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MAS223 Statistical Inference and Modelling

Exercises and Solutions

The exercises are grouped into sections, corresponding to chapters of the lecture notes.
Within each section exercises are divided into warm-up questions, ordinary questions, and
challenge questions. Note that there are no exercises accompanying Chapter 8.

The vast majority of exercises are ordinary questions. Ordinary questions will be used in
homeworks and tutorials; they cover the material content of the course. Warm-up questions
are typically easier, often nothing more than revision of relevant material from first year
courses. Challenge questions are typically harder and test ingenuity.

This version of the exercises also contains solutions, which are written in blue. Solutions
to challenge questions are not always included, hints may be given instead. Some of the
solutions mention common pitfalls, written in red, which are mistakes that are (sometimes)
easily made.

The solutions sometimes omit intermediate steps of basic calculations, which are left to the
reader. For example, they may simply state

∫ x
0
λe−λu = 1− e−λu, and leave you to fill in the

intermediate steps.
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1 Univariate Distribution Theory

Warm-up Questions

1.1 Let X be a random variable taking values in {1, 2, 3}, with P[X = 1] = P[X = 2] = 0.4.
Find P[X = 3], and calculate both E[X] and Var[X].

Solution. Since P[X = 1] +P[X = 2] +P[X = 3] = 1, we have P[X = 3] = 0.2. With this, we
can calculate

E[X] = 1P[X = 1] + 2P[X = 2] + 3P[X + 3] = 1.8

E[X2] = 12P[X = 1] + 22P[X = 2] + 32P[X + 3] = 3.8

Using that Var(X) = E[X2]− E[X]2, we have Var(X) = 0.56.

1.2 Let Y be a random variable with probability density function (p.d.f.) f(y) given by

f(y) =

{
y/2 for 0 ≤ y < 2;

0 otherwise.

Find the probability that Y is between 1
2

and 1. Calculate E[Y ] and Var[Y ].

Solution. We have P[Y ∈ [1
2 , 1]] =

∫ 1
1/2(y/2) dy = 3/16. Similarly,

E[Y ] =

∫ ∞
−∞

yf(y) =

∫ 2

0
y(y/2) dy = 4/3

E[Y 2] =

∫ 2

0
(y3/2) dy = 2

so Var(Y ) = E[Y 2]− E[Y ]2 = 2/9.

Ordinary Questions

1.3 Define F : R→ [0, 1] by

F (y) =


0 for y ≤ 0;

y2 for y ∈ (0, 1);

1 for y ≥ 1.

(a) Sketch the function F , and check that it is a distribution function.

(b) If Y is a random variable with distribution function F , calculate the p.d.f. of Y .

Solution.

(a) Sketch of F should look like
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From the graph, F is continuous and (non-strictly) increasing. We have F (x) = 0 for
all x ≤ 0, so limx→−∞ F (x) = 0. Similarly, F (x) = 1 for all x ≥ 1, so limx→∞ F (x) = 1.
Hence, F satisfies all the properties of a distribution function.

(b) We have f(y) = F ′(y), so treating each case in turn,

f(y) =


0 for y ≤ 0;

2y for y ∈ (0, 1);

0 for y ≥ 1.

1.4 Let X be a discrete random variable, taking values in {0, 1, 2}, where P[X = n] = 1
3

for n ∈ {0, 1, 2}. Sketch the distribution function FX : R→ R.

Solution. Sketch should look like

Pitfall: The graph of F is not continuous; it jumps at 0, 1, 2, and is otherwise constant.

1.5 Define f : R→ [0, 1] by

f(x) =

{
0 for x < 0;

e−x for x ≥ 0.

(a) Show that f is a probability density function.

(b) Find the corresponding distribution function and evaluate P[1 < X < 2].

Solution.

(a) Clearly f(x) ≥ 0 for all x, and∫ ∞
−∞

f(x) dx =

∫ ∞
0

e−x dx =
[
−e−x

]∞
0

= 1,

so f is a probability density function.

3



c©Nic Freeman, University of Sheffield 2019.

(b) We need to calculate F (x) = P[X ≤ x] =
∫ x
−∞ f(u) du. For x ≤ 0 we have F (x) =∫ x

−∞ 0 dx = 0. For x ≥ 0, we have F (x) =
∫ 0
−∞ 0 du+

∫ x
0 e
−u, du = 0 + (1− e−x). Thus,

F (x) =

{
0 for x ≤ 0;

1− e−x for x ≥ 0.

Hence, P[1 < X < 2] = P[X < 2]− P[X ≤ 1] = P[X ≤ 2]− P[X ≤ 1] = F (2)− F (1) =
e−1 − e−2.

1.6 Sketch graphs of each of the following two functions, and explain why each of them is
not a distribution function.

(a) F (x) =

{
0 for x ≤ 0;

x for x > 0.

(b) F (x) =


0 for x < 0;

x+ 1
4

sin 2πx for 0 ≤ x < 1;

1 for x ≥ 1.

Solution. Sketches should look like

For (a), F (x) > 1 for x > 1, so F does not stay between 0 and 1. For (b), for x ∈ [0, 1) we

have F ′(x) = f(x) = 1 + 2π
4 cos(2πx), which is negative at, for example, x = 1

2 , so (as is clear

from the graph) F is not an increasing function.

1.7 Let k ∈ R and define f : R→ R by

f(x) =

{
k(x− x2) for x ∈ (0, 1),

0 otherwise.

Find the value of k for which f(x) is a probability density function, and calculate the
probability that X is greater than 1

2
.

Solution. We need f(x) ≥ 0 for all x, so we need k ≥ 0. Also, we need

1 =

∫ ∞
−∞

f(x) dx = k

∫ 1

0
x− x2 dx = k

[
x2

2
− x3

3

]1

0

=
k

6
.

So, k = 6. Therefore,

P[X ≥ 1
2 ] =

∫ ∞
1
2

f(x) dx =

∫ 1

1
2

6(x− x2) dx = 6

[
x2

2
− x3

3

]1

1
2

=
1

2
.
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1.8 The probability density function f(x) is given by

f(x) =


1 + x for −1 ≤ x ≤ 0;

1− x for 0 < x < 1;

0 otherwise.

Find the corresponding distribution function F (x) for all real x.

Solution. We have F (−1) = P[X ≤ −1] = P [X < −1] = 0. So F (x) = 0 for all x ≤ −1. If
x ∈ [−1, 0] then

F (x) =

∫ x

−∞
f(u) du = F (−1) +

∫ x

−1
(1 + u) du = 0 +

(x+ 1)2

2
.

Now, for x ∈ [0, 1], we have

F (x) =

∫ x

−∞
f(u) du = F (0) +

∫ x

0
(1− u) du =

1

2
+ x− x2

2
=

1 + 2x− x2

2
.

Pitfall: Forgetting the F(0) results in missing out the term 1
2 . It needs to be present because

for x ∈ (0, 1) we have

F (x) = P[X ≤ x] = P[X ≤ 0] + P[0 < X < x] = F (0) +

∫ x

0
(1− u) du.

Note that in the case of x ∈ [−1, 0] the equivalent term was F (−1) and was equal to 0.

Therefore, we have F (1) = 1. Since F is increasing and must stay between 0 and 1, we have
F (x) = 1 for all x ≥ 1.

Thus the distribution function F (x) is

F (x) =


0, for x < −1
(x+1)2

2 , for −1 ≤ x < 0
1+2x−x2

2 , for 0 ≤ x < 1

1, for x ≥ 1

1.9 Let

F (x) =
ex

1 + ex
for all real x.

(a) Show that F is a distribution function, and find the corresponding p.d.f. f .

(b) Show that f(−x) = f(x).

(c) If X is a random variable with this distribution, evaluate P[|X| > 2].

Solution.

(a) Since ex → 0 as x→∞, we have

lim
x→−∞

ex

1 + ex
=

0

1 + 0
= 0

lim
x→∞

ex

1 + ex
= lim

x→∞

1

e−x + 1
=

1

0 + 1
= 1
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Pitfall: It does not make sense to use that limx→∞ e
x =∞ and then incorrectly claim

that ∞
1+∞ = 1.

Using the quotient rule, the derivative of f , the corresponding p.d.f. , is

f(x) =
ex(1 + ex)− exex

(1 + ex)2
=

ex

(1 + ex)2
.

Therefore, f(x) > 0 for all x ∈ R, so F is an increasing function.

Since x 7→ ex is continuous, F is a composition of sums and (non-zero) divisions of
continuous functions; therefore F is continuous.

Hence, F satisfies all the properties of a distribution function.

(b) f(−x) = e−x

(1+e−x)2
= e2xe−x

e2x(1+e−x)2
= ex

(ex+1)2
= f(x).

(c) We have

P[|X| > 2] = P[X < −2] + P[X > 2]

= P[X ≤ −2] + (1− P[X ≤ 2])

= 1 + F (−2)− F (2)

= 1 + e−2

1+e−2 − e2

1+e2
≈ 0.238.

Note that here we used P[X < −2] = P[X ≤ −2], which holds because F is continuous.

1.10 Show that f(x) = 1
π

1
1+x2

, defined for all x ∈ R, is a probability density function.

Solution. Clearly f(x) ≥ 0 for all x, and∫ ∞
−∞

fX(x) dx =
1

π

∫ ∞
−∞

1

1 + x2
dx =

1

π

[
arctan(x)

]∞
−∞

=
1

π

(
π

2
− −π

2

)
= 1.

1.11 (a) Show that

f(x) =

{
x−2 if x > 1

0 otherwise

is a probability density function.

(b) Show that the expectation of a random variable X, with the probability density
function f given in (a), is not defined.

(c) For which values of r ∈ [0,∞) is
∫∞

1
x−r dx finite?

(d) Give an example of a random variable Y for which E[Y ] < ∞ but E[Y 2] is not
defined.

Solution.

(a) Clearly f(x) ≥ 0 for all x and∫ ∞
1

x−2dx =
[
(−x−1)

]∞
x=1

= 1

so f is a probability density function.
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(b) We have
∫∞
−∞ xfX(x) =

∫∞
1 x−1 dx, which by part (a) is infinite. Hence the expectation

of X is not defined.

(c) For r 6= 1 we have∫ ∞
1

x−rdx = lim
n→∞

∫ n

1
x−rdx = lim

n→∞

n−r+1

−r + 1
− 1

−r + 1

which is finite (and equal to 1
r−1) if −r + 1 < 0 and infinite if −r + 1 > 0. When r = 1

we have ∫ ∞
1

x−1dx = lim
n→∞

∫ n

1
x−1dx = lim

n→∞
log n =∞

Hence,
∫∞

1 x−rdx is finite if and only if r > 1.

(d) Let

f(y) =

{
2y−3 if x > 1

0 otherwise.

Then f(y) ≥ 0 for all y, and∫ ∞
−∞

f(y) dy =

∫ ∞
1

2y−3 dy =
[
−y−2

]∞
y=1

= 1

so f is a probability density function. From (a) we have that∫ ∞
−∞

y2fY (y)dy = 2

∫ ∞
1

y−1dy

is infinite and that ∫ ∞
−∞

yfY (y)dy = 2

∫ ∞
1

y−2dy =
2

3

is finite. Hence, if Y is a random variable with p.d.f. f , then E[Y ] is defined but E[Y 2]
is not.

1.12 The discrete random variable X has the probability function

P[X = x] =

{
1

x(x+1)
for x ∈ N

0 otherwise.

(a) Use the partial fractions of 1
x(x+1)

to show that P[X ≤ x] = 1− 1
x+1

, for all x ∈ N.

(b) Write down the distribution function F (x) of X, for x ∈ R. Sketch its graph.
What are the values of F (2) and F (3

2
)?

(c) Evaluate P[10 ≤ X ≤ 20].

(d) Is E[X] defined? If so, what is E[X]? If not, why not?

Solution.

(a) Using partial fractions we obtain the identity 1
x(x+1) = 1

x −
1

x+1 , provided x 6= 0,−1.
Hence, if x ∈ N,

P[X ≤ x] =

x∑
i=1

P[X = x]

=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ . . .+

(
1

x
− 1

x+ 1

)
= 1− 1

x+ 1
.
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(b) The distribution function is

F (u) =

{
1− 1

x+1 , for u ∈ [x, x+ 1) where x ∈ N
0, for u < 1

which looks like

F (2) = 1− 1
3 = 2

3 and F (3
2) = F (1) = 1

2 .

Pitfall: The graph of F is not continuous. The formula obtained in part (a) is only
valid for x ∈ N, and not for all x ∈ R. Since X is a discrete random variable, its
distribution function jumps at the points where X takes values (i.e. at x ∈ N) and is
constant in between those points.

(c) Since X is discrete,

P[10 ≤ X ≤ 20] = P[X ≤ 20]− P[X ≤ 9] = F (20)− F (9) = 11
210 .

Pitfall: X is discrete, and P[X = 10] > 0. So it’s F (20)−F (9), and not F (20)−F (10).

(d) Since X is discrete, E[X] is defined if and only if
∑

x xP[X = x] converges. In our case,
this sum is equal to

∞∑
x=1

x
1

x(x+ 1)
=

∞∑
x=1

1

x+ 1

which diverges.

To see that the sum diverges, we can write it as(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .

and note that each bracketed term is at least 1
2 ; of course

∑∞
x=1

1
2 =∞.

Challenge Questions

1.13 Show that there is no random variable X, with range N, such that P[X = n] is constant
for all n ∈ N.

Solution. Since X has range N we have P[X ∈ N] = 1. If P[X = n] = P[X = 1] for all n then
we would have

1 = P[X ∈ N] =
∞∑
n=1

P[X = n] =
∞∑
n=1

P[X = 1].

8
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If P[X = 1] = 0 then P[X ∈ N] = 0, which is impossible, but similarly if P[X = 1] > 0 then
the sum is equal to +∞, which is not possible either.

Hence, no such random variable exists.

1.14 Recall the meaning of ‘inscribing’ a cube within a sphere: the cube sits inside of the
sphere, with each vertex of the cube positioned on the surface of the sphere. It is not
especially easy to illustrate this on a two dimensional page, but here is an attempt:

Suppose that ten percent of the surface of the sphere is coloured blue, and the rest of
the surface is coloured red. Show that, regardless of which parts are coloured blue, it
is always possible to inscribe a cube within the sphere in such a way as all vertices of
the cube are red.

Hint: A cube has eight corners. Suppose that position of the cube is sampled uniformly
from the set of possible positions. What is the expected number of corners that are red?

Solution. Let X be a cube inscribed within the sphere, orientated uniformly at random.
Strictly speaking, in three-dimensional spherical coordinates (r, θ, φ) this means we let the
polar angle θ and azimuth angle φ be independent uniform random variables on (0, 2π). More
importantly, it means that the location of a given vertex of the cube is distributed uniformly
on the surface of the sphere.

Let X be the number of corners that are red. Label the corners from i = 1, . . . , 8. We can
write

X =
8∑
i=1

1{Ai=red},

where Ai is the colour of the ith corner. Here 1{Ai=red} is equal to 1 if Ai is red and equal to
zero if Ai is blue. Hence,

E[X] =

8∑
i=1

E
[
1{Ai=red}

]
=

8∑
i=1

P[Ai = red].

