the construction of infinite particle systems given in Ligget (1985).

As we will see in Section 4.4, bursting processes exhibit the same sort of ancestral lineage duality as
the Voter model does. In the Voter model case this originates in Harris (1975) and is usually known as
the Harris decomposition. It can be found, for example, in Durret (1995). (C 2) and (C 3) are best seen
as statements about the behaviour of the ancestral lineages.

Let Bt be a random walk with the same distribution as an ancestral lineage of ξ. The ancestral
lineages of a bursting process are discussed in Section 4.3 but by now the reader should be familiar with
the concept. Then there is some constant R and a αZd valued random variable W such that Bt has
exponential holding times with parameter R and at its jumps Bt increments its position by successive
independent copies of W . In Lemma 4.3.3 we show that (C 2) means that W and �W have the same
distribution, whilst (C 3) means the axial components of W are uncorrelated αZ valued random variables
with common variance. (In other words, the covariance matrix of an ancestral lineage is a multiple of
the identity matrix.)

However, our ancestral lineages will not be as well behaved as those of the Voter model. In the
Voter model two lineages move independently before they coalesce but this is not so for general bursting
processes. This is easily seen since if we have two individuals at, say, 0 and z then there could be an
individual nearby capable of having a reproduction event killing the pair at 0 and z in the same instant.

4.1.3 Characterization of super-Brownian motion

We use the following martingale characterization of super-Brownian motion. Let DMF pRdqr0,8q denote

the space of càdlàg paths indexed by r0,8q on MF pRdq with the Skorokhod topology. Let C8
0 pRdq

denote the set of functions ϕ : Rd Ñ R which have compact support and continuous partial derivatives
of all orders.

Definition 4.1.5 Let pΩ,F , pFtq,Qq be a complete filtered space. An adapted Q-a.s. continuousMF pRdq-
valued process pXtq is a super-Brownian motion with initial measure X0 P MF pRdq, branching rate
b P p0,8q and diffusion rate a2 P p0,8q if for all ϕ P C8

0 pRdq the process

Mtpϕq � Xtpϕq �X0pϕq �
» t

0

Xs

�
a2

2
∆pϕq



ds

is a continuous Ft-martingale and

xMpϕqyt �
» t

0

Xspbϕ2qds.

Existence and uniqueness of the solution to this martingale problem are well known. A proof of
uniqueness with test functions ϕ P C8

0 pRdq can be found in the appendix of Cox et al. (2000).

4.1.4 A heuristic explanation of the proof

A bursting process satisfying conditions (C 1)-(C 3) (and (C 4) and (C 5) below on the initial states) can
be rescaled to super-Brownian motion. We give a precise statement of the results in the next Section,
but for now let us give a heuristic explanation of the steps of our proof.

Let us begin by examining the martingale problem of Definition 4.1.5. It is of the form

Mtpϕq � Ztpϕq � Z0pϕq �
» t

0

Zs

Ahkkikkj
p. . .q ds, xMpϕqyt �

» t
0

Zs

Bhkkikkj
p. . .q ds.
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The way to interpret this martingale problems is as follows. The term labelled A carries the information
describing the behaviour of a single ancestral lineage. In Definition 4.1.5 this is (morally, at least, since
the process is measure valued) a Brownian motion with generator a

2 ∆.
The term labelled B relates to the potency of a particle, that is if we notionally pick one of the

particles making up the support of the super-Brownian motion, the term labelled B tells us the rate at
which this particle spreads its own genetic type. To be precise, the idea is that a particle ‘infects’ a site
if it reproduces in such a way as changes the type at the site of its child. The potency of a particle is
its ability to infect the rest of the system. The test function ϕ weights the spatial locations according to
which sites we want to see the potency of. In Definition 4.1.5 the term B is a constant multiple of the
test function, which corresponds to saying each particle reproduces independently of all other particles.

Remark 4.1.6 Note that the two properties of Brownian motion we claim A and B represent are
properties one would expect from the construction of super-Brownian motion as a limit of branching
Brownian motions, see chapter 1 of Etheridge (2000).

The fact that the martingale problem of Definition 4.1.5 has a unique solution says these two char-
acteristics identify super-Brownian motion uniquely amongst càdlàg MF pRdq valued processes. Thus in
order to prove convergence of some process with ancestral lineages to super-Brownian motion one must
expect to show that a single lineage rescales to Brownian motion and that in the limit the potency of a
particle collapses to being constant. This is precisely what we will show.

We will derive the terms of the corresponding martingale problem for bursting processes in Theorem
4.4.3. The term in position A will correspond to a finite variance, finite rate random walk (with uncor-
related axial components thanks to (C 3)) and by our choice of rescaling it is a simple matter to see that
a single lineages goes to a Brownian motion. We see this in Lemma 4.4.4. The term in position B will
require substantially more effort. The convergence result corresponding to the term B is Lemma 4.5.2
and we will require all of Sections 4.6 and 4.7 to prove it.

Understanding the potency of the particles is essentially the same job as understanding the interaction
between ancestral lineages. If, as in Definition 4.1.5 each particle reproduces independently then the
ancestral lineages must move independently up until they occupy the same point in space, at which time
they coalesce. In the Voter model case in order to understand the interaction between ancestral lineages
we need only know about the behaviour of pairs of lineages (since multiple coalescence events do not
occur). In a bursting process multiple coalescence events can occur and we need to work with triplets of
lineages and a non-local coalescence mechanism. This is essentially the cause of the extra complications
by comparison to Cox et al. (2000).

One result of these extra complications is that the constant which comes out in the square bracket
term splits into two parts, γ1 and γ2 (see Theorem 4.2.3). The quantity γ1 is about triplets of particles
where one pair has a common ancestor but the other does not share it, whereas γ2 is about triplets of
particles with no common ancestor. They correspond to fixing one of the particles and looking at the
rate at which it infects pairs of other particles. In γ1 we count up the rates where it infects only one half
of the pair, and in γ2 we count up the rates where it infects neither. This comprises all the information
available since taking γ1 and γ2 away from the total infection rate would give the rate of infecting both.

We refer to the result that the potency of a particle (to be precise, all particles simultaneously)
converges to a constant (the same constant) as the mean field simplification. The argument for this
proceeds as follows.

We will denote our N th rescaled bursting process by XN
t . Let ε�N be some sequence such that ε�N Ñ 0

but Nε�N Ñ 8. On the time scale of the N th process, as N Ñ 8 an interval of length ε�N collapses
into being (literally) no time at all. Thinking of our N th stage rescaling as divided into infinitely many
time intervals of length ε�N , we want the limiting behaviour of our N th bursting processes over a time
interval of length ε�N to look like the infinitesimal behaviour of super-Brownian motion. Inside each
interval of length ε�N this corresponds to looking at the unscaled process over time Nε�N Ñ 8. So we
want the unscaled process, run for all time, and then collapsed into a point to look like the infinitesimal
local dynamics of super-Brownian motion. If we have got our mass rescaling correct (the space and time
rescaling are fixed by A ) then what we see is that just enough mass survives long enough in the N th

rescaled process to appear in the limit, producing the intensity at which a (notional) single particle in the
limiting super-Brownian motion reproduces. At this point the reader might like to examine the limits on
the integrals in (4.7.3) which we (eventually) use to prove Lemma 4.5.2, where this idea comes into light.
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In fact, as we see in (part 4 of the proof of) Lemma 4.7.5 it important that ε�N Ñ 0 at a speed
within the right scaling window to allows the bursting processes to even out sufficiently. It is the case
that XN

ε�N
Ñ X0, and if we let Nε�N Ñ 8 too fast this does not occur and we do not give the pre-

limiting processes enough time to even out and start looking like the infinitesimal local dynamics of
super-Brownian motion.

Although our argument is not about d � 2, if one were to prove convergence of bursting processes
to super-Brownian motion for dimension d � 2, one requires a slower choice of ε�N (and a different mass
rescaling) to deal with the recurrent behaviour of the ancestral lineages. The care with which ε�N needs to
be chosen corresponds loosely to the difficulty of getting estimates on asymptotic behaviour of the dual
process. For us ε�N � N�1{4 will suffice. In Cox et al. (2010), for example, they use the exotic plogNq�19.

4.2 Results

In this section give a precise statement of the main results in this chapter.

4.2.1 The appropriate rescaling.

We will be simultaneously rescaling the lattice mesh, the particle mass and the speed of the process. Our
rescaled bursting processes ξNt p�q, indexed by N P N will be on the lattices

SN � α?
N

Zd.

Our mass rescaling will be a factor 1{N and we will run time faster by a factor N . Thus our rescaled
measure valued processes are

XN
t � αd

N

¸
xPαZd

ξNt

�
x?
N



δx.

The dependence on α and d is permitted to disappear into the background. We stress that our rescaling
to super-Brownian motion is indexed by N and α is kept constant throughout.

4.2.2 Initial conditions

RecallMF pRdq denotes the space of finite measures on Rd. We need conditions on the initial states, ξN0 .

(C 4) For each N ,
°
x
ξN0 pxq   8.

(C 5) There exists some X0 PMF pRdq such that XN
0 Ñ X0 in MF pRdq.

Condition (C 4) corresponds to each initial state having only finitely many 1s, whilst (C 5) is obviously
going to be necessary in order to obtain a scaling limit.

Remark 4.2.1 Note that we do not take some set A � Rd and set ξN0 � SN XA. The total mass of ξN0
under this definition would not remain finite under the rescaling (in dimensions d ¥ 3). The combined
effect of (C 4) and (C 5) is that the initial state X0 of the limit process will have 2 dimensional support.

For the SΛFV process, the case where one does not impose sparse initial conditions is covered in
Berestycki et al. (2010).

Lemma 4.2.2 (C 4) and (C 5) imply sup
N
XN

0 p1q   8.

From this point on we proceed from a bursting process satisfying (C 1)-(C 5).
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4.2.3 Results

In order to define the parameters of the limiting super-Brownian motion we need to use the ancestral lin-
eages. The reader unfamilir with this type of duality might like to read Section 2 where a full explanation
of what it means to be an ancestral lineage is given.

Let pBx, Byq be a pair of ancestral lineages of ξ, tracing back the succession of ancestors of the types
at x, y P αZd from some time t0. The distribution of this pair of random walks is independent of the time
at which we start tracing back from so we can think of these walks as run for all time. Define

τpx, yq � inftt P r0,8q ; Bxt � Byt u

to be the first time at which these walks meet (that is, when the types at x and y has their most recent
common ancestor). Since d ¥ 3 there is the possibility that they never meet and τpx, yq � 8. In fact,
since our two walkers are dependent it takes a small amount of work to show P rτpx, yq � 8s ¡ 0 for
x � y from the standard result about random walks in d ¥ 3.

Let Q2b,a2 be the law of the super-Brownian motion of Definition 4.1.5 with initial state X0. Let QN
denote the law of pXN

t q8t�0, which is also a probability measure on DMF pRdqr0,8q. The main theorem of
this chapter is as follows.

Theorem 4.2.3 In dimensions d ¥ 3, as N Ñ 8, QN converges weakly to QQpγ1�γ2q,Rσ2

, in the space
of probability measures on DMF pRdqr0,8q. Here

R � αd
¸
n

#pΦnqφn, Q � α2d
¸
n

#pΦnq2φn

and γ1, γ2 P p0,8q are given by

γ1 �
¸

e,fPαZd

�¸
n

1 t0, e P Φnpfquφn
�
P rτp0, eq   8, τp0, fq � 8s

γ2 �
¸

e,fPαZd

�¸
n

1 te, f P Φnuφn
�
P rτp0, eq � 8, τp0, fq � 8s

The quantities γ1 and γ2 should not be thought of as a pair which mirror each other. They correspond
to genuinely different parts of the evolution of the pre-limiting processes, which we have already discussed
in the course of Section 4.1.4.

