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Introduction

The course material consists of:

• These lecture notes.

• A booklet of examples, which accompany these notes. Examples are referred to in blue.

• A booklet of exercises, containing one set of exercises for each chapter. Typed solutions

to the exercises will be provided online. Exercises are referred to in bold, e.g. Q1.23.

• A two-page formula sheet, which is reproduced at the back of these notes. The formula

sheet will be made available in the exam.

The full content of the course is covered in the typed notes. There is no need to take handwritten

notes in lectures, although you may wish to annotate the typed notes and examples as you

become familiar with them. Naturally, it is also important to work through the exercises.

In Chapter 1 we develop the theory of (univariate) random variables, following on from first

year courses. We focus on continuous random variables; discrete random variables were covered

in MAS113. Then, in Chapter 2 we build up a library of standard distributions. Our goal

is to have a supply of useful distributions for future use, both for later chapters and for future

probability and statistics courses.

In Chapter 3 we examine transformations of univariate random variables, meaning that

if X is a known random variable and g is a (non-random) function, we look to obtain infor-

mation about g(X). This allows us to record many useful relationships between the standard

distributions of Chapter 2.

We move on to study multivariate random variables in Chapter 4, extending the univariate

theory covered in Chapter 1. Again, we focus on continuous random variables, introducing ideas

such as independence and conditional probability. We study transformations of multivariate

random variables in Chapter 5, extending the univariate theory covered in Chapter 3.

In Chapter 6 we study the multivariate normal distribution, which generalizes the normal

distribution into Rd. The importance of the multivariate normal distribution to stochastic

modelling cannot be overstated; it is a popular tool in very many areas of statistics.

Chapter 7 moves away from probability theory and into statistical inference. We introduce

the idea of likelihood and then focus on maximum likelihood, which is a method of choosing

parameter values so as to fit stochastic models to data. Lastly, in Chapter 8, we look at some

case studies (taken from the recent literature) in which the tools we have developed are used to

draw conclusions from real world data.
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Chapter 1

Univariate Distribution Theory

We start with some revision of material from first-year courses, in particular MAS113 Introduc-

tion to Probability and Statistics.

In probability and statistics we are usually interested in situations where there is some un-

certainty about the outcome. We often refer to such situations as experiments. We identify a

set S of possible outcomes, known as the sample space; one and only one of these possible

outcomes will actually occur when the experiment is performed. If we repeat the experiment,

the outcome may change.

Events are subsets of the sample space S. If A ⊆ S is an event, then the ‘true’ outcome

may or may not be a member of A; if it is, we say that A occurs. To every event we associate a

probability, P[A], which we think of as the chance of the event A occurring.

Frequently, we are interested in a numerical measurement arising from an experiment, rather

than the raw outcome - for example, we might count the number of heads in a sequence of

coin tosses, rather than recording the exact sequence of heads and tails. In such situations we

work with a random variable X, which is a function X : S → R. Then, X associates each

element of the sample space to a real number, and we are interested in probabilities of the form

P[X ∈ E], where E is a subset of R. These probabilities form the distribution (or probability

distribution) of the random variable.

We write RX for the range of X; this is precisely the set of values that the random variable

X may take.

Example 1: Sample spaces and random variables

The most important property of a random variable is its distribution.

Definition 1.1 The distribution function of the random variable X is the function FX :

R→ [0, 1], given by

FX(x) = P[X ≤ x].

The function FX is also sometimes referred to as the cumulative distribution function. When it

is clear which random variable we mean, we will often drop the subscript and write F = FX .

Most distributions which we encounter come from two special types; discrete random variables

and continuous random variables.
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1.1 Random variables

Definition 1.2 If a random variable X is integer valued (or, more generally, takes values only

in some finite or countable set), then we say X is a discrete random variable.

In the discrete case, we write

p(x) = P[X = x],

and we call p the probability function of X. The graph of F increases entirely by jump

discontinuities, jumping upwards at each x for which p(x) > 0. The size of the jump at x will

be p(x) = F (x)− F (x−).