Since Ai is uniformly distributed on the surface of the sphere, and 90% of the sphere is red,
we have P[Ai = red] = 9

10 . Hence,

E[X] = 9
10 × 8 = 7.2.

Note that X can only take the values {1, 2, . . . , 8}. Since E[X] > 7, we must have P[X =

8] > 0. Therefore, there are orientations of the cube for which all 8 vertices are red.

9
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2 Standard Univariate Distributions

Warm-up Questions

2.1 (a) A standard fair dice is rolled 5 times. Let X be the number of sixes rolled. Which
distribution (and which parameters) would you use to model X?

(b) A fair coin is flipped until the first head is shown. Let X be the total number of
flips, including the final flip on which the first head appears. Which distribution
(and which parameter) would you use to model X?

Solution.

(a) The binomial distribution, with parameters n = 5 and p = 1
6 .

(b) The geometric distribution, with parameter p = 1
2 .

Ordinary Questions

2.2 Let λ > 0. Write down the p.d.f. f of the random variable X, where X ∼ Exp(λ), and

calculate its distribution function F . Hence, show that f(t)
1−F (t)

is constant for t > 0.

Solution. The p.d.f. of X is

f(x) =

{
λe−λx for x > 0;

0 otherwise.

It’s distribution function F (x) =
∫ x
−∞ f(u) du is clearly zero for x ≤ 0, and for x > 0 we have∫ x

−∞ f(u) du =
∫ x

0 λe
−λu du = 1− e−λx. Therefore,

F (x) =

{
1− e−λx for x > 0;

0 otherwise.

Hence, for t > 0 we have f(t)
1−F (t) = λe−λt

e−λt
= λ.

Pitfall: Don’t forget the ‘otherwise’ case where f(x) = 0 or F (x) = 0. The same comment

applies to many other questions.

2.3 Let λ > 0 and let X be a random variable with Exp(λ) distribution. Let Z = bXc,
that is let Z be X rounded down to the nearest integer. Show that Z is geometrically
distributed with parameter p = 1− e−λ.

Solution. Since X > 0, we have Z ∈ {0, 1, 2, . . .}, hence P[Z = z] = 0 for all other z. For
n ∈ {0, 1, 2, . . .} we have

P[Z = n] = P[n ≤ X < n+ 1]

=

∫ n+1

n
λe−λx dx

= e−λn − e−λ(n+1)

= e−λn(1− e−λ)

= (1− p)np.

10
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which is the probability function of the geometric distribution.

2.4 Let µ ∈ R. Let X1 and X2 be independent random variables with distributions N(µ, 1)
and N(µ, 4), respectively. Let T1, T2 and T3 be defined by

T1 =
X1 +X2

2
, T2 = 2X1 −X2, T3 =

4X1 +X2

5
.

Find the mean and variance of T1, T2 and T3. Which of E[T1], E[T2] and E[T3] would
you prefer to use as an estimator of µ?

Solution. We have E[T1] = 1
2(E[X1] + E[X2]) = E[T2] = µ. Similarly, E[T2] = E[T3] = µ, so

all are unbiased when used as estimators of µ. We have

Var(T1) = (1
2)2 (Var(X1) + 2 Cov(X1, X2) + Var(X2)) = 1

4(1 + 0 + 4) = 5
4 ,

and similarly Var(T2) = 8, Var(T3) = 4
5 .

On this information, we prefer E[T3] as an estimator of µ, because T3 has the smallest variance

and so is likely to be closest to its mean.

2.5 Let X be a random variable with Ga(α, β) distribution.

(a) Let k ∈ N. Show that

E[Xk] =
α(α + 1) · · · (α + k − 1)

βk
.

Hence, calculate µ = E[X] and σ2 = Var(X) and verify that these formulas match
the ones given in lectures.

(b) Show that E
[(

X−µ
σ

)3
]

= 2√
α

.

Solution.

(a) From the p.d.f. of the Gamma distribution, we have

E[Xk] =

∫ ∞
0

xk
βα

Γ(α)
xα−1e−βx dx

=
βα

Γ(α)

∫ ∞
0

xk+α−1e−βx dx

=
βα

Γ(α)

Γ(k + α)

βk+α

=
Γ(k + α)

βkΓ(α)

=
(k + α− 1)(k + α− 2) · · · (k + α− k + 1)(k + α− k)Γ(α)

βkΓ(α)

=
α(α+ 1) · · · (α+ k − 1)

βk
.

To deduce the second line from the third line, we use Lemma 2.3 from lecture notes,
and to deduce the fifth line from the fourth line we use Lemma 2.2, also from lecture
notes.

11
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Pitfall: It is true that Γ(n) = (n − 1)! for n ∈ N, but if n /∈ N then (n − 1)! does not
make sense. For general α ∈ (1,∞) we have Γ(α) = (α − 1)Γ(α − 1), which is what
must be be used to deduce the fifth line above.

If k = 1 then E[X] = a
b . If k = 2 then E[X2] = α(α+1)

β2 and so the variance of X is

Var(X) = E[X2]− E[X]2 = α(α+1)
β2 − α2

β2 = α
β2 .

(b) With µ = E[X] and σ2 = Var(X), multiplying out and using the formulae from (a), we
have

E[(X − µ)3]

σ3
=

E[X3 − 3X2µ+ 3Xµ2 − µ3]

σ3

=
E[X3]− 3E[X]E[X2] + 2E[X]3

σ3

=

α(α+1)(α+2)
β3 − 3α2(α+1)

β3 + 2α3

β3

σ3

=
α(α2 + 2α+ α+ 2− 3α2 − 3α+ 2α2)/β3

√
α3/β3

=
2√
α
.

2.6 (a) Using R, you can obtain a plot of, for example, the p.d.f. of a Ga(3, 2) random
variable between 0 and 10 with the command

curve(dgamma(x,shape=3,scale=2),from=0,to=10)

Use R to investigate how the shape of the p.d.f. of a Gamma distribution varies
with the different parameter values. In particular, fix a value of β, see how the
shape changes as you vary α.

(b) Investigate the effect that changing parameters values has on the shape of the
p.d.f. of the Beta distribution. To produce, for example, a plot of the p.d.f. of
Be(4, 5), use

curve(dbeta(x,shape1=4,shape2=5),from=-1,to=2)

Solution.

(a) You should discover that decreasing α makes the p.d.f. appear more skewed (to the
right). This makes it more likely that a sample of the random variable has a large
value.

(b) You should discover that the parameter shape1 (which we normally denote by α) con-
trols the behaviour near x = 0, and shape2 (that is, β), controls the behaviour near
x = 1. In both case, the parameters can be tuned to cause (slow or fast) explosion to
∞, convergence to 1, and (slow or fast) convergence towards 0.

2.7 Suggest which standard discrete distributions (or combination of them) we should use
to model the following situations.

12
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(a) Organisms, independently, possess a given characteristic with probability p. A
sample of k organisms with the characteristic is required. How many organisms
will need to be tested to achieve this sample?

(b) In Texas Hold’em Poker, players make the best hand they can by combining two
cards in their hand with five ‘community’ cards that are placed face up on the
table. At the start of the game, a player can only see their own hand. The
community cards are then turned over, one by one.

A player has two hearts in her hand. Three of the community cards have been
turned over, and only one of them is a heart. How many hearts will appear in the
remaining two community cards?

Use a computer to find the probability of seeing k = 0, 1, 2 hearts.

Solution.

(a) We’ll need to sample, with success probability p, until we achieve k successes. So we
will need to test N ∼ NegBin(k, p) organisms to find our sample.

(b) There are a total of 52 cards, 13 of each of the four suits. Our player can see 5 cards,
3 of which are hearts. Therefore, the unknown cards consist of 47 cards, 10 of which
are hearts. The number of hearts that will be drawn in the next two community
cards is, therefore, a hypergeometric distribution with parameters N = 47 (population
size), k = 10 (successes), n = 2 (trials). As a result (use e.g. R), P[X = 0] ≈ 0.65,
P[X = 1] ≈ 0.32 and P[X = 2] = 0.03.

2.8 Let X be a N(0, 1) random variable. Use integration by parts to show that E[Xn+2] =
(n+ 1)E[Xn] for any n = 0, 1, 2, . . .. Hence, show that

E[Xn] =

{
0 if n is odd;

(1)(3)(5) . . . (n− 1) if n is even.

Solution. Integrating by parts, for any n ≥ 0, gives

E[Xn] =

∫ ∞
−∞

xn
1√
2π
e−x

2/2 dx

=

[
1√
2π

xn+1

n+ 1
e−x

2/2

]∞
−∞
−
∫ ∞
−∞

xn+1

n+ 1

1√
2π

(−x)e−x
2/2 dx

= 0 +

∫ ∞
−∞

xn+2

n+ 1

1√
2π
e−x

2/2 dx =
1

n+ 1
E[Xn+2]

Rearranging slightly,
E[Xn+2] = (n+ 1)E[Xn].

Since E[X] = 0, induction gives that E[Xn] = 0 for all odd n. Since E[X0] = 1, induction

gives that E[Xn] = (1)(3)(5) . . . (n− 1) for all even n.

2.9 Let X ∼ N(µ, σ2). Show that E[eX ] = eµ+σ2

2 .

13
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Solution. Using the scaling properties of normal random variables from (2.2), we write X =
µ+ Y where Y ∼ N(0, σ2). Hence, eX = eµ+Y = eµeY and

E[eY ] =
1√
2πσ

∫ ∞
−∞

eye−
y2

2σ2 dy

=
1√
2πσ

∫ ∞
−∞

exp

{
− 1

2σ2

(
y2 + 2σ2y

)}
dy

=
1√
2πσ

∫ ∞
−∞

exp

{
− 1

2σ2

(
(y + σ2)2 − σ4

)}
dy

= e
σ2

2
1√
2πσ

∫ ∞
−∞

exp

{
−(y + σ2)2

2σ2

}
dy

= e
σ2

2

Here, we use the same method as in Example 5: in the third line we complete the square and
to deduce the final line we use that the p.d.f. of a N(−σ2, σ) random variable integrates to
1. Therefore,

E[eX ] = eµE[eY ] = eµ+σ2

2 .

Challenge Questions

2.10 Let X be a random variable with a continuous distribution, and a strictly increasing
distribution function F . Show that F (X) has a uniform distribution on (0, 1).

Suggest how we might use this result to simulate samples from standard distributions.

Solution. Since F is strictly increasing, it has an inverse function F−1. For x ∈ (0, 1), we
have

P[F (X) ≤ x] = P[X ≤ F−1(x)] = F (F−1(x)) = x.

Hence, F (X) has the uniform distribution on (0, 1).

We write this as U = F (X), where U is uniform on (0, 1). Therefore, F−1(U) = X. Conse-
quently, if we can simulate uniform random variables, and calculate F−1(x) for given x, we
can simulate X as F−1(U).

In fact, this is a very common way of simulating random variables. Recall that a distribution

function F is not necessarily strictly increasing, but it is necessarily non-strictly increasing.

With some care, it is possible to extend this result to cover the general case. For many

standard distributions, F−1 can be computed explicitly.

2.11 Prove that Γ(1
2
) =
√
π.

Hint. Thanks to the normal distribution, you know that
∫∞
−∞ e

−x2/2 dx =
√

2π.

14
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3 Transformations of Univariate Random Variables

Warm-up Questions

3.1 Let g : R→ R be given by g(x) = x3 + 1.

(a) Sketch the graph of g, show that g is strictly increasing, and find its inverse
function g−1.

(b) Let R = [0, 2]. Find g(R).

Solution.

(a) A sketch of the function g looks like

It is clear from the graph that g is strictly increasing. If we set y = x3 + 1 then
x = (y − 1)1/3, so the inverse function is g−1(y) = (y − 1)1/3.

(b) We have g(0) = 1 and g(2) = 23 + 1 = 9, so g(R) = [1, 9].

Ordinary Questions

3.2 Let X be a random variable with p.d.f.

fX(x) =

{
x−2 for x > 1

0 otherwise.

Define g(x) = ex and let Y = g(X).

(a) Show that g(x) is strictly increasing. Find its inverse function g−1(y), and dg−1(y)
dy

.

(b) Identify the set RX on which fX(x) > 0. Sketch g and show that g(RX) = (e,∞).

(c) Deduce from (a) and (b) that Y has p.d.f.

fY (y) =

{
(log y)−2 1

y
for y > e

0 otherwise.

Solution.

15
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(a) We have dg(x)
dx = ex > 0, so g is strictly increasing. If we have y = ex then x = log y, so

the inverse function is g−1(y) = log y. Hence dg−1(y)
dy = 1

y .

(b) fX(x) is non-zero for x ∈ RX = (1,∞). A sketch of g looks like

and hence g(RX) = (e,∞).

(c) Since g is strictly increasing, we can use the formula

fY (y) =

{
fX(g−1(y))×

∣∣∣dg−1(y)
dy

∣∣∣ if y ∈ g(RX)

0 otherwise,

=

{
(log y)−2

y for y > e

0 otherwise.

3.3 Let X be a random variable with the uniform distribution on (0, 1), and let Y = − logX
λ

where λ > 0. Show that Y has an Exp(λ) distribution.

Solution. We have fX(x) = 1 for x ∈ (0, 1) (and fX(x) = 0 otherwise). Hence RX = (0, 1).
Our transformation is g(x) = − log x

λ . For x > 0 we have dg
dx = −1

λx < 0, so g is strictly
decreasing. A sketch of g looks like

from which we can see that g(RX) = (0,∞).

Writing y = − log x
λ , we have x = e−λy so g−1(y) = e−λy and dg−1

dy = −λe−λy. Hence, we can
apply Lemma 3.1 to find fY (y). Thus,

fY (y) =

{
fX(g−1(y))

∣∣∣dg−1(y)
dy

∣∣∣ for y ∈ g(RX)

0 otherwise.

16
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Hence, using parts (a),(c) and (d) we obtain

fY (y) =

{
λe−λy for y ∈ (0,∞);

0 otherwise.

This is the p.d.f. of the Exp(λ) distribution. Hence, Y ∼ Exp(λ).

Pitfall: Don’t forget to comment that g is strictly decreasing (or increasing), or else it isn’t

clear that you’ve checked whether or not Lemma 3.1 applies.

3.4 Let α, β > 0.

(a) Show that B(α, β) = B(β, α).

(b) Let X be a random variable with the Be(α, β) distribution. Show that Y = 1−X
has the Be(β, α) distribution.

Solution.

(a) We have B(α, β) = Γ(α)Γ(β)
Γ(α+β) = Γ(β)Γ(α)

Γ(α+β) = B(β, α).

(b) We aim to use Lemma 3.1. We have

fX(x) =

{
1

B(α,β)x
α−1(1− x)β−1 for x ∈ (0, 1);

0 otherwise.

Define g : (0, 1)→ (0, 1) by
g(x) = 1− x

and then Y = g(X). Note that g is strictly decreasing on (0, 1). We have g−1(y) = 1−y
and dg−1

dy = −1. A sketch of g looks like

from which we can see that g((0, 1)) = (0, 1). Hence, from Lemma 3.1 we have

fY (y) = fX(g−1(y))

∣∣∣∣dg−1

dy

∣∣∣∣ =
1

B(α, β)
(1− y)α−1yβ−1 × |−1| .

for y ∈ (0, 1), giving

fY (y) =

{
1

B(β,α)y
β−1(1− y)α−1 for y ∈ (0, 1);

0 otherwise.