Remark 4.2.4 To recover the corresponding result in Cox et al. (2000) set α � 1, choose the Φn to be
one point sets and choose φn so as

°
n φn � 1. Then

°
n 1tf P Φnuφn is the rate at which the site 0

reproduces to the site f , and

γ1 � γ2 �
¸

fPαZd

�¸
nPN

1tf P Φnuφn
�
P rτp0, fq � 8s .

4.3 The ancestral lineages

We set up the random walk which (with appropriate coupling) will turn out to be the path followed
backwards in time by an ancestral lineage of ξN .

Define the rescaled sets

ΦNn pxq � x� 1?
N

Φn � SN

and write also ΦNn � ΦNn p0q. Let W be an αZd valued random variable with law p given by

ppxq � αd

R

¸
n

1tx P Φnuφn
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where R � αd
°
n #pΦnqφn. Note that R is finite by (C 1) and pp0q � 0. Let Bx,N be a random walk

on SN starting from x P SN , jumping at rate RN � NR and incrementing its position by successive
independent copies of WN � 1?

N
W at each jump. Denote the distribution of WN by

pN pxq � ppx?nq �
°
n 1tx P ΦNn uφn°
n #pΦNn qφn

, x P SN

and define pN px, yq � pN py � xq.

Lemma 4.3.1 Let x P SN and t ¡ 0. If we trace the source of the type ξNt pxq backwards in time from
time t until time 0, we follow a random walk with distribution pBx,Ns qts�0 (where s � 0 corresponds to
time t and s � t to time 0).

Remark 4.3.2 Recall our convention that we always deal with the right continuous version of the an-
cestral lineages.

Proof: The total rate of reproduction events hitting y P SN is¸
z

¸
n

1ty P ΦNn pzquαdNφn � αdN
¸
n

¸
z

1t�z P ΦnN p�yquφn

� αdN
¸
n

#pϕnqφn � RN

where we translate by �y � z in the first line. The total rate of the subset of such reproduction events
which would hit y from a fixed z is αdN

°
n 1ty P ΦNn pzquφn and thus the probability of y inheriting the

type of x in this fashion is °
n 1ty P ΦNn pzquαdNφn°

z

°
n 1ty P ΦNn pzquαdNφn

� pN pz, yq

as required. �

Specifically, by looking for the source of ξNt pxq, we look back in time until x was last hit by a bursting
event, and then move to the point y from which this burst originated (regardless of whether or not the
type at x was actually changed by this event). We continue moving in this manner until (parameterizing
time backwards) we reach time 0.

The following lemma explains the purpose of our conditions (C 2) and (C 3). For convenience we write
p � p1, W �W1, etc.

Lemma 4.3.3 The following hold:

1. pN pxq � pN p�xq (and therefore pN px, yq � pN py, xq).

2. E rWN s � 0 and |W | has moments of all orders.

3. Writing W � pW piqqdi�1, E rW piqW pjqs � 0 if i � j and E
�
W piq2� � σ2.

Proof: (C 1) is required for p to be defined. (C 2) says precisely that ppxq � pp�xq which gives the
first statement and implies ErW s � 0. |W | has moments of all orders because it is bounded (by L) as a
consequence of (C 1). (C 3) is precisely the final statement. �

The generator of the random walk Bx,N is given by

ANϕpxq � RN
¸
y

pN px, yqpϕpyq � ϕpxqq

and the transition semigroup is given by

PNt fpxq � E
�
fpBx,Nt q

�
.
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We will usually take some ϕ : Rd Ñ R as a test function, although strictly speaking in order to work
with the generator one should define ANϕ for ϕ : SN Ñ R.

We will frequently need to study the interaction of two ancestral lineages and to do so we define

qpy, x, zq � α2d

Q

¸
n

1tx, z P Φnpyquφn.

for y, x, z P αZd where Q � α2d
°
n

#pΦnq2φn. The rescaled versions are QN � NQ and for px, y, zq P
pSN q3,

qN py, x, zq � α2d

Q

¸
n

1tx, z P ΦNn pyquφn.

We write q � q1. The function px, zq ÞÑ qp0, x, zq defines the law of a pαZdq2 random variable. For
now we have set up enough notation to proceed.

4.4 Decomposition of bursting processes

We use a stochastic integral definition of bursting processes which leads naturally to a martingale decom-
position. In this respect the approach originates from Mueller and Tribe (1995). We set up the N -stage
rescaling of the Poisson point processes as follows. Let

tΛpx, nq ; x P αZd, n P Nu

be a family of independent Poisson processes (defined on a common complete probability space) with
Λpx, nq having rate αdφn. Define

ΛNt px, nq � ΛNtpx{
?
N,nq.

Thus for x P SN and n P N, ΛN px, nq is a Poisson process of rate αdNφn. This induces the natural
dependence between our N -stage rescaled processes. Define

Λ̂N px, nqt � Λpx, nqt � αdNφnt

and note this is a martingale.
The bursting process ξN will turn out to be the unique solution to the system of equations

ζNt pxq � ζN0 pxq �
¸
y

¸
n

» t
0

�
ζNs�pyq � ζNs�pxq

�
1tx P ΦNn pyqudΛN py, nq (4.4.1)

where the first sum is over y P SN and the second over n P N. It is easy to see that the equations of
(4.4.1) correspond to a process with the dynamics discussed in Section 4.1.2.

Definition 4.4.1 A solution ζN of (4.4.1) is a càdlàg t0, 1uSN valued process for which

@x,@t ¡ 0,
¸
y

¸
n

» t
0

��ζNs�pyq � ζNs�pxq
��1tx P ΦNn pyqudΛpy, nq   8

almost surely, with the intial condition ζN0 satisfying (C 4)-(C 5).

Lemma 4.4.2 (4.4.1) has the pα{?N,ΦNn , φNn q bursting process ξN as its unique solution over t ¥ 0.
For each T   8

E

�
sup
t¤T

¸
x

ξNt pxq
�
  8

which, in particular, implies that XN
t pϕq is a.s. finite if ϕ is bounded.
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Proof: This is essentially the same as the proof of Lemma 2.1 in Cox et al. (2000). �

As in Section 4.2.1 the corresponding rescaled measure valued processes are XN
t � αd

N

°
x ξ

N
t pxqδx

and the integrals of functions against these measures are

XN
t pϕq �

αd

N

¸
x

ξNt pxqϕpxq

where ϕ : SN Ñ R or ϕ : Rd Ñ R. We use the symbol 1 for the constant function 1pxq � 1.
We write ξNt for the set of sites of type 1 at time t (and as we already are, ξNt pxq for the value of the

site x at time t). Let

ξ̂Nt pxq � 1� ξNt pxq
be the process ξN with the roles of the types 0 and 1 exchanged.

Let

mN,1
s pϕq � αd

N2

¸
x,y,z

ϕpxqϕpzqQNqN py, x, zqξNs pxqξNs pzqξ̂Ns pyq

mN,2
s pϕq � αd

N2

¸
x,y,z

ϕpxqϕpzqQNqN py, x, zqξ̂Ns pxqξ̂Ns pzqξNs pyq.

The Doob decomposition of XN
t pϕq is as follows.

Lemma 4.4.3 Let ϕ : Rd Ñ Rd be bounded and measurable. Then

XN
t pϕq � XN

0 pϕq �MN
t pϕq �

» t
0

XN
s

�
ANϕ

�
ds (4.4.2)

where MN is a càdlàg square integrable martingale given by

MN
t pϕq �

¸
y,n

» t
0

αd

N

¸
x

ϕpxq �ξNs�pyq � ξNs�pxq
�
1tx P ΦNn pyqudΛ̂Ns py, nq

and predictable square function given by

xMN pϕqys �
» t

0

�
mN,1
s pϕq �mN,2

s pϕq� ds. (4.4.3)

Proof: Recall (4.4.1):

ξNt pxq � ξN0 pxqϕpxq �
¸
y

¸
n

» t
0

ϕpxq �ξNs�pyq � ξNs�pxq
�
1tx P ΦNn pyqudΛNs py, nq.

We may split up dΛNs py, nq � dΛ̂Ns py, nq � αdNφnds and sum over x P SN to get

XN
t pϕtq � XN

0 pϕ0q �MN
t pϕq �

» t
0

LNs pϕqds

where

LNs pϕsq �
αd

N

¸
x,y,n

ϕpxq �ξNs pyq � ξNs pxq
�
1tx P ΦNn pyquαdNφn

Note that the left limits s� have been dropped in the definition of L, since the integrator ds is continuous.
The proof that MN pϕq is indeed a square integrable càdlàg martingale follows similarly to the proof of
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Lemma 2.3 in Cox et al. (2000). By the same token we obtain that

xMN pϕqyt �
¸
y,n

» t
0

�
αd

N

¸
x

ϕpxq �ξNs�pyq � ξNs�pxq
�
1tx P ΦNn pyqu

�2

αdNφnds

�
¸
y,n

» t
0

α2d

N2

¸
x,z

ϕpxqϕpzq �ξNs pyq � ξNs pxq
� �
ξNs pyq � ξNs pzq

�
1tx, z P ΦNn pyquαdNφnds

�
» t

0

αd

N2

¸
y,x,z

ϕpxqϕpzq �ξNs pyq � ξNs pxq
� �
ξNs pyq � ξNs pzq

�
QNqN py, x, zqds

Noting that �
ξNs pyq � ξNs pxq

� �
ξNs pyq � ξNs pzq

� � ξNs pxqξNs pzqξ̂Ns pyq � ξ̂Ns pxqξ̂Ns pzqξ̂Ns pyq

we obtain the form of (4.4.3). It remains to rearrange LN pϕq. Note that

LNs pϕsq �
αd

N

¸
x,y

ϕpxq �ξNs pyq � ξNs pxq
�
RNpN px, yq

and since pN px, yq � pN py, xq,

LNs pϕsq �
αd

N

¸
x,y

ξNs pxq rϕpyq � ϕpxqsRNpN px, yq

� αd

N

¸
x

ξNs pxq
¸
y

rϕpyq � ϕpxqsRNpN px, yq

� XN
s pANϕq

which gives the form claimed for the final term of (4.4.2). �

We now show that a single ancestral lineage rescales to a Brownian motion. This takes care of the
convergence of the diffusion term in the decomposition of Lemma 4.4.2.

Lemma 4.4.4 Let ϕ : Rd Ñ R have bounded continuous third order derivatives. Then

lim
NÑ8

��������ANϕ� Rσ2

2
∆pϕq

��������
8
� 0.

Proof: Let us write x � pxiqdi�1 P Rd, and denote partial differentiation in the direction of the ith

coordinate as Bϕ
Bi � ϕi. We write the Euclidean norm as | � |. By Taylor’s Theorem there is a random

YN P rx, x�WN s (the line segment between x and x�WN ) such that

ϕpx�WN q � ϕpxq �
ḑ

i�1

ϕipxqW i
N � 1

2

ḑ

i,j�1

ϕijpYN qW i
NW

j
N .