Example 2: Discrete random variables.

Many random variables (the normal distribution, for example) take values in R, which is not

countable. For these cases, we need a more sophisticated way of describing random variables.

Definition 1.3 A function f : R→ R is a probability density function if both

1. f(x) ≥ 0 for all x ∈ R,

2.
∫∞
−∞ f(x) dx = 1.

If a function f(x) is a probability density function, then there is a random variable X such that

the distribution function of X satisfies FX(x) =
∫ x
−∞ f(u) du. Proving this fact (i.e. the existence

of X) requires some analysis and is outside the scope of our course. However, it allows us to

make the following definition.

Definition 1.4 If we can write the distribution of a random variable X in the form

FX(x) =

∫ x

−∞
fX(t) dt (1.1)

where fX is a probability density function, then we say X is a continuous random variable.

We call fX the probability density function of X.

If we know the distribution function of a random variable, then we can find its probability

density function using
d

dx
F (x) = f(x).

Conversely, if we are given f , then we can use (1.1) to find F .

In the continuous case, probabilities may be found by integrating the p.d.f. over an appro-

priate range. For example, for when x ≤ y,

P[x < X ≤ y] = P[X ≤ y]− P[X ≤ x] = F (y)− F (x) =

∫ y

x
f(t) dt. (1.2)

In the continuous case, we have P[X = x] =
∫ x
x f(u) du = 0 for all x (but in the discrete case

we can have P[X = x] > 0). This means that in the continuous case we have P[x < X ≤ y] =

P[x < X < y] = P[x ≤ X ≤ y], and so on.
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We will often encounter probability density functions f(x) that are defined by different for-

mulae for different ranges of x. In these cases, we can still calculate probabilities using (1.2),

but to calculate the integral we must first the split it up into the different intervals for each

formula.

Example 3: Continuous random variables and probability density functions.

1.2 Distribution functions

From the distribution function of X, we can calculate the probability of more complicated events.

We have already seen one example of doing so, in equation (1.2). If we know the distribution of

a random variable, then we can (in principle) use it calculate any probability associated to that

random variable.

For a general function F : R→ [0, 1], we say that F is a distribution function if it has has

the following properties.

1. 0 ≤ F (x) ≤ 1 with limx→−∞ F (x) = 0, limx→∞ F (x) = 1.

2. F (x) is non-decreasing in x; that is, if x < y then F (x) ≤ F (y).

3. F is right-continuous and has left limits.

It can be shown that, for any random variable X, its distribution function satisfies 1-3. Con-

versely, if we have a function F satisfying properties 1-3, it is also true that there exists a

random variable X with distribution function F . Proving these facts requires some analysis,

and is outside of the scope of this course.

A probability density function f must be non-negative because F cannot decrease, but note

that a probability density function f is not itself a distribution function. It is possible (and

common) for f to be greater than 1 for some values of x.

Example 4: Properties of distribution functions

1.3 Means, variances and moments

In the discrete case, we define the mean (or expectation or expected value) of the random

variable X to be

E[X] =
∑

x∈RX

xp(x). (1.3)

Here, RX denotes the range of values that the random variable X can take. Similarly, in the

continuous case, we define

E[X] =

∫ ∞

−∞
xf(x) dx. (1.4)

Comparing these two formulas, we might think of
∫
. . . dx as a ‘continuous version’ of

∑
x . . .,

and we might think of the p.d.f. f(x) as a continuous equivalent of p.f. p(x). That is, we think

of f(x) as a measure of how likely X is to be ‘nearly’ equal to x.
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More generally, if g(X) is a function of X then

E[g(X)] =
∑

x∈RX

g(x)p(x) (discrete case),

E[g(X)] =

∫ ∞

−∞
g(x)f(x) dx (continuous case). (1.5)

We often write µ = µX = E[X] for the mean. Note that, setting g(x) = x, we recover the

formulae for E[X]. Taking g(x) = xr, where r ∈ N, we obtain a formula for the rth moment,

E[Xr].