This is the p.d.f. of the Beta(β, α) distribution.

17
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3.5 Let α > 0.

(a) Show that B(α, 1) = 1
α

.

(b) Let X ∼ Be(α, 1) distribution. Let Y = r
√
X for some positive integer r. Show

that Y also has a Beta distribution, and find its parameters.

Solution.

(a) From Lemma 2.2 we have Γ(α+ 1) = αΓ(α), hence

B(α, 1) =
Γ(α)Γ(1)

Γ(α+ 1)
=

1

α
.

(b) We aim to use Lemma 3.1. From (a) we have,

fX(x) =

{
1

B(α,1)x
α−1 for x ∈ (0, 1),

0 otherwise,

=

{
αxα−1 for x ∈ (0, 1),

0 otherwise.

Hence, RX = (0, 1). The function g(x) = r
√
x

is strictly increasing on (0, 1) and g(RX) = (0, 1). We have g−1(y) = yr and d
dyg
−1(y) =

ryr−1. Hence, by Lemma 3.1, for y ∈ (0, 1) we have

fY (y) = αyr(α−1) · ryr−1 = rαyrα−1.

Thus,

fY (y) =

{
rαyrα−1 if y ∈ (0, 1)

0 otherwise

which is the p.d.f. of a Be(rα, 1) distribution. So Y has a Beta distribution with
parameters rα and 1.

3.6 Let X have a uniform distribution on [−1, 1]. Find the p.d.f. of |X| and identify the
distribution of |X|.

Solution. If x < 0 then P[|X| ≤ 0] = 0. And since |X| ∈ [0, 1], if x > 1 we have P[|X| ≤ x] =
1. For x ∈ [0, 1] we have

P[|X| ≤ x] = P[−x ≤ X ≤ x] =

∫ x

−x
fX(u) du =

∫ x

−x

1

2
du = x.

18
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Differentiating, we have

f|X|(x) =

{
1 for x ∈ [0, 1];

0 otherwise.

Therefore, |X| is uniform on [0, 1].

Pitfall: If we try the ‘standard’ method of Lemma 3.1, we’ll have g(x) = |x|, which is not

monotone on [−1, 1]; so the formula fY (y) = fX(g−1(y))|dg
−1

dy | does not apply here – and it
will give the wrong answer.

The same issue applies to several other questions in this section.

3.7 Let α, β > 0 and let X ∼ Be(α, β). Let c > 0 and set Y = c/X. Find the p.d.f. of Y .

Solution. We aim to use Lemma 3.1. We have X ∼ Be(α, β) and Y = c/X, so set g(x) = c/x
where g : (0, 1)→ R.

Therefore, g is strictly decreasing on (0, 1). Then g−1(y) = c
y , and dg−1

dy = −c
y2

. Further,

fX(x) > 0 for x ∈ (0, 1), RX = (0, 1) and g(RX) = (c,∞). Hence, for y > c we have

fY (y) =
1

B(α, β)

(
c

y

)α−1(
1− c

y

)β−1 c

y2

=
cα

B(α, β)

(y − c)β−1

yα+β
.

For y ≤ c, we have fY (y) = 0.

3.8 Let Θ be an angle chosen according to a uniform distribution on (−π
2
, π

2
), and let

X = tan Θ. Show that X has the Cauchy distribution.

Solution. We aim to use Lemma 3.1 (with X = Θ). The random variable Θ has a U(−π
2 ,

π
2 )

distribution, so

fΘ(θ) =

{
1
π for − π

2 < θ < π
2 ;

0 otherwise.
.

The function g(θ) = tan θ is strictly increasing on the range of Θ, that is on (−π
2 ,

π
2 ).
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Moreover, g−1(y) = arctan(y) and g−1(y) ∈ (−π
2 ,

π
2 ) for all y ∈ R. Hence, for all y ∈ R,

fY (y) = fΘ(g−1(y))

∣∣∣∣dg−1

dy

∣∣∣∣ =
1

π

1

1 + y2

Hence, Y has the Cauchy distribution.

3.9 Let X be a random variable with the p.d.f.

f(x) =


1 + x for −1 < x < 0;

1− x for 0 < x < 1;

0 otherwise.

Find the probability density functions of

(a) Y = 5X + 3

(b) Z = |X|

Solution.

(a) The function g(x) = 5x+ 3 is strictly increasing, so we can use the formula

fY (y) = fX(g−1(y))

∣∣∣∣ ddyg−1(y)

∣∣∣∣
on each of the intervals in the definition of fX . We note g−1(y) = y−3

5 and d
dyg
−1(y) = 1

5 ,
so

fY (y) =


(

1 + y−3
5

)
1
5 for − 1 < y−3

5 < 0(
1− y−3

5

)
1
5 for 0 < y−3

5 < 1

0 otherwise

.

=


y+2
25 for − 2 < y < 3

8−y
25 for 3 < y < 8

0 otherwise.

20



c©Nic Freeman, University of Sheffield 2019.

(b) The function g(x) = |x| is not monotonic, so instead we use that for z ≥ 0

FZ(z) = P[Z ≤ z]
= P[−z ≤ X ≤ z]

=

{∫ 0
−z(1 + u) du+

∫ z
0 (1− u) du for z ≤ 1

1 for z > 1

=

{
2z − z2 for z ≤ 1

1 for z > 1.

If z < 0 then P[|X| < z] = 0. So the p.d.f. of Z is

fZ(z) =
d

dz
FZ(z) =

{
2(1− z) 0 ≤ z < 1
0 otherwise.

3.10 Let X have the uniform distribution on [a, b].

(a) For [a, b] = [−1, 1], find the p.d.f. of Y = X2.

(b) For [a, b] = [−1, 2], find the p.d.f. of Y = |X|.

Solution.

(a) The probability density function of X is

fX(x) =

{
1
2 for x ∈ [−1, 1],

0 otherwise.

We have Y ≥ 0, so fY (y) = 0 for y ≤ 0. For y ∈ (0, 1] we have

P[Y ≤ y] = P[0 ≤ X2 ≤ y] = P[−√y ≤ X ≤ √y] =

∫ √y
−√y

1

2
dy =

√
y.

Thus, P[Y ≤ 1] = 1 and hence P[Y ≤ y] = 1 for all y ≥ 1. Differentiating, we obtain

fY (y) =


0 for y ≤ 0,
1
2y
−1/2 for y ∈ (0, 1],

0 for y > 1.

(b) The probability density function of X is

fX(x) =

{
1
3 for x ∈ [−1, 2],

0 otherwise.

We have Y ≥ 0, so fY (y) = 0 for y ≤ 0. For y > 0, we need to consider three cases;
y ∈ (0, 1] and y ∈ (1, 2] and y > 2.

For y ∈ [0, 1], we have

P[Y ≤ y] = P[−y ≤ X ≤ y] =

∫ y

−y

1

3
dy =

2y

3
.
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For y ∈ (1, 2], we have

P[Y ≤ y] = P[Y ≤ 1] + P[1 < X ≤ y] =
2

3
+

∫ y

1

1

3
dy =

2

3
+
y − 1

3

For y < 2, we note that P[Y ≤ 2] = 1 from the previous case, so P[Y ≤ y] = 1 for all
y > 2.

Differentiating, we obtain

fY (y) =


0 for y ≤ 0 or y > 2,
2
3 for y ∈ [0, 1],
1
3 for y ∈ (1, 2].

3.11 Let X have a uniform distribution on [−1, 1] and define g : R→ R by

g(x) =

{
0 for x ≤ 0;

x2 for x > 0.

Find the distribution function of g(X).

Solution. Clearly Y = g(X) ≥ 0, so P[Y ≤ y] = 0 for all y < 0. We have

P[Y = 0] = P[X ≤ 0] =

∫ 0

−1

1

2
dx =

1

2
.

For y ∈ (0, 1] we have

P[Y ≤ y] = P[Y = 0] + P[0 < Y ≤ y] =
1

2
+

∫ √y
0

1

2
dy =

√
y + 1

2
,

which means that P[Y ≤ 1] = 1 and hence P[Y ≤ y] = 1 for all y ≥ 1.

To sum up,

FY (y) =


0 for y < 0,
1
2 for y = 0,
√
y+1
2 for y ∈ (0, 1],

1 for y > 1.

3.12 Let X be a random variable with the Cauchy distribution. Show that X−1 also has
the Cauchy distribution.

Solution. The random variable X has p.d.f. fX(x) = 1
π(1+x2)

. Define g : R \ {0} → R \ {0}
by g(x) = 1/x.
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Note that P[X = 0] = 0, so the distribution of Y = 1/X is still well defined. We have
Y = g(X), but g is not strictly monotone (for example, g(−1) < g(1) > g(2)).

We plan to show that P[Y ≤ y] = P[X ≤ y] for all y ∈ R, which means that X and Y have
the same distribution function; hence the same distribution.

Let us look at the case y = 0 first. There is no value of x ∈ R such that g(x) = 0, so
P[Y = 0] = 0. Since X is a continuous distribution, P[X = 0] = 0. Also X < 0 if and only if
Y < 0, so we have P[X ≤ 0] = P[X < 0] = P[Y < 0] = P[Y ≤ 0].

For y < 0, we have

P[Y ≤ y] = P
[

1
y ≤ X < 0

]
=

∫ 0

1
y

1

π(1 + x2)
dx

=

∫ −∞
y

1

π(1 + (1/v)2)

−1

v2
dv

=

∫ y

−∞

1

π(1 + v2)
dv = P[X ≤ y].

Here, we substitute x = 1/v. For y > 0, we must split into two cases, giving

P[ 1
X ≤ y] = P[X < 0] + P[ 1

y ≤ X]

= P[X < 0] +

∫ ∞
1
y

1

π(1 + x2)
dx

= P[X < 0] +

∫ 0

y

1

π(1 + (1/v)2)

−1

v2
dv

= P[X < 0] +

∫ y

0

1

π(1 + v2)
dv

= P[X < 0] + P[0 ≤ X ≤ y] = P[X ≤ y].

Again, we substitute x = 1/v.

Hence, P[X ≤ y] = P[Y ≤ y] for all y ∈ R. Since X has a Cauchy distribution, so does Y .

Challenge Questions

3.13 If we were to pretend that g(x) = 1/x was strictly monotone, we could (incorrectly)

apply Lemma 3.1 and use the formula fY (y) = fX(g−1(y))|dg−1

dy
| to solve 3.12. We

would still arrive at the correct answer. Can you explain why?

Can you construct another example of a case in which the relationship fY (y) =

fX(g−1(y))|dg−1

dy
| holds, but where the function g is not monotone?

Hint. Carefully examine the proof of the formula for fY (y) = fX(g−1(y))|dg
−1

dy | when g is
strictly monotone, and compare it to the solution of 3.12.

In general though, if g is not strictly monotone, the formula will not work!

3.14 Let Y and α, β be as in Question 3.7.
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(a) If α > 1, show that E[Y ] = c(α+β−1)
α−1

.

(b) If α ≤ 1 show that E[Y ] is not defined.

Solution.

(a) We use that E[g(X)] =
∫∞
−∞ g(x)fX(x) dx. So

E
[ c
X

]
=

∫ ∞
−∞

c

x
fX(x) dx

=

∫ 1

0

c

x

1

B(α, β)
xα−1(1− x)β−1 dx

=
c

B(α, β)

∫ 1

0
xα−2(1− x)β−1 dx

=
cB(α− 1, β)

B(α, β)
,

Expanding the Beta functions here in terms of the Gamma function, and using that
Γ(α) = (α− 1)Γ(α− 1), we get

c

Γ(α−1)Γ(β)
Γ(α+β−1)

Γ(α)Γ(β)
Γ(α+β)

= c

Γ(α−1)Γ(β)
Γ(α+β−1)

(α−1)Γ(α−1)Γ(β)
(α+β−1)Γ(α+β−1)

=
c(α+ β − 1)

α− 1
.

(b) If we try to calculate E[Y ] then, using the p.d.f. obtained in 3.7(b) we want

cα

B(α, β)

∫ ∞
c

(
y − c
y

)β−1

y−α dy. (3.1)

We need to show that the integral does not converge. The idea is to note that y−c ≈ y,
for large y, which means that (y−cy )β−1 ≈ 1; leaving us with

∫∞
c y−α dy which diverges

to ∞.

To implement this idea, we could begin by noting that

(3.1) ≥ cα

B(α, β)

∫ ∞
c+1

(
y − c
y

)β−1

y−α dy (3.2)

Since y > c + 1, we have 1
c+1 ≤

y−c
y ≤ 1. If β ≥ 1 then (y−cy )β−1 ≥ 1

(c+1)β−1 , and if

β ∈ (0, 1] then (y−cy )β−1 ≥ 1. Hence,

(3.2) ≥ cα

B(α, β)
min

(
1

(c+ 1)β−1
, 1

)∫ ∞
c+1

y−α dy.

Since
∫∞
c+1 y

−α dy diverges for α ≤ 1, we have that E[Y ] does not exist for such α.
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4 Multivariate Distribution Theory

Warm-up questions

4.1 Let T = {(x, y) : 0 < x < y}. Define f : R2 → R by

f(x, y) =

{
e−2x−y for (x, y) ∈ T ;

0 otherwise.

Sketch the region T . Calculate
∫∞

0

∫∞
0
f(x, y) dx dy and

∫∞
0

∫∞
0
f(x, y) dy dx, and verify

that they are equal.

Solution. See 4.2 for a sketch of T . We have∫ ∞
y=0

∫ ∞
x=0

f(x, y) dx dy =

∫ ∞
y=0

∫ y

x=0
e−ye−2x dx dy =

∫ ∞
0

e−y
[
−1

2
e−2x

]y
x=0

dy

=

∫ ∞
0

e−y
(
−1

2
e−2y +

1

2

)
dy =

1

2

∫ ∞
0

e−y − e−3y dy

=
1

2

[
−e−y +

1

3
e−3y

]∞
y=0

=
1

2

(
1− 1

3

)
=

1

3

and ∫ ∞
x=0

∫ ∞
y=0

f(x, y) dy dx =

∫ ∞
x=0

∫ ∞
y=x

e−ye−2x dx dy =

∫ ∞
0

e−2x
[
−e−y

]∞
y=x

dx

=

∫ ∞
0

e−2xe−x dx =

∫ ∞
0

e−3x dx =

[
−1

3
e−3x

]∞
x=0

=
1

3
,

which are equal.

Pitfall: We must be careful to get the limits on the integrals correct. For
∫ ∫

. . . dy dx, we
first allow x to vary between 0 . . .∞, which means that to cover T we must allow y to vary
between x and ∞. We think of covering T by vertical lines, one for each x = 0 . . .∞, each
line with constant x and with y ranging from x up to ∞. It’s helpful to draw a picture.

Alternatively, for
∫ ∫

. . . dx dy, we first allow y to vary between 0 and ∞, which means that

to cover T we must allow x to vary between 0 and y. We think of covering T by horizontal

lines, one for each y = 0 . . .∞, each line with constant y and with x ranging from 0 up to y.