Hence, recalling that Lemma 4.3.3 gives EpWN q � 0,����ANϕ� Rσ2

2
∆pϕq

���� � ����RNE
�
ϕpYN q � ϕpxq � 1

2N
σ2∆ϕpxq

�����
¤ R

2

ḑ

i,j�1

E
����ϕijpYN q � ϕijpxq

�
NW i

NW
j
N

���
� RN

2

ḑ

i,j�1

����ϕijpxqE �
W i
NW

j
N � δijσ

2

N

����� . (4.4.4)
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By Lemma 4.3.3 ErW i
NW

j
N s � δij

σ2?
N

so the second term tends to zero. Since ϕ is Lipschitz we have

|ϕpYnq�ϕpxq ¤ ||ϕ||Lip|x�YN | and note also |x�Yn| ¤ |WN | � |W |{?N . Thus the first term of (4.4.4)
is bounded above by

R

2

ḑ

i,j�1

E
�
||ϕ||Lip |W |?

N
W iW j

�
.

Since (C 1) implies W has moments of all order, this tends to zero as N Ñ8. �

The following Lemma is our first use of duality.

Lemma 4.4.5 If ϕ : Rd Ñ R is bounded,

E
�
XN
t pϕq

� � XN
0

�
PNt pϕq

�
.

In particular E
�
XN
t p1q

� � XN
0 p1q and sup

N
E
�
XN
t p1q

�   8.

Proof: Note that
P
�
Bw,Nt � x

�
� P

�
Bx,Nt � w

�
by Lemma 4.3.3 part (1) and the definition of B�,N . So

E
�
XN
t pϕq

� � αd

N

¸
x

E
�
ξNt pxq

�
ϕpxq

� αd

N

¸
x

ϕpxqP
�
Bx,Nt P ξN0

�
� αd

N

¸
x

ϕpxq
¸
w

ξN0 pwqP
�
Bx,Nt � w

�
� αd

N

¸
w

ξN0 pwq
¸
x

ϕpxqP
�
Bw,Nt � x

�
� αd

N

¸
w

ξN0 pwqE
�
ϕpBw,Nt q

�
� XN

0 pPNt pϕqq
as required. The bound on XN

t p1q now follows by Lemma 4.2.2. �

Lemma 4.4.6 Let p ¥ 1 and T ¡ 0. There is a constant Cp,T   8 such that

E
�
sup
t¤T

XN
t p1qp

�
¤ Cp,T

�
XN

0 p1qp � 1
�

Proof: For p � 1 this follows from Lemma 4.4.5 and the Burkholder-Davis inequality. The proof for
the case p ¡ 1 (using Martingale inequalities from Burkholder (1973)) is essentially that of Lemma 2.4(b)
from Cox et al. (2000). ) �

We now examine the square bracket of the martingale term.

Lemma 4.4.7 Let s P p0,8q and ϕ : Rd Ñ R be bounded and measurable. Then for p � 1, 2,��mN,p
s

�
ϕq| ¤ Q||ϕ||28XN

s p1q

Proof: Using that ξ̂Ns p�q ¤ 1,��mN,2
s pϕq�� ¤ αd

N
||ϕ||28

¸
y

ξNs pyqQ
¸
x,z

qN py, x, zq
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and noting that ¸
x,z

qN py, x, zq � α2d

Q

¸
n

¸
z

1tz P φNn pyquφn
¸
x

1tx P ΦNn pyqu

� α2d

Q

¸
n

¸
z

1ty P φNn pzqu#pΦnqφn

� α2d

Q

¸
n

#pΦnq2φn � 1, (4.4.5)

we have the result for i � 2. Similarly, using ξ̂Ns pyq, ξNs pzq ¤ 1,��mN,1
s

�� ¤ αd

N
||ϕ||28

¸
x

ξNs pxqQ
¸
y,z

qN py, x, zq.

We note ¸
y,z

qN py, x, zq � α2d

Q

¸
n

¸
z

1tz P ΦNn pyqu
¸
y

1tx P ΦNn pyquφn

� α2d

Q

¸
n

¸
z

1tz P ΦNn pyqu
¸
y

1t�y P ΦNn p�xquφn

� α2d

Q

¸
n

#pΦnq2φn � 1

where we use a translation by �x � y to get from the first line to the second and then proceed as in
(4.4.5). The result for i � 1 follows. �

Lemma 4.4.8 Let p ¥ 1 and let ϕ : Rd Ñ R be bounded. Then for any t P p0,8q

sup
N

E
�
sup
s¤t

��MN
s pϕq

��p�   8

Proof: By Lemma 4.4.7,

E
�
sup
s¤t

��MN
s pϕq

��p� ¤ CtE
�
sup
s¤t

XN
s pϕqp

�
and the result now follows from Lemma 4.4.6. �

4.5 Tightness and convergence

Recall that DMF pRdqr0,8q denotes the space of càdlàg paths indexed by r0,8q on MF pRdq with the
Skorokhod topology. Let CMF pRdqr0,8q be the subspace of such paths which are continuous, endowed
with the topology of uniform convergence on compact sets.

Lemma 4.5.1 pQN q is a tight sequence of probability measures on DMF pRdqr0,8q and all of its limit
points are supported by CMF pRdqr0,8q.

Proof: The argument is essentially the same as that given in Cox et al. (2000) (or, for that matter, in
Cox and Perkins (2008) or Cox et al. (2010)) and we omit it. One could also prove this theorem using
Theorem D.2 and the results from Section 4.4. �

At this point we require a statement to the effect that the mean field simplication takes place in our
situation. The proof of this comes from estimates obtained via the dual process and these can be found
in Sections 4.6 and 4.7. To achieve the proper chronology one should insert Sections 4.6 and 4.7 here,
but to prove Theorem 4.2.3 we require only the final result of Section 4.7:
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Lemma 4.5.2 Let ϕ : Rd Ñ R be bounded and Lipschitz. Then for each t ¡ 0,

E
�����xMN pϕqyt �Qpγ1 � γ2q

» t
0

XN
s pϕ2qds

�����Ñ 0

as N Ñ8.

We can now give

Proof: [Of Theorem 4.2.3.] Let ϕ P C8
0 pRdq. Let Q be a limit point of pQN q. By Lemma 4.5.1 and

Skorokhods theorem (3.1.8 in Ethier and Kurtz (1986)) we may assume (via a change of probability
space) that there is a process X with law Q and a subsequence Nk such that

XNk Ñ X a.s. in DMF pRdqr0,8q. (4.5.1)

Let ϕ P C8
0 pRdq. We note

sup
t¤T

����» t
0

XNk
s

�
ANkϕ

�
ds�

» t
0

Xs

�
σ2R

2
∆pϕq



ds

���� (4.5.2)

¤ sup
t¤T

����» t
0

XNk
s

�
ANkϕ� σ2R

2
∆pϕq



ds

����� sup
t¤T

����» t
0

XNk
s

�
σ2R

2
∆pϕq



�Xs

�
σ2R

2
∆pϕq



ds

����
Ñ 0 as k Ñ8 a.s.

To see why, use Lemma 4.4.4 to show that the first term on the right hand side tends a.s. to zero, whilst
the dominated convergence theorem (using Lemma 4.4.6 to get the dominating function) and (4.5.1) show
the second term tends a.s. to zero.

Define

Mtpϕq � Xtpϕq �X0pϕq �
» t

0

Xs

�
σ2R

2
∆pϕq



ds.

Equations (4.5.1), (4.5.2) and (C 5) show that |MNk
t pϕq�Mtpϕq| Ñ 0 a.s. and we can use a.s. continuity

of t ÞÑMt (from Lemma 4.5.1) to deduce a.s. uniform convergence on r0, ts:

sup
s¤t

��MNk
s pϕq �Mspϕq

��Ñ 0 (4.5.3)

For i � 1, . . . ,m let hi :MF pRdq Ñ R be bounded and continuous and let 0 ¤ t1   . . .   tm ¤ s   t.
Equations (4.5.1), (4.5.3) and Lemma 4.4.8 imply that

E
��
Mtpϕq2 �Mspϕq2 �Qpγ1 � γ2q

» t
s

Xrpϕ2qdr
	 n¹

1

hipXtiq
�

� lim
kÑ8

E
��
MNk
t pϕq2 �MNk

s pϕq2 �Qpγ1 � γ2q
» t
s

XNk
r pϕ2qdr

	 n¹
1

hipXNk
ti q

�
. (4.5.4)

Lemma 4.5.2 implies that (4.5.4) is equal to

lim
kÑ8

E
��
MNk
t pϕq2 �MNk

s pϕq2 � xMNkpϕqyt � xMNkpϕqys
	 n¹

1

hipXNk
ti q

�
which is zero by the martingale properties of M stated in Lemma 4.4.3. Thus X satisfies the martingale
problem posed in Definition 4.1.5. Therefore Q � QQpγ1�γ2q,Rσ2

. Since our limit point Q was arbitrary,
it follows that QN Ñ QQpγ1�γ2q,Rσ2

as claimed. �

4.6 The dual particle system.

The remaining two sections of this chapter will be concerned solely with proving Lemma 4.5.2.
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We now consider tracing back the types of more than one site at once. In the Voter model when
two ancestral lineages coalesce only one of the lineages jumps. For bursting processes there is positive
probability of two lineages both moving from different sites to the same parent in a single reproduction
event. They do not have to coalesce in this way since the reproduction event causing coalescence may be
centered about the position of one of the walks. This leads us to the following realisation.

Remark 4.6.1 Let pBx,Ns qqts�0 denote the random walk tracing back the sources of opinions of the site x
from time t. Then unless all the Φn are one point sets, for x � y the lineages pBx,Ns qqts�0 and pBy,Ns qqts�0

are not independent, even before they coalesce.
To see this, suppose x, y, z P SN and n are such that x, y P z � ΦNn and x � y. Then the information

as to whether the Poisson process ΛN pz, nq has jumped in ps, s � εs affects the motion of both the walks
pBx,Ns qqts�0 and pBy,Ns qqts�0.

We already denote the random walks of our coalescing dual process by B�,N and we now go on to
specify the precise coupling between the movement of the lineages. The time reversibility and spatial
homogeneity of the underlying Poisson point process Λ permits us to describe our dual process as follows.

Definition 4.6.2 The dual of our bursting process over time r0, ts is a system tBx,Nuof coalescing ran-
dom walks which behave as follows. For s P r0, ts
• If ΛN px, nq jumps at time s then for all y such that By,Ns� P x� ΦNn , By,Ns � x.

• No other movement occurs.

That is, a reproduction event causes all affected random walks to move to the origin of the burst.

For x, y P SN define
τN px, yq � infts P r0, ts ; Bx,Ns � By,Ns u

where as usual inf H � 8. We suppress the dependence of Bx,N and τN px, yq on t since it will almost
always be obvious from the context. On the rare occasion that it is necessary to be particular (e.g. the
proof of Lemma 4.7.5) we will say explicitly which time we are tracing back from.

Note that Definition 4.6.2 defines a right continuous sytem of walks, whereas the ancestral lineages
are really left continuous. Recall Remark 4.3.2 where we noted each lineage is stochastically continuous
and thus we can ignore this technicality.

Remark 4.6.3 The system tBx,N ; x P Au is translation invariant in the sense that

Pr@a P A, Ba,Ns � yas � Pr@a P A, Ba�z,Ns � ya � zs

where ya P SN , symmetric (by Lemma 4.3.3) in the sense that

Pr@a P A, Ba,Ns � 0s � Pr@a P A, B�a,N
s � 0s

and time reversible in the senses that

P
�
Bz,Ns � y

� � P
�
By,Ns � z

�
and

P
�
By,Ns � u,Bz,Ns � v, τN py, zq ¡ s

� � P
�
Bus � y,Bv,Ns � z, τN pu, vq ¡ s

�
.

This completes our description of the dual process. Recall that when we outlined the heuristics of the
proof in Section 4.1.4 the following quantity played a major role.