With special choices of g, we can extract important information about the random variable

X. One especially useful quantity is the variance

Var(X) = E
[(
X − µ

)2]
= E[X2]− µ2.

We often write σ2 = σ2
X = Var(X). The positive square root σ =

√
Var(X), is known as the

standard deviation.

Example 5: Expectations and variances.

The mean and variance are the two most important quantities associated to a random variable

X. The mean tells you the rough location of (a sample of) X, and the variance measures how

closely X typically is to its mean.

1.4 Random variables without a mean

The sum or integral in the definition of the mean, in equations (1.3) and (1.4), might not

converge; if it does not, we say that the mean does not exist.

For example, let X be a random variable with probability density function

f(x) =
1

π(1 + x2)
.

A random variable with this p.d.f. is said to have a Cauchy distribution. It can be checked

that f really is a probability density function, see Q1.10.

If we attempt to calculate the mean of X, we look at
∫ ∞

−∞

x

π(1 + x2)
dx,

which should be interpreted as

lim
s→∞,t→∞

∫ t

−s

x

π(1 + x2)
dx.

However ∫ t

−s

x

π(1 + x2)
dx =

1

2π

(
log(1 + t2)− log(1 + s2)

)
,

and this does not have a well-defined limit as both s and t go to infinity. Hence the mean is

undefined.

The Cauchy distribution is not the only example of a distribution without a defined finite

mean; there are many others. See, for example, Q1.11 and Q1.12.
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Chapter 2

Standard Distributions

Our eventual goal, in this course, is to build statistical models and use them to perform inference;

in order to do so we require a library of distributions, to use as building blocks in our models.

In this section, we put together such a library.

You will already have met several standard distributions in MAS113. In fact, each ‘distri-

bution’ is really a family of distributions sharing a common formula for the p.f. or p.d.f. which

contains one or more parameter(s).

For example, the binomial family Bi(n, p) has two parameters, n, the number of trials, and

p, the success probability. It is common to simply refer to the whole family Bi(n, p) as ‘the

binomial distribution’, and similarly for other (families of) distributions.

The distributions that we choose to include in our library are important for diverse reasons,

often

• because they arise from simple models (e.g. the binomial distribution from Bernoulli trials)

• or because they have special mathematical properties (e.g. the normal distribution from

the central limit theorem).

Two handouts will be made available, one with a list of standard distributions for discrete

random variables, and another with a list of standard continuous distributions.

2.1 Standard discrete distributions

You will already have met many of the most important discrete distributions in first-year courses:

• The Bernoulli distribution, written Bernoulli(p), with the single parameter p ∈ [0, 1],

defined by P[X = 1] = p and P[X = 0] = 1− p.

• The binomial distribution, written Bi(n, p), with two parameters, n ∈ N and p ∈ [0, 1],

defined by P[X = k] =
(
n
k

)
pk(1− p)n−k, for k ∈ {1, 2, . . . , n}.

• The geometric distribution, written Geom(p), with the single parameter p ∈ [0, 1),

defined by P[X = k] = pk(1− p), for k ∈ {0, 1, 2, . . .}.

• The Poisson distribution, written Poi(λ) with the single parameter λ ∈ (0,∞), defined

by P[X = k] = λke−λ

k! , for k ∈ {0, 1, 2, . . .}.
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Recall that the binomial and geometric distributions both have interpretations in terms of

Bernoulli trials. Consider a sequence (Xi)
∞
i=1 of independent Bernoulli trials, each with success

probability p.

• The binomial distribution Bin(n, p) is the number of successes that we will see in the first

n trials.

• The geometric distribution Geom(p) is the number of successful trials that occur before

the first failure.

Remark 2.1 The phrase ‘geometric distribution’ is used inconsistently. It can mean the total

number of trials up to and including the first failure, which would mean that P[X = k] =

pk−1(1 − p) for k ∈ N. The roles of success and failure (i.e. p and 1 − p) are also sometimes

swapped.

We also introduce two more discrete distributions, which are closely related to the binomial

and geometric distributions, and are also based on Bernoulli trials.