4.2 Sketch the following regions of R2.

(a) S = {(x, y) : x ∈ [0, 1], y ∈ [0, 1]}.
(b) T = {(x, y) : 0 < x < y}.
(c) U = {(x, y) : x ∈ [0, 1], y ∈ [0, 1], 2y > x}.

Solution.
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Ordinary Questions

4.3 Let (X, Y ) be a random vector with joint probability density function

fX,Y (x, y) =

{
ke−(x+y) if 0 < y < x

0 otherwise.

(a) Using that P[(X, Y ) ∈ R2] = 1, find the value of k.

(b) For each of the regions S, T, U in 4.2, calculate the probability that (X, Y ) is
inside the given region.

(c) Find the marginal p.d.f. of Y , and hence identify the distribution of Y .

Solution.

(a) Since P[(X,Y ) ∈ R2] = 1, we have
∫∞
−∞

∫∞
−∞ fX,Y (x, y) dy dx = 1. Therefore,

1 = k

∫ ∞
0

∫ x

0
e−(x+y) dy dx = k

∫ ∞
0

[
−e−(x+y)

]x
y=0

dx = k

∫ ∞
0

(e−x − e−2x) dx =
k

2
.

Hence, k = 2.

(We could also calculate k
∫∞

0

∫∞
y e−(x+y) dx dy, with the same result.)

Pitfall: We must be careful to get limits of the inner integral correct. Allowing x to
vary from 0 . . .∞, and then allowing y to vary from y = 0 . . . x, draws out precisely the
range of (x, y) that make up {(x, y) : 0 < y < x}.
It’s very helpful to draw a sketch of the region you’re trying to integrate over:

See 4.1 for details of a similar case. The same issue applies to part (b) of this question,
and to many others.
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(b) We have

P [(X,Y ) ∈ S] =

∫ 1

0

∫ x

0
2e−(x+y) dy dx = 2

∫ 1

0
e−x − e−2x dx = −2e−1 + e−2 + 1.

Since fX,Y (x, y) = 0 for all (x, y) ∈ T , we have P[(X,Y ) ∈ T ] = 0. Lastly,

P [(X,Y ) ∈ U ] =

∫ 1

0

∫ x

x/2
2e−(x+y) dy dx

=

∫ 1

0
2
(
−e−2x + e−3x/2

)
dx = e−2 − 4

3
e−3/2 +

1

3
.

(In each case, we could instead calculate the dx dy integral, with appropriate limits.)

(c) We integrate x out, giving, for y > 0,

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx = 2

∫ ∞
y

e−(x+y) dx = 2
[
−e−(x+y)

]∞
x=y

= 2e−2y.

So Y has an Exponential distribution with parameter λ = 2 (or, equivalently, a Gamma
distribution with parameters α = 1 and β = 2).

4.4 Let S = [0, 1]× [0, 1], and let U and V have joint probability density function

fU,V (u, v) =

{
4u+2v

3
(u, v) ∈ S;

0 otherwise.

(a) Find P[U + V ≤ 1].

(b) Find P[V ≤ U2].

Solution.

(a) We need to integrate the joint p.d.f. over the subset of (u, v) where u + v ≤ 1. Note
that the joint p.d.f. is only non-zero when u ≥ 0 and v ≥ 0. So, we need to integrate
over

{(u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1− u}

and we get

P [U + V ≤ 1] =

∫ 1

0

∫ 1−u

0

4u+ 2v

3
dv du =

1

3

∫ 1

0
(4u(1− u) + (1− u)2) du

=
1

3

∫ 1

0
(1 + 2u− 3u2) du =

1

3
.

(b) We need to integrate the joint p.d.f. over the subset of (u, v) where v ≤ u2. Note that
the joint p.d.f. is only non-zero when u ∈ [0, 1] and v ∈ [0, 1]. So, we need to integrate
over

{(u, v) : 0 ≤ u ≤ 1 and 0 ≤ v ≤ u2}

and we get

P
[
V ≤ U2

]
=

∫ 1

0

∫ u2

0

4u+ 2v

3
dv du =

1

3

∫ 1

0
4u3 + u4 du =

2

5
.
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4.5 For the random variables U and V in Exercise 4.4:

(a) Find the marginal p.d.f. fU(u) of U .

(b) Find the marginal p.d.f. fV (v) of V .

(c) For v such that fV (v) > 0, find the conditional p.d.f. fU |V=v(u) of U given V = v.

(d) Check that each of fU , fV and fU |V=v integrate over R to 1.

(e) Calculate the two forms of conditional expectation, E[U |V = v], and E[U |V ].

Solution.

(a) We must integrate v out of fU,V (u, v). For u ∈ [0, 1] this gives

fU (u) =

∫ ∞
−∞

fU,V (u, v) dv =

∫ 1

0

4u+ 2v

3
dv =

4u+ 1

3
.

For u /∈ [0, 1] we have fU,V (u, v) = 0 so also fU (u) = 0. Hence, the p.d.f. of U is

fU (u) =

{
4u+1

3 for u ∈ [0, 1];

0 otherwise.

(b) Now, we integrate u out. For v ∈ [0, 1] we have

fV (v) =

∫ ∞
−∞

fU,V (u, v) du =

∫ 1

0

4u+ 2v

3
du =

2v + 2

3
.

For v /∈ [0, 1] we have fU,V (u, v) = 0 so also fV (v) = 0. Hence, the p.d.f. of V is

fV (v) =

{
2v+2

3 for v ∈ [0, 1];

0 otherwise.

(c) When fV (v) > 0, we have fU |V=v(u) =
fU,V (u,v)
fV (v) , which means that for v ∈ [0, 1] we

have

fU |V=v(u) =

{
2u+v
v+1 for u ∈ [0, 1];

0 otherwise.

(d) We check that
∫ 1

0
4u+1

3 du =
[

2u2+u
3

]1

0
= 1, and that

∫ 1
0

2v+2
3 dv =

[
2v2+2v

3

]1

0
= 1 and

finally that
∫ 1

0
2u+v
1+v du =

[
u2+vu

1+v

]1

u=0
= 1 as required.

(e) For v ∈ [0, 1] we have

g(v) = E[U |V = v] =

∫ ∞
−∞

ufU |V=v(u) du =

∫ 1

0

2u2 + uv

1 + v
du

=
1

1 + v

[
2u3

3
+
vu2

2

]1

u=0

=
1

1 + v

(
2

3
+
v

2

)
.

Therefore, E[U |V ] = g(V ) = 1
1+V

(
2
3 + V

2

)
.
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4.6 Let (X, Y ) be a random vector with joint probability density function

fX,Y (x, y) =


y−x

2
x ∈ [−1, 0], y ∈ [0, 1];

x+y
2

x ∈ [0, 1], y ∈ [0, 1];

0 otherwise.

Find the marginal p.d.f. of X. Show that the correlation coefficient X and Y is zero.
Show also that X and Y are not independent.

Solution. The marginal p.d.f. of X is given by fX(x) =
∫ 1

0 fX,Y (x, y) dy. If x ∈ [−1, 0] then

this is
∫ 1

0
y−x

2 dy = 1−2x
4 , and if x ∈ [0, 1] it is

∫ 1
0
x+y

2 dy = 1+2x
4 ; otherwise it is zero. This

gives E[X] = 0, because fX(x) = fX(−x).

To find E[XY ] we calculate∫ 1

0

∫ 1

−1
xyfX,Y (x, y) dx dy =

∫ 1

0

∫ 0

−1

y2x− x2y

2
dx dy +

∫ 1

0

∫ 1

0

x2y + y2x

2
dx dy

=

∫ 1

0

(
−y

2

4
− y

6

)
dy +

∫ 1

0

(
y2

4
+
y

6

)
dy

= 0.

Hence, the covariance is E[XY ]−E[X]E[Y ] = 0 (note that we do not need to know the value
of E[Y ]). Hence the correlation coefficient is also zero.

To show dependence, we will show that the joint p.d.f. of X and Y does not factorise into the

marginal densities. For example, dividing fX,Y (x, y) by fX(x) gives 2(y+x)
1+2x if x ∈ [0, 1] and

2(y−x)
1−2x if x ∈ [−1, 0], which does not depend only on y, so cannot be equal to fY (y). Hence,

X and Y are not independent.

4.7 Let X be a random variable. Let Z be a random variable, independent of X, such that
P[Z = 1] = P[Z = −1] = 1

2
. Let Y = XZ.

(a) Show that X and Y are uncorrelated.

(b) Give an example in which X and Y are not independent.

Solution.

(a) We have

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

= E[X2Z]− E[X]E[XZ]

= E[X2]E[Z]− E[X]E[X]E[Z]

= 0.

Note that to deduce the second line we use the independence of X and Z, and to deduce
the third line we use that E[Z] = (−1)1

2 + (1)1
2 = 0.

(b) Let P[X = 0] = P[X = 1] = 1
2 , which means that P[Y = 1] = P[Y = −1] = 1

4 and
P[Y = 0] = 1

2 . We have

P[X = 1, Y = 1] = P[X = 1, Z = 1] = P[X = 1]P[Z = 1] = 1
2

1
2 = 1

4

P[X = 1]P[Y = 1] = 1
2

1
4 = 1

8 .
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Hence X and Y are not independent.

In fact, any example in which X is not equal to a constant will result in X and Y not
being independent. Challenge question: prove this.

Pitfall: If X and Y are independent then Cov(X,Y ) = 0. However, there are many examples,

such as this one, of cases in which Cov(X,Y ) = 0 where X and Y are not independent.

4.8 Let X and Y be independent random variables, with 0 < Var(X) = Var(Y ) < ∞.
Let U = X + Y and V = XY . Show that U and V are uncorrelated if and only if
E[X] + E[Y ] = 0.

Solution. Recall that U and V are uncorrelated if and only if Cov(U, V ) = 0. Using that X
and Y are independent, we note that

Cov(U, V ) = E[UV ]− E[U ]E[V ]

= E[(X + Y )XY ]− E[XY ]E[X + Y ]

= E[X2Y + Y 2X]− E[X]E[Y ](E[X] + E[Y ])

= E[X2]E[Y ] + E[Y 2]E[X]− E[X]2E[Y ]− E[X]E[Y ]2

= E[Y ]
(
E[X2]− E[X]2

)
+ E[X]

(
E[Y 2]− E[Y ]2

)
= E[Y ] Var(X) + E[X] Var(Y )

= (E[Y ] + E[X]) Var(X)

The last line follows because Var(X) = Var(Y ). Hence, U and V are uncorrelated if and only

if E[X] = −E[Y ].

4.9 Let λ > 0. Let X have an Exp(λ) distribution, and conditionally given X let U have a
uniform distribution on [0, X]. Write down E[U |X] and Var(U |X), and hence calculate
E[U ] and Var(U).

Solution. Recall that the uniform distribution on (0, x) has mean x
2 and variance x2

12 . We have
E[U ] = E[E[U |X]] and, since U is uniformly distributed on (0, X) we have E[U |X] = X/2.
Hence, E[U ] = E[X/2] = 1

2λ .

Similarly, Var(U |X) is equal to the variance of a uniform distribution on (0, X), which (from

the sheet of distributions, or by a simple calculation) is X2

12 . Hence,

Var(U) = E[Var(U |X)] + Var(E[U |X]) = E
[
X2

12

]
+ Var

(
X

2

)
=

1

12

2

λ2
+

1

4

1

λ2
=

5

12λ2

4.10 Let k ∈ R and let (X, Y ) have joint probability density function

fX,Y (x, y) =

{
kx sin(xy) for x ∈ (0, 1), y ∈ (0, π),

0 otherwise.

(a) Find the value of k.

(b) For x ∈ (0, 1), find the conditional probability density function of Y given X = x.

(c) Find E[Y |X].
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Solution.

(a) We have P[(X,Y ) ∈ R2] = 1, so

1 = k

∫ 1

0

∫ π

0
x sin(xy) dy dx

= k

∫ 1

0
[− cos(xy)]πy=0 dx

= k

∫ 1

0
1− cos(πx) dx

= k

[
x− 1

π
sin(πx)

]1

x=0

= k.

Hence, k = 1.

(b) First, we need the marginal density of X. For y ∈ (0, π) we have

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ π

0
x sin(xy) dy =

π

2
[− cos(xy)]πy=0 = 1− cos(πx).

Hence,

fX(x) =

{
1− cos(πx) for x ∈ (0, 1),

0 otherwise.

Therefore, for x ∈ (0, 1), we have

fY |X=x(y) =
fX,Y (x, y)

fX(x)
=

{
x sin(xy)

1−cos(πx) for y ∈ (0, π),

0 otherwise.

(c) Therefore, for x ∈ (0, 1) we have

E[Y |X = x] =

∫ ∞
−∞

yfY |X=x(y) dy =
x

1− cos(πx)

∫ π

0
y sin(xy) dy

To calculate the above, we use integration by parts to show that∫ π

0
y sin(xy) dy =

[
y
−1

x
cos(xy)

]π
y=0

+

∫ π

0

1

x
cos(xy) dy

=
π

x
cos(πx) +

[
1

x2
sin(xy)

]π
y=0

=
π

x
cos(πx) +

1

x2
sin(πx).

Hence,

E[Y |X = x] =
1

1− cos(πx)

(
π cos(πx)− 1

x
sin(πx)

)
which means that E[Y |X] = 1

1−cos(πx)

(
π cos(πX) + 1

X sin(πX)
)
.

4.11 Let U have a uniform distribution on (0, 1), and conditionally given U let X have a
uniform distribution on (0, U).

(a) Find the joint p.d.f of (X,U) and the marginal p.d.f. of X.
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(b) Show that E[U |X = x] = x−1
log x

.

Solution.

(a) We have

fX|U (x|u) =

{
1/u for x ∈ (0, u),

0 otherwise,
fU (u) =

{
1 for u ∈ (0, 1),

0 otherwise.

The joint pdf fX,U (x, u) satisfies fX,U (x|u) =
fX|U (x,u)

fU (u) when fU (u) > 0, hence

fX,U (x, u) =

{
1/u for u ∈ (0, 1), x ∈ (0, u),

0 otherwise.

=

{
1/u for 0 < x < u < 1,

0 otherwise.

Hence, the marginal p.d.f. of X is

fX(x) =

{∫ 1
x 1/u du for x ∈ (0, 1),

0 otherwise,
=

{
− log x for x ∈ (0, 1),

0 otherwise.

(b) To calculate E[U |X = 1
2 ], we need the conditional p.d.f. of U given X = x, which is

fU |X(u|x) =
fX,U (x, u)

fX(x)
=

{
−1

u log x for u ∈ (x, 1)

0 otherwise,

defined for x ∈ (0, 1). Hence,

E [U |X = x] =

∫ ∞
−∞

ufU |X(u|x) =

∫ 1

x
u
−1

u log(x)
du =

x− 1

log x
.

4.12 Let (X, Y ) have a bivariate distribution with joint p.d.f. fX,Y (x, y). Let y0 ∈ R be such
that fY (y0) > 0. Show that fX|Y=y0(x) is a probability density function.

Solution. We must check that fX|Y=y0 is non-negative and integrates to 1.