Definition 4.6.4 Let ε�N � N�1{4.

Our first big step towards Lemma 4.5.2 is the following, and we will spend the rest of this section
proving:

56



Lemma 4.6.5 It holds that
sup

y�z,u�0
NP

�
By,N
ε�N

�Bz,N
ε�N

� u
�
Ñ 0

where the supremum is over y, z, u P SN such that y � z and u � 0.

Remark 4.6.6 By taking ε�N � t in the proof of this Lemma, one obtains P rByNt �BzNt � us ¤ CN�3{2

for some constant C. We require only the stated result.

Proof: First we unravel the time and spatial rescaling. Let v � ?
Npy � zq � 0 and let

Ĉvt �
?
N pByt �Bzt q .

Then we must prove that for given u P αZd,

NP
�
Ĉv
Nε�N

� u
�
Ñ 0 (4.6.1)

uniformly over v � 0.
The Markov property and spatial homogeneity of bursting processes imply that for sake of investigating

a single jump of Ĉv, we need only be concened with its current value; that is to say Ĉv is Markov and
has independent increments. However the evolution of Cv is not spatially homogeneous. For as long
as |Ĉvt | ¡ 2L the bursting events controlling our two walkers are independent, and Ĉv moves as a rate

2R
8°
n�1

#pΦnqφn random walk with jump distribution W . For |Ĉvt | ¤ 2L the situation is not so simple.

When our two walkers are close enough together that a single bursting event could affect them both, Ĉv

is jumping at a slower rate with a different jump distribution and some probability of absorption at 0.

Definition 4.6.7 We say a random walk on αZd is a standard motion if it jumps at rate 2R with jump
distribution W .

We can describe the transitions of a walker D in standard motion as follows. To each pair pb, nq such
that 0 P b � Φn and each j P t1, 2u we associate a Poisson process Λpb, n, jq of rate αdφn. When t is a
jump time of Λpb, n, jq, the transition

Dt � Dt� � b

is made. The reader may readily verify that this describes a standard motion (note that it requires (C 2)).
We intend to couple Ĉv to a system D of branching standard motions.

Remark 4.6.8 In what follows we have walks which are part of the ancestral lineages and walks which
are related in some way to the difference between two ancestral lineages. To distinguish verbally between
the two we will refer to the ancestral lineages as particles and the differences between ancestral lineages
as walkers.

Crucially, if we took two independent particles B̂p1q and B̂p2q moving at rate
°
n #pΦnqφn with jump

distribution W , a standard motion describes the walker B̂p1qt � B̂p2qt. We want to suppress jumps
of B̂p1q � B̂p2q in such a way as constructs a walker moving according to the dependent dynamics of
By�Bz. Take a standard motion in state a, and specify that the state 0 is absorbing. Suppress the jumps
corresponding to

tpb, n, jq ; j � 1, a P Φnpbqu,
(that is, half the jumps which would cause the dependent system By�Bz to both move and coalesce), and
when a jump corresponding to

tpb, n, jq ; j � 2, 0 P Φnpb� aqu
occurs (the other half of such jumps) we move straight to the site 0. (Of course, this is not the only way
to hit 0). The case j � 1 corresponds to the first particle jumping and j � 2 to the second.
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We now construct a system Dv of random walkers in standard motion. The general principle is that
whenever we have to suppress a jump we introduce a new walker, also in standard motion, to compensate.
At each time exactly one walker in the system Dv will carry the title of youngest walker. Initially (at
time 0) there is a single walker Dp1qv who is the first youngest walker, starts at v, and moves according
to a standard motion. At all times our system will involves a finite number of standard motions, Dp�q,
one of which is the youngest walker. The motion of the youngest walker is especially important and we
decompose it as above. As the name might suggest, at any fixed time the youngest walker is the particle
which was born most recently.

We now describe D from initial state v.

• Given the current positions of the currently existing walkers Dp1qv, Dp2q, . . . , Dpmq, they move as
a system of independent standard motions.

• When the youngest walker makes a transition out of state a, we use our decomposition to look
at which of the processes Λpb, n, jq caused the transition to take place, and correspondingly the
following occurs:

1. If a � 0, j � 1 and a R Φnpbq, the transition occurs without additional consequences and the
youngest walker is unchanged.

2. If a � 0, j � 2 and �a R Φnpbq, the transition occurs without additional consequences and the
youngest walker is unchanged.

3. If a � 0, j � 1 and a P Φnpbq, the youngest walker makes the transition and instantaneously
leaves behind a new walker Dpm � 1q at a. This new walker takes over the title of youngest
walker.

4. If a � 0, j � 2 and �a P Φnpbq, the youngest walker makes the transition and instantaneously
leave behind a walker Dpm� 1q at 0. This new walker holds the title of youngest walker.

5. As soon as the position of the youngest walker is 0 the system is frozen. The walkers remain
constant for all remaining time.

There is very little to prove in showing the process

Dv � tDp1qv, Dp2q, . . . , Dpntqu
exists and has a right continuous version which is strongly Markov. We claim that the youngest walker
follows the random walk Ĉv; Thus we may couple our two systems together in such a way as

Ĉvt � Dpntqt
(where Dp1q � Dp1qv). We will prove this claim below, but first let us prove (4.6.1).

Remark 4.6.9 Cases 1 and 2 correspond to reproduction events which only move one of the particles.
In case 3, the position of the youngest walker does not change, only which walker holds the title. This
corresponds to the suppressed jumps of Remark 4.6.8. In case 4 we create the jumps causing coalescence
(i.e. when the youngest walks hits 0) when both By and Bz move. The cases when coalescence is caused
by only one of the two particles moving occur as part of 1 and 2. Case 5 corresponds to the behaviour
after the particles have coalesced.

Let nt be (càdlàg process of) the index at time t of the youngest walker (which, if it is non-zero, is
also the number of walkers at t).

P
�
Ĉv
Nε�N

� u
�
¤ P

�
Dm P t1, . . . , ntu, DpmqNε�N � u

�
¤

8̧

n�1

P
�
Dm P t1, . . . , nu, DpmqNε�N � u

�
P rnNt � ns

¤
8̧

n�1

ņ

m�1

P
�
DpmqNε�N � u

�
P
�
nNε�N

� n
�

(4.6.2)
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If we set T pmq to be the birth time of Dpmq, then by Lemma A.3 in Cox et al. (2000),

P
�
DpmqNε�N � u

�
¤ PrDpmqNε�N � DpmqT pmqs � PrD0

Nε�N
� 0s

where D0 is a standard motion started at 0. Continuing from (4.6.2),

P
�
Ĉv
Nε�N

� u
�
¤ P

�
D0
Nε�N

� 0
� 8̧

n�1

nP
�
nNε�N

� n
�

� P
�
D0
Nε�N

� 0
�
ErnNε�N s (4.6.3)

which is a bound independent of u (but note nt depends on v!). ErnNε�N s is defined for the positive

random variable nt and may (until we prove otherwise) be infinite. So we must estimate nNε�N
, the

number of (moving) walkers in the system Dv. Let n8 � lim
tÑ8nt denote the total number of walkers of

Dv over all time. Clearly
ErnNε�N s ¤ Ern8s ¤ Errn8s

where rn8 is the total number of jumps initiated by the youngest walker from a point within αZdXB2Lp0q.
We will shortly show that Errn8s is bounded uniformly over v � 0. The standard local limit theorem
(see, for example, A.3 of Cox et al. (2000)) for simple random walks in d ¥ 3 gives us a constant C such
that PrD0

t � 0s ¤ Ct�d{2 and we then have that

NPrĈv
Nε�N

� us ¤ CNpNε�N q�3{2 � CN�1{8 Ñ 0.

This proves (4.6.1).

Proof: [that Errn8s   8.] Let us consider briefly the situation at time t when the youngest walker
Dpntq is at a P αZd XB2Lp0qzt0u. Let

K � ta P αZdzt0u ; P rDa
T � 0su

where T is the first jump of Da, a standard motion started from a. A new walker is created precisely
when the youngest walker jumps from within K. Of course by (C 1) K � αZd XB2Lp0q, and hence

r0 � mintP rDa
T � 0s ; a P Ku ¡ 0.

Thus if we are looking to wait until either the youngest walker has left K into αZdzt0u or has hit 0, we wait
at most a geometric number of jumps with success probability r0. After leaving K up until it re-enters or
hits 0, the youngest walker moves as a standard motion. In particular, it moves as a random walk with
a bounded symmetric jump distribution. From well known facts concerning transience of random walks
in dimensions d ¥ 3,

r1 :� sup
 
P
�Dt ¥ 0, Da

t P K Y t0u� ; a P αZdzpK Y t0uq(   1.

Thus the number of returns a standard motion may make to Kzt0u is bounded above by a geometric
random variable with success probability 1� r1 ¡ 0.

Combining these observations with the strong Markov property of Dv, there are independent random
variables R1 (geometric with parameter 1� r1) and R0pkq (geometric with parameter r0) such that

rn8 ¤
R0̧

k�0

R1pkq

and thus Errn8s ¤ 1
r0p1�r1q . Note that this does not depend on a. �

Proof: [that the youngest walker in Dv has the distribution of Ĉv.] We show the two processes have the
same jump distribution and jump rate. Since the process Dv is strongly Markov it suffices to consider a
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single jump of the youngest walker Dpmq from some arbitrary a P αZd. We first consider the total jump
rate out from a. Since this depends on a, let us write it Jpaq. Then Jp0q � 0, and for a � 0,

Jpaq � αd

�
p
¸
b,n

1t0 P Φnpbq, a R Φnpbquφn �
¸
b,n

1t0 P Φnpbq,�a R Φnpbquφn

�
¸
b,n

1t0 P Φpbq,�a P Φnpbquφn
�

� αd

�¸
b,n

1t0 P Φnpbq, a R Φnpbquφn �
¸
b,n

1t0 P Φnpb� aq,�a R Φnpb� aquφn

�
¸
b,n

1t0 P Φpb� aq,�a P Φnpb� aquφn
�

� αd
¸
b,n

1t0 P Φpbq or a P Φpbquφn

which is the jump rate of Ĉa. The terms in the first line come from the movement in cases 1,2 and 4
respectively. For a � 0, if T is the time of the next jump of Dpmq,

PrDpnT qaT � 0s � αd

Jpaq

�¸
n

1t0 P Φnpaquφn �
¸
n

1t�a P Φp0quφn �
¸
b,n

1t0 P Φnpbq, a P Φnpbqqφn
�

which is the same as for Ĉa. Again the terms come from cases 1, 2 and 4 respectively. The first two
terms are the coalescence where only one of the two particles jumps. For c � 0,

PrDpnT qaT � cs � αd

Jpaq

�¸
b,n

1t0 P Φnpbq, a R Φnpbquφn �
¸
b,n

1t0 P Φnpbq,�a R Φnpbquφn
�

where again matches up to the transitions of Ĉv. Here we obtain only terms from cases 1 and 2. �

This completes the proof of Lemma 4.6.5. �

4.7 The mean field simplification

In this section we use the estimates of Section 4.6 to take the limit of the square bracket term MN pϕq
from our martingale decomposition. There are two main results we need in order to do this, which are
given as Lemma 4.7.1 and Lemma 4.7.5. Then finally we give the proof of Lemma 4.5.2 and thus complete
the argument leading to our main result. Lemma 4.7.1 is relatively easy to prove and is very similar to
an argument from Cox et al. (2010). Lemma 4.7.5 is proof of the mean field simplification and will take
us much longer.