2.1.1 The negative binomial distribution

The negative binomial distribution has two parameters, k ∈ N and p ∈ (0, 1]. We write it

as NegBin(k, p). It is the distribution of the number of (independent) Bernoulli(p) trials we

must carry out until we see k successes.

We can use this definition to work out a formula for the probability function of X ∼
NegBin(k, p). We can’t have k successes before we’ve done k trials, so P[X = r] = 0 for

r < k. For r ∈ {k, k + 1, k + 2, . . .}, we can calculate

P[X = r] = P
[
k − 1 successes in first r − 1 trials, and rth trial is a success

]

= P [k − 1 successes in first r − 1 trials]P
[
rth trial is a success

]

=

(
r − 1

k − 1

)
pk−1(1− p)r−1−(k−1) × p

=

(
r − 1

k − 1

)
pk(1− p)r−k.

Note that here we use the probability function of the binomial distribution to calculate the

probability of seeing k − 1 successes in the first n− 1 trials.

The negative binomial distribution is commonly used in sampling, see Q2.7.

2.1.2 The hypergeometric distribution

The hypergeometric distribution has three parameters, N ∈ N, k ∈ {0, . . . N} and n ∈
{0, . . . , N}. If we have a population of N objects, precisely k of which have a special property,

and we take a random sample of precisely n objects, then HypGeom(N, k, n) is the number of

objects in our sample that has the special property.
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Again, we can use this definition to derive a formula for the probability function of X ∼
HypGeom(N, k, n). To do so, note that since there are k special objects in our population,

P[X = r] = 0 unless r ∈ {0, 1, . . . , k}. For r ∈ {0, 1, . . . k}, we have

P[X = r] =
number of possible samples of size n containing r special objects

total number of possible samples

=

(
k
r

)(
N−k
n−r
)

(
N
n

) .

To see how the denominator is obtained, recall that
(
N
n

)
is the number of ways we can choose n

objects from a set of N objects. For the numerator, we must choose r special objects (out of k

special objects) to be within our sample, and then also n− r non-special objects (out of N − k
non-special objects) to be within our sample.

The hypergeometric distribution, as we might expect, is frequently used in combinatorics.

Combinatorics is the branch of mathematics that focuses on counting the number of objects

that occur in given situations (for example, like the number of different graphs with a vertices

and b edges).

2.2 Standard continuous distributions

We now move on to look at some important continuous distributions. Again, you have come

some examples of these in MAS113.

We usually define a continuous distribution by writing down its probability distribution

function. When we do so, we have to make sure we specify the region on which the p.d.f. is

non-zero.

• The exponential distribution, written Exp(λ), with one parameter λ > 0, defined by

its p.d.f.

f(x) =




λe−λx x > 0,

0 otherwise.

• The uniform distribution, written Unif [a, b], with two parameters a < b, defined by its

p.d.f.

f(x) =





1
b−a for x ∈ [a, b],

0 otherwise.

It is sometimes convenient to use Unif(a, b), with p.d.f. defined instead to be non-zero on

(a, b). The distribution is the same – in both cases the probability of taking the value a or

b is zero.

In Sections 2.2.1 and 2.3 we look at some more examples of continuous distributions. Then, in

Section 2.4 we will look at using software packages to sketch probability density functions for

us.
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2.2.1 The (univariate) normal distribution

Again, you will have encountered the normal distribution in MAS113.

We say that X has a normal distribution with mean µ and variance σ2, if the probability

density function of X is

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)

for all x ∈ R. We write X ∼ N(µ, σ2). It can be shown (see MAS113) that the mean and

variance of a random variable with this p.d.f. really are µ and σ2.

The special case N(0, 1), with p.d.f.

φ(x) =
1√
2π

exp

{
−x

2

2

}
, (2.1)

is referred to as the standard normal distribution. The p.d.f. φ(x) cannot be integrated

explicitly.

Example 6: Calculating E[eY ] where Y ∼ N(0, 1).

An important property of the normal distribution family is that if X ∼ N(µ, σ2) and a and

b are constants, then

aX + b ∼ N(aµ+ b, a2σ2). (2.2)

In particular X can be standardised by letting Z = X−µ
σ , so that Z ∼ N(0, 1).