Since fX,Y (x, y) ≥ 0 and fY (y0) > 0, we have that fX|Y=y0(x) =
fX,Y (x,y0)
fY (y0) ≥ 0. Further,∫ ∞

−∞
fX|Y=y0(x) dx =

∫ ∞
−∞

fX,Y (x, y0)

fY (y0)
dx

=
1

fY (y0)

∫ ∞
−∞

fX,Y (x, y0) dx

=
1

fY (y0)
fY (y0) = 1,

as required. Here we use the definition of the marginal distribution fY (y) =
∫∞
−∞ fX,Y (x, y) dx.
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Challenge Questions

4.13 Give an example of random variables (X, Y, Z) such that

P[X < Y ] = P[Y < Z] = P[Z < X] =
2

3
.

Solution. Let X be uniformly distributed on the three element set {0, 1, 2}. Set Y = (X+ 1)
mod 3, and Z = (Y + 1) mod 3. Of course, then X = (Z + 1) mod 3.

The real puzzle, of course, is how to dream up this example (or another that does the same
job).

This question is related to the observation that, in an election between three candidates

A,B,C, it is possible for more than half of the voters to prefer A to B, for more than half

to prefer B to C, and for more than half to prefer C to A.
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5 Transformations of Multivariate Distributions

Warm-up Questions

5.1 (a) Define u = x and v = 2y. Sketch the images of the regions S, T and U from
question 4.2 in the (u, v) plane.

(b) Define u = x + y and v = x − y. Sketch the images of the regions S, T and U
from question 4.2 in the (u, v) plane.

Solution.

(a)

(b)

Ordinary Questions

5.2 The random variables X and Y have joint p.d.f. given by

fX,Y (x, y) =

{
xe−y if x ∈ (0, 2), y ∈ (0,∞)

0 otherwise.

Define u = u(x, y) = x+ y and v = v(x, y) = 2y. Let U = u(X, Y ) and V = v(X, Y ).

(a) Find the inverse transformation x = x(u, v) and y = y(u, v) and calculate the

value of J = det
(
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

)
.

(b) Sketch the set of (x, y) for which fX,Y (x, y) is non-zero. Find the image of this
set in the (u, v) plane.
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(c) Deduce from (a) and (b) that the joint p.d.f. of (U, V ) is

fU,V (u, v) =

{
(u− v

2
)e−v/2 for v > 0, v ∈ (2u, 2u− 4)

0 otherwise.

Solution.

(a) The inverse transformation is y = v
2 and x = u− y = u− v

2 . Hence,

J = det

(
1 −1

2
0 1

2

)
=

1

2
.

(b) fX,Y (x, y) is non-zero when x ∈ (0, 2) and y ∈ (0,∞). Call this set R. The set R is
bounded by the three lines x = 0, x = 2 and y = 0. In the (u, v) plane these lines map
respectively to v = 2u, v = 2u − 4 and v = 0. The point (x, y) = (1, 1) ∈ R maps to
(u, v) = (2, 2), so R maps to the shaded region S in the (u, v) plane:

We can describe S as the set of (u, v) such that v > 0 and v ∈ (2u− 4, 2u).

(c) Using (a) and (b), we have

fU,V (u, v) =

{
fX,Y

(
u− v

2 ,
v
2

)
× |J | for (u, v) ∈ S

0 otherwise

=

{
1
2(u− v

2 )e−v/2 for v > 0, v ∈ (2u− 4, 2u)

0 otherwise.

5.3 The random variables X and Y have joint p.d.f. given by

fX,Y (x, y) =

{
1
2
(x+ y)e−(x+y) for x, y ≥ 0

0 elsewhere.

Let U = X + Y and W = X.

(a) Find the joint p.d.f. of (U,W ) and the marginal p.d.f. of U .

(b) Recognize U as a standard distribution and, using the result of Question 2.5(a),
evaluate E[(X + Y )5].

Solution.
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(a) Define U = X + Y and W = X so that Y = U − X = U − W . The set H =
{(x, y) : x, y ≥ 0} is bounded by the lines x = 0 and y = 0, which respectively
map to w = 0 and u = w. The point (1, 1) is mapped to (2, 1), so H is mapped to
H ′ = {(u,w) : 0 ≤ w ≤ u}:

We have
∂x

∂u
= 0,

∂x

∂w
= 1,

∂y

∂u
= 1,

∂y

∂w
= −1

and so the Jacobian is

J = det

(
0 1
1 −1

)
= −1.

We thus have

fU,W (u,w) = fX,Y (w, u− w)× |J | =

{
1
2ue
−u, 0 ≤ w ≤ u

0, otherwise.

Pitfall: We must remember to specify the region on which the pdf fU,W is non-zero; this
is the region on which fX,Y is non-zero, mapped through the transformation (x, y) 7→
(u, v). The same applies to almost all questions in this section.

(b) Therefore, the marginal p.d.f. of U is given by

fU (u) =

∫ ∞
−∞

fU,W (u,w) dw =

∫ u

0

1

2
ue−u dw =

1

2
ue−u[w]u0 =

1

2
u2e−u =

1

Γ(3)
u3−1e−u

for u ≥ 0, and 0 otherwise, which means that U ∼ Ga(3, 1). From Question 2.5, we
have

E[(X + Y )k] = E[Uk] =
3(3 + 1) · · · (3 + k − 1)

1k
= 3(4) · · · (2 + k)

which, for k = 5, gives E[(X + Y )5] = 3(4) · · · (7) = 7!
2 = 2520.

5.4 Let X and Y be a pair of independent random variables, both with the standard normal
distribution. Show that the joint p.d.f. of (U, V ) where U = X2 and V = X2 + Y 2 is
given by

fU,V (u, v) =

{
1

8π
e−v/2u−1/2(v − u)−1/2 for 0 ≤ u ≤ v

0 otherwise.

Solution. We have X =
√
U and Y =

√
V − U . The density

fX,Y (x, y) = fX(x)fY (y) =
1

2π
e−(x2+y2)/2
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is positive for all (x, y) ∈ R2, and the transformation maps R2 to the set {(u, v) : 0 ≤ u ≤ v}.
We have

∂x

∂u
= 1

2u
−1/2,

∂x

∂v
= 0,

∂y

∂u
= −1

2(v − u)−1/2 ∂y

∂v
= 1

2(v − u)−1/2

and so the Jacobian is

J = det

(
1
2u
−1/2 0

−1
2(v − u)−1/2 1

2(v − u)−1/2

)
= 1

4u
−1/2(v − u)−1/2.

Hence, for v ≥ u ≥ 0 we have

fU,V (u, v) = fX,Y (
√
u,
√
v − u)× |J | = 1

8π
e−v/2u−1/2(v − u)−1/2,

and fU,V (u, v) = 0 otherwise.

5.5 Let (X, Y ) be a random vector with joint p.d.f.

fX,Y (x, y) =

{
2e−(x+y) x > y > 0;

0 otherwise.

(a) If U = X − Y and V = Y/2, find the joint p.d.f. of (U, V ).

(b) Show that U and V are independent, and recognize their (marginal) distributions
as standard distributions.

Solution.

(a) We have

fX,Y =

{
2e−(x+y) x > y > 0

0 otherwise,

and if (u, v) = (x−y, y/2) then (x, y) = (u+2v, 2v). The Jacobian of this transformation
is

det

(
1 2
0 2

)
= 2.

The region T = {(x, y) : x > y > 0} is described by x > y and y > 0, which
respectively become u > 0 and v > 0. So,

fU,V (u, v) =

{
4e−(u+4v) for u > 0, v > 0

0 otherwise.

(b) fU,V (u, v) factorises as g(u)h(v) where

g(u) =

{
e−u u > 0

0 otherwise

and

h(v) =

{
4e−4v v > 0

0 otherwise,

so U and V are independent. We recognise g(u) and h(v) as the probability density
functions of Exp(1) and Exp(4) random variables respectively, so U ∼ Exp(1) and
V ∼ Exp(4).
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Pitfall: We could calculate the marginal distributions of U and V by integrating out vari-
ables, but it is much more efficient to spot that we can factorize fU,V (u, v) into fU (u)fV (v),
where fU and fV are probability density functions. We know, in advance, that it will be
possible to factorize in this way because they question told us that U and V would be inde-
pendent.

The same issue also applies to many of the following questions.

5.6 Let X and Y be a pair of independent and identically distributed random variables.
Let U = X + Y and V = X − Y .

(a) Show that Cov(U, V ) = 0, and give an example (with justification) to show that
U and V are not necessarily independent.

(b) Show that U and V are independent in the special case where X and Y are
standard normals.

Solution.

(a) We have

Cov(U, V ) = E[(X + Y )(X − Y )]− E[X + Y ]E[X − Y ]

= E[X2]− E[Y 2]−
(
E[X]2 − E[Y ]2

)
= Var(X)−Var(Y ) = 0.

The last line follows because X and Y have the same distribution. Hence, U and V are
uncorrelated.

For the example, suppose that the common distribution of X and Y is such that they
are equal to 1 with probability 1

2 and equal to 0 with corresponding probability 1
2 . Then,

P[U = 2] = 1
4 , and if U = 2 then X = Y = 1, which means V = 0. So U and V are not

independent;

P[U = 2, V = 0] =
1

4
6= P[U = 2]P[V = 0] = P[X = Y = 1]P[X = Y = 0] =

1

16
.

In fact, most possible examples result in U and V not being independent, and this one
is chosen for its simplicity.

(b) If X and Y are standard normals, then by independence we have

fX,Y (x, y) =
1

2π
e−(x2+y2)/2.

The transformation U = X + Y , V = X − Y maps R2 to R2, and has inverse transfor-
mation X = 1

2(U + V ), Y = 1
2(U − V ). We have

∂x

∂u
=

1

2
,

∂x

∂v
=

1

2
,

∂y

∂u
=

1

2
,

∂y

∂v
=
−1

2

and hence the Jacobian is

J = det

(
1
2

1
2

1
2
−1
2

)
= −1

2
.
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Hence, the p.d.f. of (U, V ) is given by

fU,V (u, v) = fX,Y
(

1
2(u+ v), 1

2(u− v)
)
× |J |

=
1

4π
exp

(
−1

8

(
(u+ v)2 + (u− v)2

))
=

1

4π
e−(u2+v2)/4

=

(
1√
4π
e−u

2/4

)(
1√
4π
e−v

2/4

)
.

Hence, U and V are independent, and both U and V have the N(0, 2) distribution.

5.7 Let X and Y be independent random variables with distributions Ga(α1, β) and
Ga(α2, β) respectively. Show that the random variables U = X

X+Y
and V = X + Y are

independent with distributions Be(α1, α2) and Ga(α1 + α2, β) respectively.

Solution. Since X and Y are independent we have

fX,Y (x, y) = fX(x)fY (y) =
βα1

Γ(α1)
xα1−1e−βx

βα2

Γ(α2)
yα2−1e−βy

=
βα1+α2

Γ(α1)Γ(α2)
xα1−1yα2−1e−β(x+y). (5.1)

If v = x + y and u = x
x+y then, to find the inverse transformation we observe that uv =

(x+ y) x
x+y = x, so x = uv and hence y = v − uv. The conditions x > 0 and y > 0 translate

to v > 0 and 0 < u < 1. The partial derivatives are

∂x

∂u
= v,

∂x

∂v
= u,

∂y

∂u
= −v, ∂y

∂v
= 1− u

and the Jacobian is

J = det

(
v u
−v 1− u

)
= v(1− u) + uv = v − uv + uv = v.

Hence, for v > 0 and u ∈ (0, 1), the joint p.d.f. of U and V is

fU,V (u, v) = fX,Y (uv, v − uv)v =
βα1+α2

Γ(α1)Γ(α2)
(uv)α1−1(v − uv)α2−1e−βvv

=
βα1+α2

Γ(α1)Γ(α2)
uα1−1(1− u)α2−1vα1+α2−1e−βv.

For all other u, v, we have fU,V (u, v) = 0.

At this point we can recall that β(α1, α2) = Γ(α1+α2)
Γ(α1)Γ(α2) and spot that fU,V (u, v) factorises as

fU,V (u, v) =

{
1

B(α1,α2)u
α1−1(1− u)α2−1 βα1+α2

Γ(α1+α2)v
α1+α2−1e−βv for v > 0, u ∈ (0, 1)

0 otherwise.

It follows immediately that V ∼ Ga(α1 + α2, β) and that U and V are independent.

5.8 As part of Question 5.7, we showed that if X and Y are independent random variables
with X ∼ Ga(α1, β) and Y ∼ Ga(α2, β), then X + Y ∼ Ga(α1 + α2, β).
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(a) Use induction to show that for n ≥ 2, if X1, X2, . . . , Xn are independent random
variables with Xi ∼ Ga(αi, β) then

n∑
i=1

Xi ∼ Ga

(
n∑
i=1

αi, β

)
.

(b) Hence show that for n ≥ 1, if Z1, Z2, . . . , Zn are independent standard normal
random variables then

n∑
i=1

Z2
i ∼ χ2

n.

You may use the result of Example 12, which showed that this was true in the
case n = 1 (and, recall that the χ2 distribution is a special case of the Gamma
distribution).

Solution.

(a) The base case n = 2 is the given result from Question 5.7. If the claim is true for

n = k, then let X =
∑k

i=1Xi and Y ∼ Xk+1, so that X ∼ Ga
(∑k

i=1 αi, β
)

and

Y ∼ Ga(αk+1, β). Then the same result from Question 5.7 shows that

k+1∑
i=1

Xi = X + Y ∼ Ga

(
k+1∑
i=1

αi, β

)
,

so the claim is true for n = k + 1. Hence it is true for all n ≥ 2 by induction.

(b) Recall that the χ2
n distribution is the same as the Ga

(
n
2 ,

1
2

)
distribution. In particular

each Z2
i ∼ Ga

(
1
2 ,

1
2

)
, so the result of (a) tells us that

∑n
i=1 Z

2
i ∼ Ga

(
n
2 ,

1
2

)
= χ2

n as
required.

5.9 Let X and Y be a pair of independent random variables, both with the standard normal
distribution. Show that U = X/Y has the Cauchy distribution, with p.d.f.

fU(u) =
1

π

1

1 + u2

for all u ∈ R.

Solution. The joint density

fX,Y (x, y) = fX(x)fY (y) =
1

2π
e−(x2+y2)/2

is positive for all (x, y) ∈ R2. We define U = X/Y and V = X (which makes sense because
P[Y = 0] = 0). We set u = x/y and v = x, and note that this transformation maps R2 to
R2. The inverse transformation is x = v and y = v/u, which gives

∂x

∂u
= 0,

∂x

∂v
= 1,

∂y

∂u
=
−v
u2
,

∂y

∂v
=

1

u
,

and hence the Jacobian is

J = det

(
0 1
−v
u2

1
u

)
=

v

u2
.
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Hence,

fU,V (u, v) = fX,Y (v, v/u)× |J | = 1

2π
exp

(
−v

2(1 + 1/u2)

2

)
|v|
u2

for all u, v ∈ R2. To obtain fU (u) we integrate out v, giving

fU (u) =
1

2π

∫ ∞
−∞

|v|
u2

exp

(
−v

2(1 + 1/u2)

2

)
dv

=
1

2π
2

∫ ∞
0

v

u2
exp

(
−v

2(1 + 1/u2)

2

)
dv

=
1

π

1

u2

1

1 + 1/u2

∫ ∞
0

v(1 + 1/u2) exp

(
−v

2(1 + 1/u2)

2

)
dv

=
1

π

1

1 + u2

[
− exp

(
−v

2(1 + 1/u2)

2

)]∞
v=0

=
1

π

1

1 + u2
.