Let FNs be the filtration generated by ξNs . With mild abuse of notation let ξN0 also refer to the initial
set of 1s (i.e. the set tx P SN ; ξα0 pxq � 1u).

Lemma 4.7.1 Let ε�N ¤ t1 ¤ t2 ¤ T . Then there exists C P p0,8q such that for all N P N

E

��» t2
t1

E
�
mN,i
s pϕq

���FNs1�ε�N ��mN,i

s�ε�N
pϕq ds


2
�
¤ Cε�N pt2 � t1qT

�
1�XN

0 p1q2
�

(4.7.1)

for i � 1, 2.

Proof: Note that whenever s2 ¡ s1 � ε�N , mN,i
s1 pϕq � E

�
mN,i
s1 pϕq��Fs1�ε�N � is FN

s2�ε�N
measurable, and

hence
E
��
mN,i
s1 pϕq � E

�
mN,i
s1 pϕq

���FNs1�ε�N �	�mN,i
s2 pϕq � E

�
mN,i
s2 pϕq

���FNs2�ε�N �	� � 0.
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Hence (4.7.1) is equal to» t2
t1

» ps1�ε�N q^t2

t1

E
��
mN,i
s1 pϕq � E

�
mN,i
s1 pϕq

���FNs1�ε�N �	�mN,i
s2 pϕq � E

�
mN,i
s2 pϕq

���FNs2�ε�N �	� ds2ds1

¤2

» t2
t1

» ps1�ε�N q^t2

s1

E
��
mN,i
s1 pϕq � E

�
mN,i
s1 pϕq

���FNs1�ε�N �	�mN,i
s2 pϕq � E

�
mN,i
s2 pϕq

���FNs2�ε�N �	� ds2ds1

Applying Lemma 4.4.7 the above is less than or equal to

2||ϕ||28QE

��� ¼
t1¤s1¤s2¤ps1�ε�N q^t2

XN
s1 p1qXN

s2 p1qds2ds1

��� .
By Lemma 4.4.5 E

�
XN
s2 p1q|FNs1

� � XN
s1 p1q and thus

E
�
XN
s1 p1qXN

s2 p1q
� � E

�
E
�
XN
s2 p1q|FNs1

�
XN
s1 p1q

� � E
��
XN
s1 p1q

�2
�
.

which gives us that (4.7.1) is less than or equal to

2||ϕ||28Q
» t2
t1

E
�
XN
s1 p1q2

� pε�N ^ pt2 � s1qq ds1

¤2||ϕ||28Qε�N
» t2
t1

E
�
XN
s1 p1q2

�
ds1.

Using Lemma 4.4.6 completes the proof. �

Let

γN1 �
¸

e,fPSN

�¸
n

1
 
0, e P ΦNn pfq

(
φn

�
P
�
τN p0, eq ¤ ε�N , τ

N p0, fq ¡ ε�N
�

γN2 �
¸

e,fPSN

�¸
n

1
 
e, f P ΦNn

(
φn

�
P
�
τN p0, eq ¡ ε�N , τ

N p0, fq ¡ ε�N
�

Lemma 4.7.2 For p � 1, 2, as N Ñ8, γNp Ñ γp.

Proof: Since Nε�N Ñ8 we simply note

γN1 �
¸

e,fPαZd

�¸
n

1 te, f P Φnuφn
�
P rτp0, eq ¤ Nε�N , τp0, fq ¡ Nε�N s

and the result follows. The argument for γ2 is no different. �

Let

rN px, zq � α2d

Q

¸
n

#
�
ΦNn p�xq X ΦNn p�zq

�
φn if x � z

and rN p0, 0q � 0. Let R be an αZd valued random variable such that PrR � ws � rp0, wq with the
convention that r � r1.

We next give a result which will be used to prove the crucial Lemma 4.7.5. This result essentially
says that as far as our limiting process is concerned, if a pair lineages moves for time r0, ε�N s and are
conditioned to finish in the same (finite) set of sites then that pair of lineages will coalesce.

61



Lemma 4.7.3 Let ϕ : Rd Ñ R be bounded and measurable. Then there exists a constant C P p0,8q such
that

αd

N

¸
x,y,z

ϕpxqϕpzqP
�
Bx,N
ε�N

P ξN0 , Bz,Nε�N P ξN0 , τN px, zq ¡ ε�N
�
QqN py, x, zq (4.7.2)

¤ C||ϕ||28XN
0 p1q2

�
N sup

u�v,w�0
P
�
Bu,N
ε�N

�Bv,N
ε�N

� w
�


Remark 4.7.4 Lemma 4.7.3 is designed to pair up with Lemma 4.6.5.

Proof: Let us first note that¸
w

rN p0, wq � α2d

Q

¸
n

¸
y,w

1t0, w P ΦNn pyquφn � 1

by the same calculation as (4.4.5). Now,
°
y qN py, x, zq � rN px, zq so (4.7.2) is less than or equal to

||ϕ||28
Qαd

N

¸
x,z

P
�
Bx,N
ε�N

P ξN0 , Bz,Nε�N P ξN0 , τN px, zq ¡ ε�N
�
rN px, zq

� ||ϕ||28
Qαd

N

¸
x,z,u,v

ξN0 puqξN0 pvqP
�
Bx,N
ε�N

� u,Bz,N
ε�N

� v, τN px, zq ¡ ε�N
�
rN px, zq

� ||ϕ||28
Qαd

N

¸
x,z,u,v

ξN0 puqξN0 pvqP
�
Bu,N
ε�N

� x,Bv,N
ε�N

� z, τN pu, vq ¡ ε�N
�
rN px, zq

¤ ||ϕ||28Qα�d
¸
u,v

αdξN0 puq
N

αdξN0 pvq
N

N
¸
x,z

P
�
Bu,N
ε�N

� x,Bv,N
ε�N

� z
�
rN px, zq

¤ ||ϕ||28Qα�d
¸
u,v

αdξN0 puq
N

αdξN0 pvq
N

N
¸
w

rN p0, wq
¸
x

P
�
Bu,N
ε�N

� x,Bv,N
ε�N

� x� w
�

� ||ϕ||28Qα�d
¸
u,v

αdξN0 puq
N

αdξN0 pvq
N

N
¸
w

rN p0, wqP
�
Bu,N
ε�N

�Bv,N
ε�N

� w
�

¤ ||ϕ||28Qα�dXN
0 p1q2

�
N sup

u�v,w�0
P
�
Bu,N
ε�N

�Bv,N
ε�N

� w
�


where we used Remark 4.6.3 to get from the second to third lines, and set z � x � w to get from the
fourth to fifth. �

We now have the crucial Lemma.

Lemma 4.7.5 Let ϕ : Rd Ñ R be bounded and Lipschitz. There exists C P p0,8q such that for p � 1, 2
and all s P pε�N ,8q,���E �

mN,p
s pϕq

��� FNs�ε�N ��QγpXs�ε�N pϕ
2q
���

¤ C||ϕ||
�

1

N1{4 �
1

N1{2 �N sup
u�v,w�0

P
�
Bu,N
ε�N

�Bv,N
ε�N

� w
�
� ��γNp � γp

��
XN
s�ε�N

p1q

where ||ϕ|| � ||ϕ||8 p||ϕ||lip � ||ϕ||8q � ||ϕ2||lip.

Remark 4.7.6 It will be important to keep track of different times and as such we need to consider the
dependence of the system of walks tBx,NuxPSN on the time at which we trace the lineage back from. For
the proof of Lemma 4.7.5 we adopt the convention that Bx,N refers to tracing lineages back from the fixed
time s P p0,8q. This convention also affects the coalescence times

τN px, yq � inftt ¥ 0 ; Bx,Nt � By,Nt u.
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Proof: For now let us concentrate on the case p � 1. Note that

E
�
ξNs pxqξNS pzqξ̂Ns pyq

��� FNs�ε�N � � P
�
ξN
s�ε�N

pBx,N
ε�N

q � 1, ξN
s�ε�N

pBz,N
ε�N

q � 1, ξN
s�ε�N

pBy,N
ε�N

q � 0
��� FNs�ε�N � .

Thanks to the Markov property the lineages Bw,N in the above expression, which run back over time
rs, s � ε�N s, are independent of FN

s�ε�N
. Of course also ξN

s�ε�N
P FN

s�ε�N
, and therefore the conditioning

Pr� � � |FN
s�ε�N

s acts as normal expectation with respect to only the random variables tBw,Nt uε
�
N
t�0.

We thus have

E
�
mN,1
s pϕqq

��� FNs�sε�N �
� αd

N

¸
x,y,z

ϕpxqϕpzqQqN py, x, zqP
�
Bx,N
ε�N

P ξN
s�ε�N

, Bz,N
ε�N

P ξN
s�ε�N

, By,N
ε�N

R ξN
s�ε�N

��� FNs�ε�N �
The proof will come in four stages. First we will use smoothness of ϕ to change the ϕpxqϕpzq to ϕpxq2.

Then we will apply Lemma 4.7.3 twice to change the Pr� � � |FN
s�ε�N

s into

P
�
Bx,N
ε�N

P ξN
s�ε�N

, τN px, zq ¤ ε�N , τ
N px, yq ¡ ε�N

��� FNs�ε�N �
�

¸
u

ξN
s�ε�N

puqP
�
Bx,N
ε�N

� u, τN px, zq ¤ ε�N , τ
N px, yq ¡ ε�N

��� FNs�ε�N �
�

¸
u

ξN
s�ε�N

puqP
�
Bx,N
ε�N

� u, τN px, zq ¤ ε�N , τ
N px, yq ¡ ε�N

�
.

Our third stage will be a change of variables and rearrangement using translation and symmetry. This
will leave us with a term which as our fourth and final stage we can take a limit of. In essence, the°
u ξ

N
s�ε�N

puq will become XN
s�ε�N

and the remaining
°
x,y,z ϕpxq2Qqpy, x, zqP r� � �s will become Qγ1ϕpuq2.

Along the way we will gradually accumulate error terms which we will record as EN1 , EN2 . . .. The term
which gives a non-zero contribution we keep track of as ΣN1 ,Σ

N
2 . . ..

Part One: Let

ΣN1 � αd

N

¸
x,y,z

ϕpxq2QqN py, x, zqP
�
Bx,N
ε�N

P ξN
s�ε�N

, Bz,N
ε�N

P ξN
s�ε�N

, By,N
ε�N

R ξN
s�ε�N

��� FNs�ε�N �

and then E
�
mN,1
s pϕqq

��� FN
s�sε�N

�
� ΣN1 � EN1 where

|En1 | ¤ Q||ϕ||8α
d

N

¸
x,y,z

|ϕpxq � ϕpzq|QqN py, x, zqP
�
Bx,N
ε�N

P ξN
s�ε�N

, Bz,N
ε�N

P ξN
s�ε�N

��� FNs�ε�N �
¤ Q||ϕ||8||ϕ||lipα

d

N

¸
x

¸
u

ξN
s�ε�N

puqP
�
Bx,N
ε�N

� u
��� FNs�ε�N �¸

y,z

qN px, y, zq|x� z|

� Q||ϕ||8||ϕ||lipα
d

N

¸
u

ξN
s�ε�N

puq
¸
x

P
�
Bx,N
ε�N

� u
�¸
z

rN px, zq|x� z|

� Q||ϕ||8||ϕ||lip
¸
u

αdξN
s�ε�N

puq
N

¸
x

P
�
Bu,N
ε�N

� x
�¸
w

rN p0, wq|w|

� Q||ϕ||8||ϕ||lipXN
s�ε�N

p1qE
� |R|?

N

�
¤ C?