Another important property is that, if we have n independent normal random variables

X1, X2, . . . Xn, with Xi ∼ N(µi, σ
2
i ) then

n∑

i=1

Xi ∼ N
(

n∑

i=1

µi,

n∑

i=1

σ2
i

)
. (2.3)

If the Xi are not independent, this formula typically does not hold (for example, take n = 2 and

set X2 = −X1).

We will prove (2.2) in Example 10 and (2.3) in Section 6.4.

2.2.2 The log-normal distribution

The distribution of Y = eX , where X ∼ N(µ, σ2), is known as the log-normal distribution,

written logN(µ, σ2). In Example 11 we will show that the probability density function of Y ∼
logN(µ, σ2) is

fY (y) =





1
yσ
√

2π
exp

(
− (log y−µ)2

2σ2

)
if y ∈ (0,∞)

0 otherwise.
(2.4)

The log-normal distribution is useful as a model for a diverse range of quantites, as we will see

in Example 35 (which is about particle sizes in aerosols).
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2.3 The gamma and beta distributions

In this section we introduce two widely used continuous distributions, namely the gamma and

beta families. Many well known distributions, such as the exponential distribution, chi squared

distribution, and the uniform distribution, are special cases of these families.

2.3.1 The gamma and beta functions

Recall that the p.d.f. of the standard normal distribution is φ(x) = 1√
2π
e−x

2/2. Probability

density functions must integrate to give 1, so we have
∫∞
−∞ φ(x) dx = 1. This means that∫∞

−∞ e
−x2/2 dx =

√
2π, and we can think of the factor 1√

2π
in (2.1) as being placed there ‘to

make sure φ integrates to 1’. We refer to such a factor as a normalizing constant

The gamma and beta functions, which we introduce in this section, appear as normalizing

constants in the probability density functions of many standard continuous distributions. Before

we study these distributions, we need to work out a few facts about the gamma and beta

functions.

The gamma function, Γ : (0,∞)→ R is defined by

Γ(α) =

∫ ∞

0
uα−1e−u du.

Here’s a graph:

The first property of the gamma function that we are interested in is that, in a sense, it generalizes

the factorial function.

Lemma 2.2 It holds that Γ(1) = 1, and for α > 1 we have

Γ(α) = (α− 1)Γ(α− 1).

For n = 1, 2, . . ., we have Γ(n) = (n− 1)!

Proof: Note that

Γ(1) =

∫ ∞

0
e−u du =

[
− e−u

]∞
0

= 1.

12
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Using integration by parts, for any α > 1,
∫ ∞

0
uα−1e−u du =

[
uα−1(−e−u)

]∞
0
−
∫ ∞

0
(α− 1)uα−2(−e−u) du

= 0 + (α− 1)

∫ ∞

0
uα−2e−u du

That is, Γ(α) = (α − 1)Γ(α − 1). By repeatedly applying this formula, for any n ∈ N we have

Γ(n) = (n− 1)(n− 2) . . . (3)(2)Γ(1), and since Γ(1) = 1 this gives Γ(n) = (n− 1)! �

One other specific value, which appears in some formulae for standard distributions, is

Γ(1/2) =
√
π. See Q2.11.

In a similar style, the beta function is defined for α, β > 0 by

B(α, β) =

∫ 1

0
uα−1(1− u)β−1 du.

Here’s a graph:

The beta and gamma functions are related by the formula

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
. (2.5)

The proof of this formula uses a change of variables inside a double integral, and is outside the

scope of our course.

Frequently, in the next few sections, we will encounter integrals of the form
∫∞

0 uα−1e−βu du.

Note that this integral is similar to the integral defining the Gamma function above, but has an

extra constant β. It can be related to the Gamma function by the following change of variables.

Lemma 2.3 If α, β > 0, we have
∫ ∞

0
uα−1e−βu du =

Γ(α)

βα
.