This matches the p.d.f. of the Cauchy distribution.

5.10 Let n ∈ N. The t distribution (often known as Student’s t distribution) is the univariate
random variable X with p.d.f.

fX(x) =
Γ(n+1

2
)

√
nπΓ(n

2
)

(
1 +

x2

n

)−n+1
2

,

for all x ∈ R. Here, n is a parameter, known as the number of degrees of freedom.

Let Z be a standard normal random variable and let W be a chi-squared random
variable with n degrees of freedom, where Z and W are independent. Show that

X =
Z√
W/n

has the t distribution with n degrees of freedom.

Solution. To find the probability density function of X, consider (Z,W ) as a bivariate random
vector, and transform it to (X,Y ) where X = Z√

W/n
as above and Y = W .

By independence and the formulae for the density functions of the Normal and chi-squared
distributions,

fZ,W (z, w) =
1√

2nΓ(n/2)
√

2π
w
n
2
−1 exp

(
−(z2 + w)

2

)
,

for w > 0. We set x = z/
√
w/n and y = w, and note that the inverse of this transformation is

given by w = y and z = x
√
y/n. Moreover, this transformation maps {(z, w) : z ∈ R, w > 0}

to {(x, y) : x ∈ R, y > 0}. The Jacobian is

det

(
0 1√
y/n x(y/n)1/2/(2n)

)
= −

√
y/n,
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so the joint p.d.f. of X and Y is

fX,Y (x, y) =
1√

2nΓ(n/2)
√

2π
y
n
2
−1 exp

−
(
x2y
n + y

)
2

√y/n
=

1√
2nΓ(n/2)

√
2πn

y
n−1
2 exp

(
−y

2

(
x2

n
+ 1

))
,

when y > 0, and equal to zero when y ≤ 0.

To obtain the p.d.f. of X, we integrate out y:

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy

=
1√

2nΓ(n/2)
√

2πn

∫ ∞
0

y
n−1
2 exp

(
−y

2

(
x2

n
+ 1

))
dy.

By Lemma 2.3,∫ ∞
0

y
n−1
2 exp

(
−y

2

(
x2

n
+ 1

))
dy =

(
1

2

(
x2

n
+ 1

))−(n+1)/2

Γ

(
n+ 1

2

)
,

giving

fX(x) =
1√

2nΓ(n/2)
√

2πn

(
1

2

(
x2

n
+ 1

))−(n+1)/2

Γ

(
n+ 1

2

)
,

which simplifies to

fX(x) =
Γ(n+1

2 )
√
nπΓ(n2 )

(
1 +

x2

n

)−n+1
2

,

as required.

Challenge Questions

5.11 The formula (5.2), from the typed lecture notes, holds whenever the transformation
u = u(x, y), v = v(x, y) is both one-to-one and onto, and the Jacobian matrix of
derivatives exists. Use this fact to provide an alternative proof of Lemma 3.1 (i.e. of
the univariate transformation formula).

Hint. Take a random variable X and a function g that satisfies the conditions of Lemma

3.1. Let W be a continuous random variable that is independent of X. Define y = g(x),

z = w, and consider the pair (Y, Z) = (g(X),W ). Find fY,Z(y, z), using equation (5.2), and

integrate out z to obtain fY (y).

5.12 Let X ∼ Exp(λ1) and Y ∼ Exp(λ2) be independent. Show that U = min(X, Y ) has
distribution Exp(λ1 + λ2), and that P[min(X, Y ) = X] = λ1

λ1+λ2
. Extend this result,

by induction, to handle the minimum of finitely many exponential random variables.

Let W = max(X, Y ). Show that U and W − U are independent.

Hint. Calculate P [min(X,Y ) ≤ z] directly by partitioning on the event X < Y .
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6 Covariance Matrices and and Multivariate Normal

Distributions

Warm-up Questions

6.1 Let

A =

(
1 −1
2 1

)
and Σ =

(
4 −1
−1 9

)
.

(a) Calculate det(A) and find both AΣ and AΣAT .

(b) Let A be the vector (2, 1). Show that AΣAT = 21.

Solution.

(a) We have det(A) = (1)(1)− (−1)(2) = 3, and

AΣ =

(
1 −1
2 1

)(
4 −1
−1 9

)
=

(
5 −10
7 7

)
AΣAT =

(
5 −10
7 7

)(
1 2
−1 1

)
=

(
15 0
0 21

)
.

Alternatively, we could calculate ΣAT first and then pre-multiply by A.

(b) We have AΣAT =

(
2 1

)(
4 −1
−1 9

)(
2
1

)
=

(
2 1

)(
7
7

)
= 21.

Ordinary Questions

6.2 Let X = (X, Y )T be a random vector with

E[X] =

(
0
1

)
, Cov(X) =

(
1 1
1 2

)
.

Let U = X + Y and V = 2X − 2Y + 1. Write U = (U, V )T .

(a) Write down a square matrix A and a vector b ∈ R2 such that U = AX + b.

(b) Show that the mean vector and covariance matrix of U are given by

E[U] =

(
1
−1

)
, Cov(U) =

(
5 −2
−2 4

)
(c) Show that the correlation coefficient ρ of U and V is equal to −1√

5
.

Solution.

(a) We have (
U
V

)
=

(
1 1
2 −2

)(
X
Y

)
+

(
0
1

)
so we take A =

(
1 1
2 −2

)
and b = ( 1

2 ) .
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(b) Using Lemma 6.3 we have

E[U] = AE[X] + b

=

(
1 1
2 −2

)(
0
1

)
+

(
0
1

)
=

(
1
−2

)
+

(
0
1

)
=

(
1
−1

)
and

Cov(U) = A Cov(X)AT

=

(
1 1
2 −2

)(
1 1
1 2

)(
1 2
1 −2

)
=

(
1 1
2 −2

)(
2 0
3 −2

)
=

(
5 −2
−2 4

)
(c) From the covariance matrix of U,

ρ(U, V ) =
Cov(U, V )√

Var(U) Var(V )
=

−2√
5× 4

=
−1√

5
.

6.3 Let X and Y be independent standard normal random variables.

(a) Write down the covariance matrix of the random vector X = (X, Y )T .

(b) Let R be the rotation matrix (
cos θ − sin θ
sin θ cos θ

)
.

Show that RX has the same covariance matrix as X.

Solution.

(a) Since X and Y are standard normals they both have variance 1, and by independence
their covariance is zero. Hence Cov(X) = ( 1 0

0 1 ). This is the identify matrix, which we
denote by I.

(b) We have Cov(RX) = R Cov(X)RT = RIRT = RRT , and evaluating RRT gives(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ

)
=

(
1 0
0 1

)
which is the identity matrix I. Since Cov(X) = I, we are done.

6.4 Three (univariate) random variables X, Y and Z have means 3, −4 and 6 respec-
tively and variances 1, 1 and 25 respectively. Further, X and Y are uncorrelated; the
correlation coefficient between X and Z is 1

5
and that between Y and Z is −1

5
. Let

U = X + Y − Z and W = 2X + Z − 4 and set U = (U,W )T .

(a) Find the mean vector and covariance matrix of X = (X, Y, Z)T .

(b) Write down a matrix A and a vector b such that U = AX + b.

(c) Find the mean vector and covariance matrix of U.
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(d) Evaluate E[(2X + Z − 6)2].

Solution.

(a) We have E[(X,Y, Z)T ] = (E[X],E[Y ],E[Z])T = (3,−4, 6)T . For the covariance matrix,
we have Cov(X,Y ) = 0 since X and Y are uncorrelated. We are given that ρX,Z = 1

5 ,

so Cov(X,Z)√
1×25

= 1
5 and hence Cov(X,Z) = 1. Similarly ρY,Z = −1

5 gives Cov(X,Z) = −1.

So,

Cov

XY
Z

 =

1 0 1
0 1 −1
1 −1 25

 .

(b) We define A and b by(
U
W

)
=

(
1 1 −1
2 0 1

)XY
Z

+

(
0
−4

)
= AX + b

(c) It holds that

E
(
U
W

)
= AE[X] + b =

(
1 1 −1
2 0 1

) 3
−4
6

+

(
0
−4

)
=

(
−7
8

)
and

Cov

(
U
W

)
= A Cov(X)AT =

(
27 −25
−25 33

)
.

(d) We observe E[(2X + Z − 6)2] = E[(W − 2)2]. From (b) we have

Var(W − 2) = Var(W ) = 33

and E[W ] = 8, so E[W − 2] = 6. Hence, by rearranging Var(W − 2) = E[(W − 2)2] −
E[W − 2]2,

E[(W − 2)2] = Var(W − 2) + E[W − 2]2 = 33 + 62 = 69.

6.5 Suppose that the random vector X = (X1, X2)T follows the bivariate normal distribu-
tion with E[X1] = E[X2] = 0, Var(X1) = 1, Cov(X1, X2) = 2 and Var(X2) = 5.

(a) Calculate the correlation coefficient of X1 and X2. Are X1 and X2 independent?

(b) Find the mean and the covariance matrices of

Y =
(
1 2

)
X and Z =

(
1 2
3 4

)
X.

What are the distributions of Y and Z?

Solution.

(a) We have

ρ =
Cov(X1, X2)√
var(X1)var(X2)

=
σ12

σ1σ2
=

2

1×
√

5
≈ 0.894.

X1 and X2 are positively correlated and they are not independent.
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(b) We have

E[Y ] = (1, 2)E[X] = (1, 2)

(
0
0

)
= 0

Cov(Y ) = (1, 2) Cov(X)

(
1
2

)
= (1, 2)

(
1 2
2 5

)(
1
2

)
= (5, 12)

(
1
2

)
= 29.

and

E[Z] =

(
1 2
3 4

)
E[X] =

(
1 2
3 4

)(
0
0

)
=

(
0
0

)
.

Cov(Z) =

(
1 2
3 4

)
Cov(X)

(
1 2
3 4

)T
=

(
1 2
3 4

)(
1 2
2 5

)(
1 2
3 4

)T
=

(
5 12
11 26

)(
1 3
2 4

)
=

(
29 63
63 137

)
.

In the cases of both Y and Z, the transformations which obtain them from X are
linear. Hence, both Y and Z are normally distributed. Because the normal distribution
is determined completely from its mean and its covariance matrix, it follows that the
distributions of Y and Z are

Y ∼ N(0, 29) and Z ∼ N2

[(
0
0

)
,

(
29 63
63 137

)]
.

6.6 Let X1 and X2 be bivariate normally distributed random variables each with mean 0
and variance 1, and with correlation coefficient ρ.

(a) By integrating out the variable x2 in the joint p.d.f., verify that the marginal
distribution of X1 is indeed that of a standard univariate normal random variable.

Hint: Use the fact that the integral of a N(µ, σ2) p.d.f. is equal to 1.

(b) Show, using the ‘usual’ formula for the conditional p.d.f. that the conditional
p.d.f. of X2 given X1 = x1 is N(ρx1, 1− ρ2).

Solution.

(a) We have

fX1,X2(x1, x2) =
1

2π
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[
x2

1 − 2ρx1x2 + x2
2

]}
,

so integrating out x2 gives

fX1(x1) =
1

2π
√

1− ρ2

∫ ∞
−∞

exp

{
−
[
x2

1 − 2ρx1x2 + x2
2

]
2(1− ρ2)

}
dx2

=
1

2π
√

1− ρ2

∫ ∞
−∞

exp

{
−
[
(x2 − ρx1)2 − (ρx1)2 + x2

1

]
2(1− ρ2)

}
dx2

(by completing the square)

=
1

2π
√

1− ρ2
exp

{
−x2

1(1− ρ2)

2(1− ρ2)

}∫ ∞
−∞

exp

{
−(x2 − ρx1)2

2(1− ρ2)

}
dx2

(by taking terms which don’t involve x2 outside the integral)

=
1√
2π

exp

{
−x

2
1

2

}∫ ∞
−∞

1√
2π(1− ρ2)

exp

{
−(x2 − ρx1)2

2(1− ρ2)

}
dx2.
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The term inside the integral here is the p.d.f. of a Normal random variable with mean
ρx1 and variance (1− ρ2). (Because the integral is with respect to x2, we can treat x1

as a constant). Hence, the integral is 1, and so we have shown

fX1(x1) =
1√
2π
e−

x21
2 ,

which is the p.d.f. of the standard normal.

(b) From (a), we have

fX2|X1(x2|x1) =
fX1,X2(x1, x2)

fX1(x1)

=

1

2π
√

1−ρ2
exp

{
− 1

2(1−ρ2)
[x2

1 − 2ρx1x2 + x2
2]
}

1√
2π

exp
(
−x21

2

)
=

1√
2π(1− ρ2)

exp

[
− 1

2(1− ρ2)
x2

1 +
2ρ

2(1− ρ2)
x1x2 −

1

2(1− ρ2)
x2

2 +
x2

1

2

]
=

1√
2π(1− ρ2)

exp

{
−1

2

[
x2

1 − 2ρx1x2 + x2
2 − (1− ρ2)x2

1

1− ρ2

]}
=

1√
2π(1− ρ2)

exp

[
−(x2 − ρx1)2

2(1− ρ2)

]
and so X2|X1 = x1 ∼ N(ρx1, 1− ρ2) as required.

6.7 Let X = (X1, X2)T have a N2(µ,Σ) distribution with mean vector µ = (µ1, µ2)T and

covariance matrix Σ =
(
σ2
1 σ12

σ12 σ2
2

)
. Let

A =

(
1 −σ1

σ2
σ2
σ1

1

)
.

Find the distribution of Y = AX, and deduce that any bivariate normal random
vector can be transformed by a linear transformation into a vector of independent
normal random variables.

Solution. The random vector Y has a bivariate normal distribution with mean vector

Aµ =

(
µ1 − µ2σ1

σ2
µ2 + µ1σ2

σ1

)
,

and covariance matrix

AΣAT =

(
1 −σ1

σ2
σ2
σ1

1

)(
σ2

1 σ12

σ12 σ2
2

)(
1 σ2

σ1
−σ1
σ2

1

)
=

(
2σ1(σ1σ2−σ12)

σ2
0

0 2σ2(σ1σ2+σ12)
σ1

)
.

So

Y ∼ N2

[(
µ1 − µ2σ1

σ2
µ2 + µ1σ2

σ1

)
,

(
2σ1(σ1σ2−σ12)

σ2
0

0 2σ2(σ1σ2+σ12)
σ1

)]
.

Hence, the components of Y are independent.
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Since this transformation can be applied to any bivariate normal random vector, any bivariate

normal random vector can be transformed (by a linear transformation) into a vector of

independent normal random variables.

6.8 The random vector X = (X1, X2, X3)T has an N3(µ,Σ) distribution where µ =
(−1, 1, 2)T and

Σ =

144 −30 48
−30 25 10
48 10 64

 .