N
||ϕ||8||ϕ||lipXN

s�ε�N
p1q

where w � z � x. Er|R|s   8 by (C 4).
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Part Two: Let

ΣN2 � αd

N

¸
x,y,z

ϕpxq2QqN py, x, zqP
�
Bx,N
ε�N

P ξN
s�ε�N

, τN px, zq ¤ ε�N , B
y,N

ε�N
R ξN

s�ε�N

��� FNs�ε�N �
and then ΣN2 � EN2 � ΣN1 where

EN2 � αd

N

¸
x,y,z

ϕpxq2QqN py, x, zqP
�
Bx,N
ε�N

P ξN
s�ε�N

, Bz,N
ε�N

P ξN
s�ε�N

, τN px, zq ¡ ε�N , B
y,N

ε�N
R ξN

s�ε�N

��� FNs�ε�N � .
Dropping By,N

ε�N
R ξN

s�ε�N
and using Lemma 4.7.3 (applied with the zero time of Lemma 4.7.3 taken to be

what is currently time s� ε�N ),

|EN2 | ¤ C||ϕ||28XN
s�ε�N

p1q2
�
N sup

u�v,w�0
P
�
Bu,N
ε�N

�Bv,N
ε�N

� w
�


.

We cut away one last error term. Let

ΣN3 � αd

N

¸
x,y,z

ϕpxq2QqN py, x, zqP
�
Bx,N
ε�N

P ξN
s�ε�N

, τN px, zq ¤ ε�N , τ
N px, yq ¡ ε�N

��� FNs�ε�N �
and then ΣN3 � ΣN2 � EN3 where

EN3 � αd

N

¸
x,y,z

ϕpxq2QqN py, x, zqP
�
Bx,N
ε�N

P ξN
s�ε�N

, τN px, zq ¤ ε�N , B
y,N

ε�N
P ξN

s�ε�N
, τN px, yq ¡ ε�N

��� FNs�ε�N � .
By essentially the same application of Lemma 4.7.3 we obtain

|EN3 | ¤ C||ϕ||28XN
s�ε�N

p1q2
�
N sup

u�v,w�0
P
�
Bu,N
ε�N

�Bv,N
ε�N

� w
�


.

Part Three: Note that

ΣN3 � αd

N

¸
x,y,z

ϕpxq2QqN py, x, zq
¸
u

ξN
s�ε�N

puqP
�
Bx,N
ε�N

� u, τN px, zq ¤ ε�N , τ
N px, yq ¡ ε�N

��� FNs�ε�N � .
By the Markov property at time s� ε�N , translation, symmetry and translation again

P
�
Bx,N
ε�N

� u, τN px, zq ¤ ε�N , τ
N px, yq ¥ ε�N

��� FNs�ε�N �
� P

�
Bx,N
ε�N

� u, τN px, zq ¤ ε�N , τ
N px, yq ¡ ε�N

�
� P

�
B0,N

ε�N
� u� x, τN p0, z � xq ¤ ε�N , τ

N p0, y � xq ¡ ε�N
�

� P
�
B0,N

ε�N
� x� u, τN p0, x� zq ¤ ε�N , τ

N p0, x� yq ¡ ε�N
�

� P
�
Bu,N
ε�N

� x, τN pu, x� z � uq ¤ ε�N , τ
N pu, x� y � uq ¡ ε�N

�
� P

�
Bu,N
ε�N

� x, τN pu, e� uq ¤ ε�N , τ
N pu, f � uq ¡ ε�N

�
where e � x� z and f � x� y. Note also

1tx, z P ΦNn pyqu � 1tx, x� e P ΦNn px� fqu
� 1t0,�e P ΦNn p�fqu.

64



In our new variables,

ΣN3 � αd

N

¸
x,e,f,u

ϕpxq2ξN
s�ε�N

puqQqN p�f, 0,�eqP
�
Bu,N
ε�N

� x, τN pu, e� uq ¤ ε�N , τ
N pu, f � uq ¡ ε�N

�

�
¸
u

αdξN
s�ε�N

puq
N

Q
¸
e,f

qN p�f, 0,�eqE
�
ϕ
�
Bu,N
ε�N

	2

1tτN pu, e� uq ¤ ε�N , τ
N pu, f � uq ¡ ε�Nu

�
.

Applying the Markov property at time s� ε�N ,

ΣN3 �
¸
u

αdξN
s�ε�N

puq
N

Q
¸
e,f

qN p�f, 0,�eqPNε�Nϕ puq
2 P

�
τN pu, e� uq ¤ ε�N , τ

N pu, f � uq ¥ ε�N
�

� XN
s�ε�N

�
PN
ε�N
ϕ2

	
Q
¸
e,f

qN p�f, 0,�eqP
�
τN p0, eq ¤ ε�N , τ

N p0, fq ¡ ε�N
�

� XN
s�ε�N

�
PN
ε�N
ϕ2

	
Q
¸
e,f

qN p�f, 0,�eqP
�
τN p0,�eq ¤ ε�N , τ

N p0,�fq ¡ ε�N
�

� XN
s�ε�N

�
PN
ε�N
ϕ2

	
QγN1

It is this expression that we deal with.
Part Four: For the remainder of the proof let us write ϕ2puq instead of ϕpuq2. The idea is that

thanks to the spatial rescaling PN
ε�N

�
ϕ2

� � ϕ2. We note���PNε�Nϕ2puq � ϕ2puq
��� � E

�
ϕ2

�
Bu,N
ε�N

	
� ϕ2puq

�
¤ ||ϕ2||lipE

����B0,N

ε�N

����
¤ ||ϕ2||lip

�
E
����B0,N

ε�N

���2�
1{2

� ||ϕ2||lip

���E

���
������
B0,1

Nε�N?
N

������
2
���
��


1{2

¤ C||ϕ2||lip 1?
N
pNε�N q1{2

� C||ϕ2||lipN�1{8

since recall we have ε�N � N�1{4. Note C does not depend on u. Therefore,���ΣN3 � γN1 QX
N
s�ε�N

pϕ2q
��� � QγN1

αd

N

¸
x

ξN
s�ε�N

puq
���PNε�Nϕ2puq � ϕ2puq

���
¤ C||ϕ2||lipXN

s�ε�N
p1qN�1{4

Finally, ���XN
s�ε�N

pϕ2qQγN1 �XN
s�ε�N

pϕ2qQγN1
��� ¤ C||ϕ||28

��γN1 � γ1

��XN
s�ε�N p1q.

Collecting all the error terms together completes the proof for p � 1.
The p � 2 case: The argument is the same strategy as the p � 1 case and we will only give an

outline. Let us recycle our notation EN1 ,ΣN1 , . . .. First obtain

E
�
mN,2
s pϕq

��� FNs�ε�N �
� αd

N

¸
x,y,z

ϕpxqϕpzqqN py, x, zqP
�
Bx,N
ε�N

R ξN
s�ε�N

, Bz,N
ε�N

R ξN
s�ε�N

, By,N
ε�N

P ξN
s�ε�N

��� FNs�ε�N � .
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We then change ϕpxqϕpzq to ϕpyq2. This is best done in two steps, and if one makes the first step the
transition from ϕpxqϕpzq to ϕpxqϕpyq then the error term EN1 is controlled essentially as before. Note
that by (C 2) (as in (4.4.5)),

°
z qN py, x, zq �

°
n #pΦnq1tx P ΦNn pyquφn and by (C 1) #pΦnq ¤ CpL{αqd

for some constant C P p0,8q. Thus

|EN1 | ¤ Q||ϕ||8||ϕ||lipα
d

N

¸
y

P
�
By,N P ξN

s�ε�N

��� FNs�ε�N �¸
x,z

qN py, x, zq|y � z|

¤ Q||ϕ||8||ϕ||lip
¸
u,y

αdξN
s�ε�N

puq
N

P
�
By,N � u

�¸
z

|y � z|CLdpN py, xq

¤ CLdQ||ϕ||8||ϕ||lip
¸
u

αdξN
s�ε�N

puq
N

¸
y

P
�
Bu,N � y

�¸
w

|w|CLdpN pwq

¤ CLdQ||ϕ||8||ϕ||lipXN
s�ε�N

p1q 1?
N

E r|W |s .

The error term EN2 arising from changing ϕpxqϕpyq to ϕpyq2 can be controlled in exactly the same way.
This leaves us dealing with

ΣN2 � αd

N

¸
x,y,z

ϕpyq2qN py, x, zqP
�
Bx,N
ε�N

R ξN
s�ε�N

, Bz,N
ε�N

R ξN
s�ε�N

, By,N
ε�N

P ξN
s�ε�N

��� FNs�ε�N � .
In the same way as in the case p � 1 we can transform this with two applications of Lemma 4.7.3 to

ΣN4 � αd

N

¸
x,y,z

ϕpyq2qN py, x, zqP
�
τN py, xq ¡ ε�N , τ

N py, zq ¡ ε�N , B
y,N

ε�N
P ξN

s�ε�N

��� FNs�ε�N �
� αd

N

¸
x,y,z

ϕpyq2qN py, x, zq
¸
u

ξN
s�ε�N

puqP
�
By,N
ε�N

� u, τN py, xq ¡ ε�N , τ
N py, zq ¡ ε�N

�
We then note that

P
�
By,N
ε�N

� u, τN py, xq ¡ ε�N , τ
N py, zq ¡ ε�N

�
� P

�
Bu,N
ε�N

� y, τN pu, u� eq ¡ ε�N , τ
N pu, u� fq ¡ ε�N

�
1tx, z P ΦNn pyqu � 1t�e,�f P ΦNn u

where e � y � x and f � y � z. Proceeding in the same fashion as the case p � 1 we reach

ΣN4 � αd

N

¸
u,y,e,f

ϕpyq2QqN p�e,�f, 0qP
�
Bu,N
ε�N

� y, τN pu, u� eq ¡ ε�N , τ
N pu, u� fq ¡ ε�N

�

�
¸
u

αdξN
s�ε�N

puq
N

Q
¸
e,f

qN p�e,�f, 0qE
�
ϕpBu,N

ε�N
q2
�
P
�
τN p0, eq ¡ ε�N , τ

N p0, fq ¡ ε�N
�

�
¸
u

αdξN
s�ε�N

puq
N

PN
ε�N
ϕ2puqQ

¸
e,f

qN p�e,�f, 0qP
�
τN p0,�eq ¡ ε�N , τ

N p0,�fq ¡ ε�N
�

� XN
s�ε�N

�
PN
ε�N
ϕ2

	
QγN2

The remainder of the argument proceeds exactly as in part 4 of the p � 1 case. �

Combining our results from Sections 4.6 and 4.7 allows us to finally prove Lemma 4.5.2.
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Proof: [of Lemma 4.5.2] Recall xMN pϕqys �
³t
0
mN,1
s pϕq �mN,2

s pϕqds. We use the decomposition����» t
0

mN,1
s pϕq �mN,2

s pϕqds�Qpγ1 � γ2q
» t

0

XN
s pϕ2qds

���� (4.7.3)

¤
¸
p�1,2

�» ε�N^t
0

��mN,p
s pϕq�� ds� �����

» ε�N_t
ε�N

mN,p
s pϕq � E

�
mN,p
s pϕq

��� FNs�ε�N � ds
�����

�
» ε�N_t
ε�N

���E �
mN,p
s pϕq

��� FNs�ε�N ��QγpX
N
s�ε�N

pϕq
��� ds�Qγp

» t
pt�ε�N q�

Xspϕ2qds
�

We estimate the first term (inside the sum) with Lemma 4.4.7 and the third with Lemma 4.7.5. The
fourth we estimate with the bound XN

s pϕ2q ¤ ||ϕ||28XN
s p1q. Taking expectations and estimating the

second term using Er|Z|s ¤ pErZ2sq1{2 and Lemma 4.7.1 gives us

E
�����» t

0

mN,1
s pϕq �mN,2

s pϕqds�Qpγ1 � γ2q
» t

0

XN
s pϕ2qds

�����
¤ ε�NC1||ϕ||28E

�
sup
s¤t

XN
s p1q

�
�
�
ε�N pt^ ε�N qC2||ϕ||28t

�
1�XN

0 p1q2
� 	1{2

�
�� 1

N1{4 �
1

N1{2 �N sup
u�v
w�0

P
�
Bu,N
ε�N

�Bv,N
ε�N

� w
�
� ��γNp � γp

���
tC3||ϕ||E
�

sup
sPpε�N ,ε�N_tq

XN
s�ε�N

p1q
�

� ε�NC4E
�
sup
s¤t

XN
s p1q

�
.