Proof: We apply a change of variables t = βu. With this substitution, we have
∫ ∞

0
uα−1e−βu du =

∫ ∞

0

(
t

β

)α−1

e−t
(

1

β

)
dt = β−α

∫ ∞

0
tα−1e−t dt = β−αΓ(α)

as required. �

13
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2.3.2 The gamma distribution

Let

f(x) =





βα

Γ(α)x
α−1e−βx for x > 0,

0, for x ≤ 0.

The distribution with this p.d.f. is called the Gamma distribution. It has two parameters,

α ∈ (0,∞) and β ∈ (0,∞). If a random variable X has this p.d.f. then we write X ∼ Ga(α, β).

Let us check that f really is a probability density function. We need to check that f(x) ≥ 0

for all x, which is clearly true, and that
∫∞
−∞ f(x) dx = 1. Using Lemma 2.3 we have

∫ ∞

−∞
f(x) dx =

∫ ∞

0

βα

Γ(α)
xα−1e−βx dx

=
βα

Γ(α)

∫ ∞

0
xα−1e−βx dx

=
βα

Γ(α)

Γ(α)

βα

= 1.

So, f really is a p.d.f.

Example 7: Mean and variance of the Gamma distribution.

Like the normal distribution, the gamma distribution has several nice properties. In Q5.7

we will show that if X1 ∼ Ga(α1, β) and X2 ∼ Ga(α2, β) and X1 and X2 are independent, then

X1 +X2 ∼ Ga(α1 + α2, β).

The exponential distribution is a special case of the gamma distribution; in fact the Ga(1, β)

distribution is equal to the Exp(β) distribution. To see this, set α = 1 in the formula for the

p.d.f. and note that it then becomes the p.d.f. of Exp(β).

Combining the results of the last two paragraphs, we have that the sum of n independent

Exp(λ) variables has the Ga(n, λ) distribution.

Remark 2.4 There are alternative parametrisations of the gamma distribution (e.g. θ = 1/β),

so you sometimes have to be careful with software when using it.

2.3.3 The chi-squared distribution

The chi-squared1 distribution, which is used in many statistical tests, is also a special case of

the gamma distribution.

Let n ∈ N. If we set α = n/2 and β = 1/2 in the gamma distribution, then we obtain the

chi-squared distribution with n degrees of freedom, written χ2
n. It has a single parameter,

n ∈ N. From the p.d.f. for the gamma distribution, we obtain

f(x) =





1
2n/2Γ(n

2
)x
n/2−1 exp

(
−x

2

)
for x > 0,

0 for x ≤ 0.

1Pronounced ‘kiy squared’.
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If X has this probability density function then we write X ∼ χ2
n. An important special case is

when n = 1, because χ2
1 is the distribution of Z2, where Z ∼ N(0, 1). We will prove this fact in

Example 12.

More generally, the χ2
n is the distribution of the sum of the squares of n independent standard

normal random variables; that is if X1, X2, . . . , Xn are independent with Xi ∼ N(0, 1) and

Y =
∑n

i=1X
2
i , then Y ∼ χ2

n. See Q5.8.

It is this relationship to the normal distribution that makes the χ2 distribution important

in statistical testing; in many situations statistical errors are (independent and, approximately)

normally distributed, and the squares of such errors may therefore be approximated by a chi-

squared distribution. We will come back to this idea later on in the course, in Section 5.1.

2.3.4 The beta distribution

Let

f(x) =





1
B(α,β)x

α−1(1− x)β−1 if x ∈ [0, 1]

0 otherwise.
(2.6)

Again, we will show (below) that f is a p.d.f. The distribution with this p.d.f. is called the Beta

distribution with parameters α ∈ (0,∞) and β ∈ (0,∞), written Be(α, β).

To see that f(x) is a p.d.f., we note that f(x) ≥ 0 and

∫ ∞

−∞
f(x) dx =

∫ 1

0

1

B(α, β)
xα−1(1− x)β−1 dx = 1.

We can find the mean and variance of the Beta distribution using similar methods as for the

Gamma distribution.