(a) Find the correlation coefficients between X1 and X2, between X1 and X3 and
between X2 and X3.

(b) Let Y1 = X1 +X3 and Y2 = X2 −X1. Find the distribution of Y = (Y1, Y2)T and
hence find the correlation coefficient between Y1 and Y2.

Solution.

(a) Using that ρ(X,Y ) = Cov(X,Y )√
Var(X) Var(Y )

, from the covariance matrix, the correlation coef-

ficient between X1 and X2 is −30√
144
√

25
= −1

2 , that between X1 and X3 is 48√
144
√

64
= 1

2

and that between X2 and X3 is 10√
25
√

64
= 1

4 .

(b) We have Y = AX where

A =

(
1 0 1
−1 1 0

)
.

The mean vector of Y is Aµ =

(
1
2

)
, and its covariance matrix is given by

AΣAT =

(
304 −212
−212 229

)
.

Hence, the correlation between Y1 and Y2 is −212√
304
√

229
≈ −0.803.

6.9 (a) Let X be a (univariate) standard normal random variable and let Y = X. Does
the random vector X = (X, Y )T have a bivariate normal distribution?

(b) Let X and Y be two independent (univariate) standard normal random variables,
and let Z be an independent random variable such that P[Z = 1] = P[Z = −1] =
1
2
. Are XZ and Y Z independent, and does the random vector X = (XZ, Y Z)T

have a bivariate normal distribution?

Solution.

(a) No. To see this, for example, note that a bivariate normal Z = (Z1, Z2)T has a
p.d.f. fZ1,Z2(z1, z2) that is positive everywhere, and so

P[Z1 < Z2] =

∫ ∞
−∞

∫ ∞
z1

fZ1,Z2(z1, z2) dz2 dz1 > 0,

but P[X < Y ] = 0.

Another possible way to see it: note that Cov(X,Y ) = Cov(X,X) = Var(X) = 1, but
if X and Y were independent they would have covariance zero.
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(b) Yes. To see this, note that for any subsets A,B of R we have

P[XZ ∈ A, Y Z ∈ B] = P[X ∈ A, Y ∈ B,Z = 1] + P[−X ∈ A,−Y ∈ B,Z = −1]

= P[X ∈ A, Y ∈ B]P[Z = 1] + P[−X ∈ A,−Y ∈ B]P[Z = −1]

= P[X ∈ A, Y ∈ B]1
2 + P[X ∈ A, Y ∈ B]1

2

= P[X ∈ A, Y ∈ B].

Hence (XZ, Y Z)T has the same distribution as (X,Y )T , which is that of a pair of in-
dependent normal random variables. Hence (X,Y ) has a bivariate normal distribution,
with mean vector µ = ( 0

0 ) and covariance matrix Σ = ( 1 0
0 1 ).

Challenge Questions

6.10 Recall that an orthogonal matrix R is one for which R−1 = RT , and recall that if
an n × n matrix R is orthogonal, x is an n-dimensional vector, and y = Rx then∑n

i=1 y
2
i = y · y = x · x =

∑n
i=1 x

2
i .

Let X = (X1, X2, . . . , Xn) be a vector of independent normal random variables with
common mean 0 and variance σ2. Let R be an orthogonal matrix and let Y = RX.

(a) Show that Y is also a vector of independent normal random variables, with com-
mon mean 0 and variance σ2.

(b) Suppose that all the elements in the first row of R are equal to 1√
n

(you may assume

that an orthogonal matrix exists with this property). Show that Y1 =
√
nX̄, where

X̄ is the sample mean of X, and that

n∑
i=2

Y 2
i =

n∑
i=1

X2
i − nX̄2.

(c) Hence, use Question 5.8 to deduce that, if s2 = 1
n−1

(∑n
i=1X

2
i − nX̄2

)
is the

sample variance of X,
(n− 1)s2

σ2
∼ χ2

n−1,

and that it is independent of X̄.

(d) Let µ ∈ R. Deduce that the result of part (c) also holds if the Xi have mean µ
(so as they are i.i.d. N(µ, σ2) random variables).

Solution.

(a) We note that X ∼ Nn(0, σ2I), where 0 is an n-dimensional vector of zeros and I is the
n-dimensional identity matrix. The mean vector of Y will then be R0 = 0, and the
covariance matrix will be R(σ2I)RT = σ2RRT = σ2I, by the orthogonality of R, so
the multivariate normal theory tells us that Y also has Nn(0, σ2I) distribution.

Note that this result is a generalisation of Q6.3, since
(

cos θ − sin θ
sin θ cos θ

)
is orthogonal.
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(b) By the form given for R,

Y1 =
n∑
i=1

1√
n
Xi =

√
n

n

n∑
i=1

Xi =
√
nX̄.

By the orthogonality of R we have
∑n

i=1 Y
2
i =

∑n
i=1X

2
i , so

n∑
i=2

Y 2
i =

n∑
i=1

X2
i − Y 2

1 =
n∑
i=1

X2
i − n(X̄)2.

(c) By part (a), the Yi are independent N(0, σ2) random variables, so Yi
σ ∼ N(0, 1), and by

5.8
n∑
i=2

(
Yi
σ

)2

∼ χ2
n−1.

Hence by part (b) we have

(n− 1)s2

σ2
=

1

σ2

(
n∑
i=1

X2
i − nX̄2

)
∼ χ2

n−1,

as required. The independence follows because Y1 is independent of the remaining
variables by the form of the covariance matrix and multivariate normal theory.

(d) Recall that an alternate for of the sample variance of (Xi) is

s2 =
1

n− 1

n∑
i=1

(Xi − X̄)2.

Let X ′i = Xi +µ, so as the X ′i are i.i.d. N(µ, σ2). Write X̄ ′ = 1
n

n∑
i=1

X ′i = X̄ +µ. Hence,

s2 =
1

n− 1

n∑
i=1

(
(X ′i − µ)− (X̄ ′ − µ)

)2
,

that is the (Xi) and the (X ′i) have the same sample variance. So, the sample variance
of the (X ′i) also has the χ2

n−1 distribution.

6.11 Let Z1, Z2, . . . be independent identically distributed normal random variables with
mean µ and variance σ2. We regard n samples of these as a set of data. Write Z̄ and
s2 respectively for the sample mean and variance.

Combine 6.10(d) and 5.10 to show that the statistic

X ′ =

√
n(Z̄ − µ)

s

has the t distribution with n− 1 degrees of freedom.

Solution. We note,

X ′ =

√
n
σ

(
Z̄ − µ

)√
(n−1)s2

σ2

√
1

n−1

.
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This rearrangement (writing s =
√
s2, then multiplying and dividing appropriately by σ and

n− 1), is chosen precisely to create the term W =
√

(n−1)s2

σ2 on the bottom. By 6.10(d), W

has a χ2
n−1 distribution, independent of the numerator

√
n
σ

(
Z̄ − µ

)
. We have

X ′ =

√
n
σ

(
Z̄ − µ

)√
W
n−1

and we now focus on the numerator. We have

Z̄ =
1

n

n∑
i=1

Zi.

Since the (Zi) are independent N(µ, σ2), we have that
∑n

i=1 Zi has a N(nµ, nσ2) distribution,

and hence Z̄ has a N(µ, σ
2

n ) distribution. It follows that Z ′ =
√
n
σ

(
Z̄ − µ

)
has a N(0, 1)

distribution. Hence,

X ′ =
Z ′√
W
n−1

.

By applying 5.10, using that Z ′ ∼ N(0, 1) and W ∼ χ2
n−1, we have that the distribution of

X ′ is the t distribution with n− 1 degrees of freedom.

Note that each Zi has a N(µ, σ2) distribution, so we would expect a statistic of the Zi, such
as X ′, to depend on µ and σ2. In this case, however, we have shown that X ′ has a χ2

n−1

distribution, regardless of the values of µ and σ2. This allows us to design statistical tests,
using the statistic X ′, without needing to know (or estimate) µ or σ.
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7 Likelihood and Maximum Likelihood

Warm-up Questions

7.1 Let f : R→ R by f(θ) = e−θ
2+4θ.

(a) Find the first derivative of f , and hence identify its turning point(s).

(b) Calculate the value of the second derivative of f at these turning point(s). Hence,
deduce if the turning point(s) are local maxima or local minima.

Solution. We have f ′(θ) = (−2θ + 4)e−θ
2+4θ, which is zero if and only if θ = 2. Further,

f ′′(θ) = −2e−θ
2+4θ + (4− 2θ)2e−θ

2−4θ

so as f ′′(2) = −2e4 < 0, which means that the turning point at θ = 2 is a local maxima.

7.2 Let (ai)
n
i=1 be a sequence with ai ∈ (0,∞). Show that log

(
n∏
i=1

ai

)
=

n∑
i=1

log ai.

Solution. This follows from iterating the formula log(ab) = log a+ log b.

Ordinary Questions

7.3 A single sample of x = 3 is obtained from a geometric distribution X with unknown
parameter θ. That is, P[X = x] = θx(1− θ) for x ∈ {0, 1, 2, . . .}.

(a) Write down the likelihood function L(θ; 3), and state its domain Θ.

(b) Find the maximum likelihood estimator of θ.

Solution.

(a) The parameter θ of the geometric distribution takes values in Θ = [0, 1]. The probability
function of the geometric distribution is p(x; θ) = θx(1−θ), defined for x ∈ N. Therefore,
its likelihood function, defined for θ ∈ Θ, is given by L(θ; s) = θx(1− θ). For the data
point x = 3, this gives

L(θ; 3) = θ3(1− θ).

(b) Differentiating, we have

L′(θ; 3) = −θ3 + 3θ2(1− θ)
= θ2(−θ + 3(1− θ))
= θ2(3− 4θ).

We now look for turning points. Solving L′(θ; 3) = 0 gives that θ = 0 or θ = 3
4 .

Next, we see if these turning points are local maxima or minima. Since

L′′(θ; 3) = 2θ(3− 4θ) + θ2(−4)

= −12θ2 + 6θ

= 6θ(1− 2θ)
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it is easily seen that L′′(0; 3) = 0 and L′′(3
4 ; 3) = −18

8 < 0.

So, we know that θ = 3
4 is local maximum, but unfortunately since the second derivative

is zero we don’t know if θ = 0 is a maximum or a minimum. However, since L(0; 3) = 0
and L(3

4 ; 3) > 0 it must be θ̂ = 3
4 that is the global maximum, and hence also the

maximum likelihood estimator of θ.

7.4 Suppose that we have a biased coin, which throws a head with probability θ ∈ [0, 1],
and a tail with probability 1 − θ. The coin flips are independent of each other. We
toss the coin n times, and record the total number of heads.

(a) Let X be the total number of heads thrown after n tosses. Write down the
distribution of X.

(b) Write down the likelihood function L(θ;x) of X, where x is the total number of
heads in n tosses. State the range of values taken by θ.

(c) Suppose that in n = 10 tosses we throw x = 7 heads. Based on this data, find
the maximum likelihood estimator of θ.

Solution.

(a) Each coin flip is independent, and each flip shows a head with probability p, so X ∼
Bi(n, p).

(b) We have

L(θ;x) = p(x; θ) =

(
n

x

)
θx(1− θ)n−x.

The range of values taken by θ is Θ = [0, 1].

(c) Putting n = 10 and x = 7 we obtain that

L(θ; 7) =

(
10

7

)
θ7(1− θ)3.

Note that we don’t need to evaluate
(

10
7

)
, because it won’t affect the value that we will

obtain for θ̂.

Differentiating with respect to θ we obtain that

dL(θ; 7)

dθ
=

(
10

7

)(
7θ6(1− θ)3 − θ73(1− θ)2

)
=

(
10

7

)
θ6(1− θ)2(7(1− θ)− 3θ)

=

(
10

7

)
θ6(1− θ)2(7− 10θ).

This gives us turning points at θ = 0, 1 and θ = 7
10 . At θ = 7

10 we have L(θ;x) > 0,
but at θ = 0, 1 we obtain a likelihood of zero. Hence, θ = 7

10 is the maximum likelihood
estimator.

Note that we could find dL

dθ2
, but we would discover that it was zero at the turning points

θ = 0, 1, which wouldn’t help us (we came across this problem before, in Example 33).
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7.5 Consider a sequence of i.i.d. samples x = (x1, x2, . . . , xn), for some n > 0, in each of
the following cases. The data are i.i.d. samples from:

(a) the gamma distribution Ga(α, θ), where α is known.

(b) the beta distribution Be(θ, 1), where second parameter is known to be equal to 1.

(c) the normal distribution N(θ, σ2), where σ2 is known.

(d) the normal distribution N(µ, θ), where µ is known.

In each case, do the following:

(i) Write down the likelihood function L(θ; x), and specify the range of values Θ
taken by θ.

(ii) Find the log likelihood `(θ; x), and simplify it as much as you can.

(iii) Find the maximum likelihood estimator θ̂.

Solution.

(a) (i) If X ∼ Ga(α, β) then fX(x) = βα

Γ(α)x
α−1
i e−βxi for x > 0. We take θ = β.

The parameter range for θ is Θ ∈ (0,∞).
The likelihood function is

L(θ; x) =
n∏
i=1

f(xi; θ)

=
n∏
i=1

θα

Γ(α)
xα−1
i e−θxi

=
θαn

Γ(α)n

(
n∏
i=1

xi

)α−1

exp

(
−θ

n∑
i=1

xi

)
.

(ii) So, the log-likelihood function `(θ; x) = logL(θ;x) is

`(θ; x) = αn log θ − n log Γ(α) + (α− 1)

n∑
i=1

log xi − θ
n∑
i=1

xi.

(iii) The first derivative of `(θ; x) is

d`(θ; x)

dθ
=
αn

θ
−

n∑
i=1

xi

and setting this equal to zero we get that the unique turning point is

θ =
αn∑n
i=1 xi

. (7.1)

The second derivative of `(θ; x) is

d2`(θ; x)

dθ2
= −αn

θ2
,

which is negative for all θ. Hence, θ̂, given by (7.1), is the maximum likelihood
estimator.
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(b) (i) The parameter set is Θ = (0,∞).
The contribution to the likelihood from observation i is f(xi; θ) = 1

B(θ,1)x
θ−1
i . Note

that B(θ, 1) = Γ(θ)Γ(1)
Γ(θ+1) = Γ(θ)1

θΓ(θ) = 1
θ .

So, the likelihood is

L(θ; x) =
n∏
i=1

θxθ−1
i (1− xi)θ−1 = θn

(
n∏
i=1

xi

)θ−1

.

(ii) This gives

`(θ; x) = n log θ + (θ − 1)

n∑
i=1

log xi.

(iii) The first derivative of `(θ; x) is

d`(θ; x)

dθ
=
n

θ
+

n∑
i=1

log xi

and setting this equal to zero we get that the unique turning point is given by

θ−1 = − 1

n

n∑
i=1

log xi. (7.2)

(Note that this gives θ ∈ (0,∞) because all the logs are negative.)
The second derivative of `(θ; x) is

d2`(θ; x)

dθ2
=
−n
θ2

which is negative for all θ. Hence, θ̂, given by (7.2), is the maximum likelihood
estimator.