In the above, using Lemma 4.4.6 on the first, third and fourth terms, Lemma 4.6.5 and Lemma 4.7.2
on the third, and finally the fact that ε�N Ñ 0 on the first, second and fourth, we obtain that the whole
expression tends to zero as N Ñ8. �
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Chapter 5

Future work

We outline some ideas for future work.

5.1 Directly related to this thesis

5.1.1 Related to Chapter 3

• Address the question of uniqueness to the martingale problem for the SΛFV process (see Definition
3.1.5). In the absence of any obvious duality it is hard to gauge the difficulty of this problem. One
approach might be to use a lookdown construction similar to Donnelly and Kurtz (1999a) in order
to get duality; another idea would be to use a Dawson-Girsanov transform of the neutral process
(although it seems unlikely this would cover all cases).

• Look for a way to understand the versions of the SΛFV process which cannot be characterized using
Poisson point processes (see Remark 2.1.11).

5.1.2 Related to Chapter 4

• Remove the condition that size the reproduction events of the bursting process must be uniformly
bounded above by L (part of (C 1)).

• Do the necessary adaptations to prove bursting processes also rescale to super-Brownian motion in
dimension 2.

5.2 Further ideas

5.2.1 A deposition-type model

Let Λ be a Poisson point process with points pt, x, r, pq P r0,8q�Rd�t�1, 0, 1u of rate dtb dxbµpdiqb
νpdnq. One could study the process

Htpxq �
¸

pt,y,r,pqPΛ

p1ts ¤ t, x P Brpyqu.

When
³8
0
rdµpdrq   8 and ν P Pt�1, 0, 1u this defines (almost everywhere) a function which can be

thought of as a d-dimensional surface. If µ is an infinite measure and p is not a point mass the surface
will be rough. For example if ν puts mass 1{2 on both �1 and 1, for each c P Z the set of x P Rd such
that Htpxq � c will be a totally disconnected set.

This process might be interesting to rescale, for example if we scale in such a way as t Ñ Htpxq
becomes a Brownian motion then we obtain a Gaussian field.
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5.2.2 On the hierachical group

In Dawson and Greven (1993) a model of interacting diffusions is considered with the geographical space
as the hierarchical group (in place of the usual Rd). We will not include references to this area in our
own bibliography and refer the interested reader to Dawson et al. (1996) and Dawson and Greven (1999),
amongst others.

The Hierarchical group is best thought of as a tree like structure which describes the spatial structure
of an infinite collection of colonies of individuals. The interactions occurs on different spatial scales which
are set up in such a way as on each spatial scale the interaction is of a particular asymptotic rate and
(as the system size tends to infinity) can be isolated on a unique time-scale. Dawson and Greven (1993)
obtained results about duality, clustering, the nature of the non-trivial equilibria, and a highly technical
result concerning a fixed point of the rescaling procedure. Dawson and Greven (1993) worked with a
system of interacting (via migration) Wright-Fisher diffusions. In the later papers (Dawson et al. (1996)
and Dawson and Greven (1999)) it was shown that the system can be analysed in more detail using a
general type space and Fleming-Viot processes in place of Wright-Fisher diffusions1.

Most population models are restricted to dealing with local effects (i.e. selection, mutation) superim-
posed on a particle system which on its own would exhibit ancestral lineage duality. One advantage of
the multi-scale approach is that one can analyse superimposed effects in which individuals interact over
a large spatial scale, providing the interaction occurs in such a way as it depends only on (i) local things
and (ii) the global average of types from the large spatial scale.

Therefore, it seems likely that one could use these tools to provide a mathematical formulation for
individuals within competing populations cooperating. The idea one wishes to capture is that if, in some
large region, there are disproportionately many type 1 individuals and very few type 2 individuals, the
type 1s are able to kill off the type 2s at an increased rate. Let us give an example of what this means
on a single spatial scale, in the style of Dawson and Greven (1993).

Fix N P N and let c, b P r0,8q. Let tÑ xNj ptq for j P t1, . . . ,Nu be a system of interacting diffusions
defined by the equations

dxNj ptq � c
�
xN ptq � xNj ptq

�� b
�
xNj ptqp1� xNj ptqq

��b
xNj ptqp1� xNj ptqqdWN

j ptq (5.2.1)

xN ptq � 1

N

ņ

j�1

xNj ptq

where pWN
j qj,N are independent Brownian motions. The interpretation is that at each site j we have

individuals with type taken from t0, 1u, and xNj ptq specifies the proportion (so 0 ¤ xNj ptq ¤ 1) of type 1s
at time t in site j.

The final term in (5.2.1) is Wright-Fisher noise. The first term of (5.2.1) corresponds to migration;
individuals migrate out of the global average into site j at rate c. The middle term is intended to model
cooperation. It has a high value (corresponding to a force increasing the number of type 1s at j) when
xNj ptq is low (i.e. when there are few type 1s at j) but the global average of type 1s is high.

In the limit as N Ñ8 the global average xN ptq of type 1s is expected to converge (as a consequence
of strong law of large number effects) to some constant θ P r0, 1s. Thus the dynamics of the limiting
diffusions are expected to be

dxjptq � cpθ � xjptqq � bθp1� xjptqq �
b
xjptqp1� xjptqqdWjptq.

where Wjptq are independent Brownian motions. Note that the processes at different sites have decoupled
in the limit, leaving us with a system of (countably many) independent identically distributed diffusions.

It might also be interesting to analyse the system (5.2.1) where the type 0s are given a selective
advantage (which introduces another term into (5.2.1)) to compensate their cooperative disadvantage.

5.2.3 Connections to the Brownian web

Again, we will not include references to this area in our own bibliography. The connection is that,
suitably represented, the dual of the one dimensional SΛFV process rescales to the Brownian web. This

1Recall that the two type Fleming-Viot process has the Wright-Fisher diffusion describing the total mass of a single type
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was essentially proved in Ferrari et al. (2005). However, connections between the SΛFV process and the
Brownian web remains unexplored and it is possible that useful techniques could be transferred between
the two.
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Appendix A

The topology on Ξ

We go about placing a topology on Ξ and proving the results in Section 2.1.1. Let

CpKq � tf : K Ñ R ; f is continuousu ,

equipped with the supremum norm || � ||8. Let

L1ppRdqn, CpKnqq �
#

Φ : pRdqn Ñ CpKnq ; Φ is measurable and

»
pRdqn

||Φpzq||8dz   8
+

and let
Φ1 �2 Φ2 iff tz P pRdqn ; Φ1pzq � Φ2pzqu is Lebesgue null.

Let L1ppRdqn, CpKnqq be the quotient of L1ppRdqn, CpKnqq by �2. Then L1ppRdqn, CpKnqq is a Banach
space equipped with the norm ||Φ|| � ³

pRdqn ||Φpzq||8dz.
For ease of notation let us write

L8 � L8pRd,MF pKqq and L1rns � L1ppRdqn, CpKnqq.

Write also L1 � L1r1s.

Proposition A.1 (Evans (1998)) L8 is isometrically isomorphic to a closed subspace of the dual of
L1 via the action

pρ,Φq �
»
Rd
xΦpxq, ρpxqy dx,

where xΦpxq, ρpxqy � ³
K
pΦpxqpkqq pρpxqpdkqq.

We induce the weak-star topology on Ξ � L8 from this identification.

Remark A.2 It is in general not true that L8 is isomorphic to the whole dual of L1. By Theorem IV.1.1
of Diestel and Uhl (1977), isomorphism holds if and only if MF pKq has the Radon-Nikodym property
with respect to pRd,Lq (see the remarks following Definition III.1.3 of (Diestel and Uhl, 1977)). This
fails, for example, if K � t0, 1uN (with the usual σ-algebra generated by cylinder sets).

From the separability of L1 and the Banach-Alaoghu theorem we obtain

Proposition A.3 (Evans (1998)) Ξ is a compact metrizable space.

Let CpΞq denote the continuous functions from Ξ Ñ R equipped with supremum norm || � ||8. Then
CpΞq is a Banach space. An application of the Stone-Weierstrass theorem identifies a suitable class of
test functions:

Proposition A.4 (Evans (1998)) I is dense in CpΞq.
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Proof: Evans proves this without the restriction that for Ψ of the form p�, nq, ψ has compact support.
The modification required to prove our stated result is minimal. �

Proposition A.5 I is a seperating, convergence determining class of Ξ.

Proof: Evans proves that I separates points of Ξ. By Lemma 4.3 of Ethier and Kurtz (1986) the
compactness of Ξ implies that M � CpΞq is separating iff M is convergence determining. �

Proposition A.6 If ρm, ρ P Ξ and for all Ψ of the form p1, �q (in other words, ψ : Rd Ñ R continuous
with compact support and χ P CpKq) we have»

Rd
ψpxq xχ, ρmpxqy dxÑ

»
Rd
ψpxq xχ, ρpxqy dx

as mÑ8, then ρm Ñ ρ in Ξ.

Proof: We write || � || for the norm on L1. Lemma A.2 of Evans (1998) shows that functions of the
form x Ñ ψpxqχp�q where ψ : Rd Ñ R is integrable and χ P CpKq are dense in L1. A straightforward
modification of the argument allows us to assume that ψ is continuous with compact support.

Let rΦ P L1. Let ε ¡ 0 and and choose ψ, χ as above so as ||rΦp�q � ψp�qχ||   ε{3. By our assumptions
we may choose M such that for all m ¡ M , | ³Rd ψpxq xχ, ρmpxqy dx � ³

Rd ψpxq xχ, ρpxqy dx|   ε{3. A
straightforward use of the triangle inequality now shows that for all m ¡M����»

Rd

ArΦpxq, ρmpxqE dx� »
Rd

ArΦpxq, ρpxqE dx����   ε.

Thus, in the terminology of Proposition A.1, pρm, rΨq Ñ pρ, rΨq for all rΨ P L1 and we have the result. �

We have now proved all the statements of Proposition 2.1.7.
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Appendix B

I-Measurability

Lemma B.1 The set Iα0 is a measurable subset of I. The function

px, iq Ñ 1tx P Eiu

defined on Rd � I is pBd b Iq{B measurable. The functions

iÑ αd#pαZd X Eiq iÑ LpEiq iÑ Dpiq

are I{Bd measurable.

Proof:
Since Ei is Borel the function x,Ñ 1tx P Eiu is measurable. By (H 2), for each x P Rd the function

i Ñ 1tx P Eiu is measurable. Measurability of px, iq Ñ 1tx, P Eiu now follows (by Lemma 8.1(d) of
Williams (1991), for example).