Example 8: Calculate the mean and variance of X if X ∼ Be(α, β)

If we take α = 1 and β = 1, we see that the Be(1, 1) distribution is the same as the Uniform

distribution on [0, 1].

The Beta distribution is useful for modelling random quantities which are naturally con-

strained to be in [0, 1] (or, via suitable scaling, in any bounded interval).

2.4 Plotting distributions in R

The aim of this section is to show how to use the computer package R to plot density and

distribution functions of random variables.

Most of you will have seen R in use in Level 1 courses. For a more detailed introduction to

R, see the course website for the handout “An Introduction to R”.

To start with, we assume that R has been installed. We wish to plot the p.d.f. fX(x) of the

random variable X ∼ N(0, 1). The command we use here is curve, which creates a curve of a

given function. The form of this command is

> curve(f(x), from="lower limit", to="upper limit")

or just

15
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> curve(f(x), "lower limit", "upper limit")

This tells R to plot a curve of a given function y = f(x), where x takes values from “lower

limit” to “upper limit”. If we don’t enter these two limits R will use its own default values. More

details on the arguments of the above command can be found by typing help(curve).

Using the command curve we can do

> curve(dnorm,-3,3)

Similarly, one can produce plots of the p.d.f. of any normal variable, X ∼ N(µ, σ2), by using

the command dnorm(x,mean,sd). For example

> curve(dnorm(x,2,10),-10,14)

gives a plot of the p.d.f. of a N(2, 100) variable. Note that sd refers to standard deviation, not

variance.

Similar plots can be obtained by for the p.d.f.s of other distributions. For the normal dis-

tribution use dnorm, for the chi-square use dchisq, for the Student t use dt, for the gamma

distribution use dgamma (but check the definition of the p.d.f., because there are different ways

of paremetrising this distribution), for the beta distribution use dbeta, for the binomial use

dbinom. See also Q2.6.

To find the syntax for other distributions, it can be useful to use R’s help system, which can

be accessed with help(topic).

If the distribution we wish to plot does not exist by default in R, then we can define it in

R and plot it using the curve command as above. For more information on this, consult the

on-line manuals of R.
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Chapter 3

Transformations of Continuous
Random Variables

The general question here is: if we have a continuous random variable X with a known distri-

bution, and we have another random variable Y defined as

Y = g(X)

for some function g, then what is the distribution of Y ?

We could calculate probabilities P[Y ≤ y] = P[g(X) ≤ y] by hand using integration, but it

is more efficient to have a general method of transforming the p.d.f. of X into the p.d.f. of Y .

Then, we can use fY to calculate probabilities for Y .

Let us look at the case where g is strictly monotone, i.e. either strictly increasing or

strictly decreasing on the relevant range of x. Note that in this case g has an inverse function

g−1 which is also strictly increasing (if g is strictly increasing), or strictly decreasing (if g is

strictly decreasing).

Recall that RX denotes the set of values that X may actually take, and that g(RX) =

{g(x) ; x ∈ RX}.

Lemma 3.1 Suppose that g : RX → R is strictly monotone. Then the p.d.f. of Y = g(X) is

given by

fY (y) =




fX(g−1(y))

∣∣∣ ddyg−1(y)
∣∣∣ for y ∈ g(RX),

0 otherwise.
(3.1)

Proof: If g−1(y) is not in RX then f(g−1(y)) = 0, so it is enough to prove the lemma in the

case RX = R.

Firstly, if g is strictly increasing, then g−1 is strictly increasing. Therefore,

FY (y) = P[Y ≤ y] = P
[
g−1(Y ) ≤ g−1(y)

]
= P

[
X ≤ g−1(y)

]
= FX(g−1(y)).

Differentiating with respect to y, using the chain rule we have

fY (y) =
d

dy
FX
(
g−1(y)

)
= fX(g−1(y)) · d

dy
g−1(y). (3.2)

17



c©Nic Freeman, University of Sheffield 2019.

Secondly, if g is strictly decreasing, then g−1 is strictly decreasing. So,

FY (y) = P[Y ≤ y] = P
[
g−1(Y ) ≥ g−1(y)

]
= P

[
X ≥ g−1(y)

]
= 1− FX(g−1(y)).