(c) (i) If X ∼ N(µ, σ2) then fX(x) = 1√
2πσ

e−(x−µ)2/2σ2
. We take θ = µ.

The range of possible values for θ is Θ = R.
The contribution to the likelihood from observation i will be 1√

2πσ
e−(xi−θ)2/2σ2

,

and the likelihood is

L(θ; x) =

n∏
i=1

1

(2πσ2)1/2
exp

(
− 1

2σ2
(xi − θ)2

)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2

)
.

(ii) Hence, the log likelihood is

`(θ; x) = −n
2

(
log(2π) + log(σ2)

)
− 1

2σ2

n∑
i=1

(xi − θ)2.

(iii) We have

d`

dθ
= − 1

2σ2

n∑
i=1

(−1)2(xi − θ)

=
1

σ2

n∑
i=1

(xi − θ)

=
1

σ2

(
n∑
i=1

xi − nθ

)
,
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and
d2`

dθ2
=
−n
σ2

.

Solving for d`
dθ = 0, we get

∑n
i=1 xi− nθ = 0, and hence the only turning point of `

is θ = (
∑n

i=1 xi)/n. As the second derivative is negative everywhere, this turning
point is the global maximum. So the maximum likelihood estimator of θ is

θ̂ =
1

n

n∑
i=1

xi.

(This is the sample mean x̄, which makes sense wince we wanted to estimate θ = µ,
the mean of N(µ, σ2).)

(d) (i) Now, we look to estimate θ = σ2. The parameter set is Θ = (0,∞).

The contribution to the likelihood from observation i will be f(xi; θ) = 1√
2πθ

e−
(xi−µ)

2

2θ .

So the likelihood is

L(θ; x) =
n∏
i=1

1√
2πθ

exp

(
−(xi − µ)2

2θ

)
=

1

(2πθ)n/2
exp

(
− 1

2θ

n∑
i=1

(xi − µ)2

)
.

(ii) This gives

l(θ; x) = log

(
1

(2πθ)n/2
e−

1
2θ

∑n
i=1(xi−µ)2

)
= −n

2
log(2πθ)− 1

2θ

n∑
i=1

(xi − µ)2.

(iii) The first derivative of `(θ; x) is

d`(θ; x)

dθ
= − n

2θ
+

1

2θ2

n∑
i=1

(xi − µ)2

and setting this equal to zero, we obtain that the unique turning point is

θ =
1

n

n∑
i=1

(xi − µ)2. (7.3)

The second derivative of `(θ; x) is

d2`(θ; x)

dθ2
=

n

2θ2
− 1

θ3

n∑
i=1

(xi − µ)2 =
1

θ2

(
n

2
− 1

θ

n∑
i=1

(xi − µ)2

)

and evaluating it at the turning point (7.3) gives

d2`(θ; x)

dθ2

∣∣∣∣∣
(7.3)

=
1

θ2

(
n

2
− n∑n

i=1(xi − µ)2

n∑
i=1

(xi − µ)2

)
= − n

2θ2
< 0.

Hence (7.3) is the required maximum likelihood estimate θ̂ of θ.
(Note that the factor 1

n is correct; it appears in case where the mean is known,
whereas the factor 1

n−1 appears when the mean is unknown, as in e.g. Example 40.)
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7.6 A sample (x1, x2, x3) = (4, 0, 3) of three independent observations is obtained from
a Poisson distribution with parameter λ. Here, λ is known to be in Λ = {1, 2, 3}.
Find the likelihood of each of the possible values of λ, and hence find the maximum
likelihood estimator.

Solution. The probability of observing the values 4, 0 and 3 as independent observations
from a Po(λ) population is

λ4e−λ

4!

λ0e−λ

0!

λ3e−λ

3!
=
λ7e−3λ

144
,

which gives a likelihood of 3.46× 10−4 for λ = 1, of 2.20× 10−3 for λ = 2, and of 1.87× 10−3

for λ = 3. Amongst these values, the likelihood is largest when λ = 2, so the maximum

likelihood estimator is λ = 2.

7.7 A sequence of i.i.d. samples x = (x1, x2, . . . , xn) is taken from an inverse Gaussian
distribution, which has the p.d.f.

f(x) =

√
θ

2πx3
exp

(
−θ(x− µ)2

2µ2x

)
when x > 0,

and f(x) = 0 for x ≤ 0, with parameters µ, θ > 0.

Both µ and θ are unknown. Find the maximum likelihood estimator of (µ, θ).

Solution. The log-likelihood function is

`(µ, θ; x) =
n

2
log θ − 1

2

n∑
i=1

log(2πx3
i )−

θ

2µ2

n∑
i=1

(xi − µ)2

xi
.

We now calculate the first partial derivatives. Differentiating with respect to µ and rearrang-
ing gives

∂`(µ, θ; x)

∂µ
=

θ

µ3

n∑
i=1

(xi − µ)2

xi
+

θ

µ2

n∑
i=1

(xi − µ)

xi

=
n∑
i=1

θ

µ3

xi − µ
xi

((xi − µ) + µ) ,

giving

∂`(µ, θ; x)

∂µ
=

θ

µ3

n∑
i=1

(xi − µ). (7.4)

Differentiating with respect to θ gives

∂`(µ, θ; x)

∂θ
=

n

2θ
− 1

2µ2

n∑
i=1

(xi − µ)2

xi
. (7.5)

For these to both be zero, from (7.4) we must have

µ =
1

n

n∑
i=1

xi, (7.6)
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and from (7.5) we must have

θ =
nµ2∑n

i=1(xi − µ)2x−1
i

, (7.7)

The second partial derivatives are

∂2`(µ, θ; x)

∂µ2
= −3θ

µ4

n∑
i=1

(xi − µ)− n θ

µ3
,

∂2`(µ, θ; x)

∂µ∂θ
=

1

µ3

n∑
i=1

(xi − µ),

∂2`(µ, θ; x)

∂θ2
= − n

2θ2
.

Evaluating the Hessian matrix at (7.6)/(7.7) gives(
−nθ
µ3

0

0 − n
2θ2

)
.

The top-left element is negative, and the determinant is positive, so this matrix is negative

definite. Hence (µ̂, θ̂) given by (7.6)/(7.7) is the maximum likelihood estimator of (µ, θ).

7.8 Suppose that we have a sequence of i.i.d. samples x = (x1, . . . , xn) taken from a
N(µ, σ2) distribution, where µ is unknown and σ2 is known. Recall from Example
42 that the maximum likelihood estimator is µ̂ = x̄ = 1

n

∑n
i=1 xi and the k-likelihood

region for µ is given by [
x̄− σ

√
2k

n
, x̄+ σ

√
2k

n

]
.

Suppose that n = 144, σ2 = 1 and the data satisfies x̄ = 2.05. Does a 2-likelihood test
support the hypothesis that the true mean is µ = 2?

Solution. For the values given, the endpoints of R2 are 2.05 ±
√

4 1
12 = 2.05 ± 1

6 . Since the

value θ = 2 is within this region, a 2-likelihood test supports the given hypothesis.

7.9 In Q7.4 we tossed a coin n = 10 times and observed x = 7 heads. We modelled the
number of heads X as a Bi(n, θ) distribution with n = 10 and unknown θ.

(a) Use a software package of your choice to find R2, the range of values for θ which
the log likelihood is within 2 of its maximum value.

(b) In this situation, an approximate 95% confidence interval is given by θ̂±1.96

√
θ̂(1−θ̂)
n

,

where θ̂ = x/n. Compare this confidence interval to your answer in (a).

(c) Repeat this analysis with n = 100 and x = 70.

(d) Consider the following statements. Which do you believe? Give arguments to
support your conclusions.

(i) “Using more samples means that we can be more confident about the accuracy
of our estimators.”

(ii) “In both cases (n = 10 and n = 100) we used a just single sample of x, so in
both cases we should have the same level of confidence in our estimator θ̂.”
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(iii) “If we don’t have enough samples to feel certain, then we shouldn’t believe in
statistics.”

Solution.

(a) From the likelihood function in Q7.4

`(θ;x) = log

(
n

x

)
+ x log θ + (n− x) log(1− θ).

Recall that R2 = {θ ∈ Θ : |`(θ;x)− `(θ̂;x)| ≤ 2}, so with n = 10 and x = 7 we have

R2 =
{
θ ∈ [0, 1] :

∣∣7 log θ + 3 log(1− θ)− 7 log 7
10 − 3 log 3

10

∣∣ ≤ 2
}
.

Solving the inequality numerically gives that R2 ≈ [0.39, 0.92].

I suggest using wolframalpha.com to solve the inequality numerically. It is good at
understanding instructions in plain English, so you can type e.g.
solve |70 log(x) + 30 log(1-x) - 70 log(7/10) - 30 log(3/10)| <= 2.

(b) With n = 10 and x = 7, the 95% confidence interval comes out as [0.42, 0.98]. This
interval is quite similar to R2.

(c) With n = 100 and x = 70, we have the same maximum likelihood estimator, θ̂ = 7
10 ,

but the 2-likelihood region becomes R2 ≈ [0.60, 0.79] and the 95% confidence interval
becomes [0.61, 0.78]. Again, R2 is very similar to the 95% confidence interval.

(d) (i) This is broadly true – as long as the extra samples contain new information, and
as long as are using an appropriate statistical method to analyse our data. The
underlying reason is that the more (independent) samples we have, the more confi-
dent we can be that our data reflects the true range of outcomes that we are trying
to model.

(ii) This statement is false. In our experiment we can be more confident about accu-
rately estimating θ̂ when n = 100 than when n = 10. Although we input only a
single value of x into our model in each case, this x incorporates information from
n different independent experiments, and our model is aware of this fact (through
the use of the binomial distribution). So, in fact, we do make use of more data
when n = 100.
The results we have obtained demonstrate an increasing level of certainty as n
increases. In particular, as n becomes large, our 95% confidence interval and our
2-likelihood region both shrink, indicating that we expect our estimator θ̂ to become
closer to its true value.

(iii) This statement is false, although it depends a little on what we mean by ‘believe’.
Statistics and data analysis do not provide absolute certainty, in any situation,
but sometimes they might provide enough confidence that we could choose to feel
certain. The real power of statistics is that it allows us to work with uncertain
claims, by quantifying the level of (un)certainty that we can attach to our beliefs,
by comparison to what we actually observe.

7.10 As in Q7.5(b), let x = (x1, . . . , xn) be a sequence of i.i.d. samples from the Beta(θ, 1)
distribution, where θ is unknown. Show that the k-likelihood region for θ is

Rk =

{
θ ∈ (0,∞) :

∣∣∣θ̂(θ − θ̂) + log(θ/θ̂)
∣∣∣ ≤ k

n

}
,
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where θ̂ denotes the maximum likelihood estimator of θ.

Solution. From Q7.5(b) we have that

`(λ; x) = n log θ + (θ − 1)

(
n∑
i=1

log xi +

n∑
i=1

log(1− xi)

)
.

and that the maximum likelihood estimator is

θ̂ = − 1

n

(
n∑
i=1

log xi +

n∑
i=1

log(1− xi)

)
.

We can thus write
`(λ; x) = n log θ + (θ − 1)nθ̂.

Recalling that Rk = {θ : |`(θ; x)− `(θ̂; x)| ≤ k}, we rearrange

|`(λ; x)− `(λ̂; x)| ≤ k∣∣∣n log θ + (θ − 1)nθ̂ − n log θ̂ − (θ̂ − 1)nθ̂
∣∣∣ ≤ k

|θ̂(θ − θ̂) + log(θ/θ̂)| ≤ k

n

and we have the result.

7.11 (a) Let x = (x1, . . . , xn) be a sequence of i.i.d. samples of the random variable X,
and suppose that the distribution of X has the parameters θ. Let ` be the
corresponding log likelihood function. Show that

`(θ; x) =
n∑
i=1

log fX(xi;θ).

(b) Write φ(x; µ, v) for the probability density function of the N(µ, v) distribution,
with parameters θ = (µ, v). Let X ∼ logN(µ, v) have. Show that for x > 0

fX(x; µ, v) =
1

x
φ(log x; µ, v).

Find the corresponding log-likelihood function `(µ, v; x), in terms of φ.

(c) Without doing any further calculations, combine your results from (a) and (b)
with the results of Example 40, to deduce formulae for the maximum likelihood
estimator of (µ, v).

Solution.

(a) We have

`(µ, v; x) = log (L(µ, v; x)) = log

(
n∏
i=1

fX(xi;µ, v)

)
=

n∑
i=1

log fX(xi;µ, v)
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(b) For x > 0 we have

1

x
φ(log x;µ, v) =

1

x

1√
2πσ

exp

(
−(log x− µ)2

σ2

)
which is the non-zero case of the p.d.f. of the logN(µ, v) distribution.

Hence, by part (a),

`(µ, v; x) = −
n∑
i=1

log xi +

n∑
i=1

log φ(xi;µ, v) (7.8)

(c) Applying part (a) to the case of the N(µ, v) distribution, we obtain that the second
term

∑n
i=1 log φ(xi;µ, v) is the log-likelihood function corresponding to a sequence of

i.i.d. samples from the N(µ, v) distribution. Since the term −
∑n

i=1 log xi in (7.8) does
not depend on µ or v, the partial derivatives obtained from the N(µ, v) case are identical
to those obtained in the logN(µ, v) case.

It follows immediately that the maximum likelihood estimators obtained from (7.8) will
be identical to those obtained for the N(µ, v) distribution. Hence, from Example 40,
we obtain that the maximum likelihood estimators are

µ̂ =
1

n

n∑
i=1

xi v̂ =
1

n− 1

n∑
i=1

(xi − µ̂)2.

Challenge Questions

7.12 The Pareto distribution has parameters α > 0 and β > 0, with p.d.f.

f(x;θ) =
αβα

xα+1
when x ≥ β

and f(x;θ) = 0 when x < β. A set of n i.i.d. samples x = (x1, x2, . . . , xn) are taken
from a Pareto distribution, where the parameters θ = (α, β) are both unknown.

Find the corresponding maximum likelihood estimator of θ.

Solution. The log-likelihood function is

`(θ; x) = log

n∏
i=1

f(xi|θ) = −(α+ 1)

n∑
i=1

log xi + n logα+ nα log β,

assuming α > 0, β > 0 and β ≤ xi for all i. (If β > xi for any i then the likelihood is zero.)
The first partial derivatives are

∂`(θ; x)

∂α
= −

n∑
i=1

log xi +
n

α
+ n log β (7.9)

∂`(θ; x)

∂β
= nα/β

(for α, β > 0 and β ≤ xi for all i).
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Hence `(θ; x) is increasing in β for as long as β ≤ xi for all i, and otherwise equal to zero,
so to maximise β we take β̂ = min(x1, . . . , xn) (similar to Example 41). Then from (7.9) we
have that

∂`(θ̂; x)

∂α̂
= 0

which implies that

n

α
=

n∑
i=1

log xi − n log β̂

and so there is a possible maximum at

α =
1

log
(∏n

i=1 x
1/n
i /min(x1, . . . , xn)

) .
Checking the second derivative,

∂2`(θ; x)

∂α2
= − n

α2
< 0,

for all α > 0 and for all β ≤ xi.

So θ̂ = (α̂, β̂) is the required maximum likelihood estimate of θ.
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