Let us note also that

αd#pEi X αZdq � αd
¸

yPαZd
1ty P Eiu �

»
Rd
1trysα P Eiudy

and by (H 2) this is a measurable function of i. By dominated convergence (domination is easily achieved
since by (H 1) Ei is bounded),»

Rd
1trysα P Eiudy Ñ

»
Rd
1ty P Eiudy � LpEiq.

This expresses iÑ LpEiq as a pointwise limit of I{Bd measurable functions, which implies iÑ LpEiq is
measurable.

Note that
Dpiq � lim

αÓ0
sup
xPαZd

|x|1tx P Eiu

because Ei is open. Thus, again by the algebra of measurable functions, iÑ Di is measurable. It follows
from this that Iα0 P I. �
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Appendix C

Proof of Lemma 3.2.4

Lemma C.1 For each α P p0, 1s, »
I

µαpdiq
» 1

0

νipduquDpiq2d   8.

Proof: In fact we will prove something a bit stronger. Let 0   β1   β2   8. Note»
I

µpdiq
» 1

0

νipduquβd11tβ1 ¤ Dp1q ¤ β2u ¤
»
I

µpdiq
» 1

0

νipduquDpiqd1tβ1 ¤ Dpiq ¤ β2u

¤
»
I

µpdiq
» 1

0

νipduquDpiqd. (C.1)

By (H 3), »
I

µpdiq
» 1

0

νipduqu1tβ1 ¤ Dp1q ¤ β2u   8.

The stated result follows by taking β1 � α, β2 � 1{α and noting that α ¤ Dpiq ¤ 1{α if i R Iα0 . �

Proof: [Of Lemma 3.2.4] We seek to use Theorem 3.9 of Ligget (1985), from which the stated results
will follow, and to do so we must check equations (3.3) and (3.8) of Ligget (1985). There are some other
minor conditions required to check that our setting really satisfies the setup of Ligget (1985) but we will
omit those details. In order to check (3.3) and (3.8) of Ligget (1985) we must express our system in the
notation of Ligget (1985). Let

H �  
H � αZd ; H � H and Di P I, x P αZd such that H � Eipxq

(
be the set of all possible combinations of sites that a single reproduction event could overwrite. Let us
write

Φαi pyq � αZd X Eipyq.
For A � KH set

cHpζ,Aq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
U2

UpdfqUpdgq#
1
 
H � Φαi prysαq

(� ¹
xPΦαi prysαqzH

T̂ px; q
��¹

xPH
T px; q

�

�
¹
xPH

�
T px; q1tDη P A, ηpxq � ζpyqu � T̂ px; q1tDη P A, ηpxq � ζpxqu

�+

which is the rate at which the sites in H change type to a state η P A if the process is in state ζ. Note
that if A � KH the bottom line of the above expression is just 1.

74



Remark C.2 We do not ‘double count’ events; The term

1tH � Eiprysαqu
� ¹
xPΦαi prysαqzH

T̂ px; q
��¹

xPH
T pxq

�

checks that H � αZdXEiprysαq and the sites which are overwritten by the event py, i, u, f, gq are precisely
H. But note that we do not care whether or not the type of the overwritten site was ‘changed’ to the type
it already had. This is in keeping with the notation of Ligget (1985).

We note the slightly shorter form,

cHpζ,Aq �
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
U2

UpdfqUpdgq#
1
 
H � Φαi prysαq

(� ¹
xPΦαi prysαqzH

T̂ px; q
��¹

xPH
T px; q1tDη P A, ηpxq � ζpyqu

�+
.

Equation (3.3) of Ligget (1985) is the statement that a single site must only change type at finite
rate. Since the action of Definition 3.2.2 is spatially homogeneous we need only check the following.¸
tHPH ;HQ0u

sup
!
cH

�
ζ,KH

�
; ζ P KαZd

)
¤

¸
tHPH ;HQ0u

»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
U
Updfq

� 1tH � Φαi prysαqu
� ¹
xPΦαi prysαqzH

1tu ¤ fpxqu
��¹

xPH
1tu ¡ fpxqu

�

�
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
U
Updfq1t0 � Eiprysαqu

�
¸

tHPH ;HQ0u
1tH � Φαi prysαqu

� ¹
xPΦαi prysαqzH

1tu ¤ fpxqu
��¹

xPH
1tu ¡ fpxqu

�

�
»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq
»
U
Updfq1t0 � Φαi prysαqu

�
¸

G�Φαi prysαqzt0u
1tu ¥ fp0qu

� ¹
xPΦαi prysαqzpGYt0uq

1tu ¤ fpxqu
��¹

xPG
1tu ¡ fpxqu

�
(C.2)

We note that by Lemma 3.2.1,

¸
G�Φαi prysαqzt0u

»
U
Updfq1tu ¥ fp0qu

� ¹
xPΦαi prysαqzpGXt0uq

1tu ¤ fpxqu
��¹

xPG
1tu ¡ fpxqu

�

� u
¸

G�Φαi prysαqzt0u
u#pGqp1� uq#pΦαi prysαqzpGXt0uqq

� u

#pΦαi prysαqq�1¸
m�0

¸
G�Φαi prysαqzt0u

#pGq�m

u#pGqp1� uq#pΦαi prysαqq�1�#pGq

� u

#pΦαi prysαqq�1¸
m�0

�
#pΦαi prysαqq � 1

m



ump1� uqr#pΦαi prysαqq�1s�m

� u. (C.3)
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Putting (C.3) into (C.2) gives

¸
tHPH ;HQ0u

sup
!
cH

�
ζ,KH

�
; ζ P KαZd

)
¤

»
Rd
dy

»
I

µαpdiq
» 1

0

νipduq1t0 � Φαi prysαuu

¤
»
I

µαpdiq
» 1

0

νipduqu
»
Rd
dy 1t|y| ¤ Dpiq � αu

�
»
I

µpdiq
» 1

0

νipduqu
»
Rd
dy 1t|y| ¤ Dpiq � α, i R Iα0 u

¤
»
I

µpdiq
» 1

0

νipduqu
»
Rd
dy 1t|y| ¤ 2Dpiqu

� C

»
I

µpdiq
» 1

0

νipduquDpiqd   8.

where we used that i P IzIα0 implies α ¤ Dpiq to get from the third to fourth lines. Finiteness in the
above follows from (H 3) and thus (3.3) of Ligget (1985) holds. Note that (up to a constant) this is
precisely the bound we would expect from the dynamics of Definition 3.2.2.

We now approach (3.8) of Ligget (1985), which is a condition to the effect that long range dependence of
the reproduction mechanism is small. Again, since the action of Definition 3.2.2 is spatially homogeneous
we need only check that¸

tHPH ; 0PHu

¸
wPαZdzt0u

sup
!
||CHpζ, �q � CHpβ, �q||TV ; ζpuq � βpuq for all u P αZdztwu

)
(C.4)

is finite. We begin with the estimate that if ζpuq � βpuq for all u � w,

|CHpζ,Aq � CHpβ,Aq| (C.5)
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�
�¹

xPH
1tu ¡ fpxqu

�

�
�¹
xPH

1tDη P A, ηpxq � ζpyqqu �
¹
xPH

1tDη P A, ηpxq � βpyqqu
�

¤
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Rd
dy

»
I

µαpdiq
» 1

0

νipdiq
»
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Updfq
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�
�¹

xPH
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�
� 21tw P Hu

¤ 2

»
Rd
dy

»
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0
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U
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#
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�
�¹

xPH
1tu ¡ fpxqu

�
. (C.6)

Noting that the final line above does not depend on A we have

sup
!
||CHpζ, �q � CHpβ, �q||TV ; ζpuq � βpuq for all u P αZdztwu

)
¤ (C.6)
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and putting this into (C.4) gives

(C.4) ¤ 2
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where we used (C.3) to get from the second to third lines and then the fact that i P Iαz0 implies α ¤ Dpiq
to get from the fourth to the fifth. This is finite by Lemma C.1.

Thus we may use Theorem 3.9 of Ligget (1985). In particular the system of Definition 3.2.2 is well
defined by its dynamics and has a Markov pre-generator Ωα whose closure Ω is a Markov generator. All
that remains to do is show that the pre-generator Ωα matches our expression in the statement of the
Lemma. From Proposition 3.2(a) of Ligget (1985), the pre-generator for J P ∆α as

ΩαJpηq �
¸
HPH

»
KH

cHpη, dβq
�
Jpηβq � Jpηq

�
where ηβpxq � ηpxq for x R H and ηβpxq � βpxq for x P H. Considering the term relating to Jpηq,¸
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The last line of the above follows since for each py, i, u, f, gq there is precisely one H P H such that

1
 
H � Φαi prysαq

(� ¹
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T̂ px; q
��¹

xPH
T px; q

�
� 1,
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namely H � tx P Φαi prysαq ; T px; q � 1u. Now the term relating to Jpηβq. Writing out and swapping
some of the integrals gives us¸

HPH

»
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cHpη, dβqJpηβq

�
»
Rd
dy

»
I

µαpdiq
» 1

0
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»
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#�¹
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Jpηβq (C.7)

As before, with py, i, u, f, gq fixed there is precisely one H P H such that

1
 
H � Φαi prysαq

(� ¹
xPΦαi prysαqzH

T̂ px; q
��¹

xPH
T px; q

�
� 1,

namely H � tx P Φαi prysαq ; T px; q � 1u. For this H,»
KH

#�¹
xPH

1tDη P dβ, ηpxq � ζpyqu
�+

Jpηβq � Jpηy,i,u,f,gq

since the measure we are integrating with becomes a point mass on β P KH where βpxq � ηpyq. Putting
both these observations into (C.7) gives

¸
HPH

»
KH
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»
Rd
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»
I
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» 1

0
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»
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which completes the proof. �
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Appendix D

The Aldous-Rebolledo criterion

We give a statement of a very useful tightness criterion which is not commonly found in the literature.
Let A be a complete separable metric space. Recall that CpAq denotes the space of real valued continuous
functions of A.

Theorem D.1 (Theorem 9.1, Ethier and Kurtz (1986)) Let tY m ; m P Nu be a sequence of càdlàg
A valued processes. Suppose the sequence Y m satisfies the compact containment condition in A; for each
T   8 and ε ¡ 0 there exists a compact set Γε,T of A such that

sup
n

P rfor all t ¤ T, Y n� R Γε,T s   ε.

Let Θ be a dense subset of CpAq in the topology of uniform convergence on compact sets. Then tY m� ; m P
Nu is relatively compact if and only if for each f P Θ, tfpY m� q ; m P Nu is relatively compact as a set of
processes in DRr0,8q.

Theorem D.2 (Aldous-Rebolledo Criterion, Rebolledo (1980)) Let tY m� ; m P Nu be a sequence
of real valued processes. Then tY m� u is tight in DMF pRqr0,8q if the following conditions are satisfied.

(1) For each fixed t P r0,8q, tY mt umPN is tight (as a sequence of real valued random variables).

(2) Let ε ¡ 0 and T   8, and for each m let τm ¤ T be a stopping time with respect to the filtration
of Y m. Then there exists θ ¡ 0 and m0   8 such that

sup
m¥m0

sup
δPr0,θs

P
�|Y nτm�δ � Y nτm | ¡ ε

�   ε.

Remark D.3 There is a useful specialization of the criterion for the case where Y m is a semimartingale.
If Y m � Mm � Am is a decomposition of the semimartingale Y m, where Mm is a local martingale and
Am has locally finite variation, then it suffices to check (2) for both pxMmyqmPN and pAmqmPN, where
xMmy is the bracket process of Mm.
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