Note that here, because g−1 is decreasing, we must change the sign when we apply g−1 to both

sides of an inequality. Differentiating with respect to y,

fY (y) = −fX(g−1(y)) · d
dy
g−1(y). (3.3)

If g−1 is increasing then d
dyg
−1(y) ≥ 0, and if g−1 is decreasing, d

dyg
−1(y) ≤ 0. So, we can

combine our two cases from (3.2) and (3.3), into (3.1). �

To apply this lemma, we must check all its conditions, which takes several steps. Usually

this means we must:

1. write down the p.d.f. of X and identify the set RX on which fX(x) > 0,

2. write down a function g such that Y = g(X),

3. check that g is strictly monotone and find g−1, dg−1

dy , and g(RX).

Having done so, we can apply the lemma and deduce fY (y) from (3.1). This is our usual method

for carrying out univariate transformations. It is covered in several exercises, starting with Q3.2,

which goes through the steps explicitly.

Example 9: The cube root of the Be(3, 1) distribution.

Example 10: Standardization of the normal distribution.

Using this technique we can display several relationships between standard distributions.

One such relationship is transforming the normal distribution into the log-normal distribution,

as in the next example.

Example 11: The log-normal distribution.

In general, if one of the above steps fails, for example if g is not strictly monotone, then we

work ‘by hand’; we have to identify the problem and find a way around it. This happens (for

example) in one of transformations we mentioned in Chapter 2, namely taking the square of a

normal random variable to obtain a chi-squared random variable. In this case we have g : R→ R
by g(x) = x2. Of course, this g is not strictly monotone.

Example 12: Square of a standard normal (the χ2
1 distribution).

Sometimes, operating directly with the p.d.f. is not possible. For example, if g : R → R is

given by g(x) ≡ 0 then, regardless of X, Y is a discrete random variable and P[Y = 0] = 1. In

this case, Y does not have a probability density function.
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Chapter 4

Multivariate Distribution Theory

Often, we are interested in several random quantities at once, and these quantities may affect

each other. For example, if we were interested in a possible link between traffic and pollution

in a city center we might record, on a given day:

X1 = number of cars travelling into the city center

X2 = an indicator of air quality (e.g. parts per million of carbon monoxide)

X3 = wind speed

X4 = rainfall.

As is often the case in statistics, we’d need to record this information for multiple days, before

we would expect to discover a link.

In such cases, we have a multivariate random variable or random vector

X = (X1, X2, . . . , Xk),

where k ∈ N is the number of different types of observation. Formally, X is a mapping from the

sample space S into k-dimensional space Rk. Of particular interest will be how the components

X1, X2, . . . , Xk vary together.

We need to upgrade our definitions of continuous/discrete random variables to the multivari-

ate case.

Definition 4.1 We say that X = (X1, X2, . . . , Xk) is a

• continuous random vector, if all X1, X2 . . . , Xk are continuous random variables.

• discrete random vector, if all X1, X2 . . . , Xk are discrete random variables.

In any other case we say that X is neither continuous, nor discrete.

You will already have met discrete random vectors in MAS113. In this chapter we will

discuss continuous random vectors; later we will introduce the important case of vectors with

multivariate normal distributions and also look at transformations of random vectors.

The case k = 1 is the univariate case, from Chapter 1. In this chapter we will concentrate

on the case k = 2, which is known as the bivariate case, but the same ideas extend to general

k ∈ N. We will tend to write X = X1 and Y = X2, giving X = (X,Y ). ‘
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4.1 Joint distribution and density functions

Our first step is to discuss how distribution functions and probability density functions apply

to random vectors.

Definition 4.2 The joint distribution function of the random vector X = (X,Y ) is the

function FX,Y : R2 → [0, 1] given by

FX,Y (x, y) = P[X ≤ x, Y ≤ y]

In principle, as in the univariate case, if we know the value of this function for all x, y then we

can calculate any probability involving X and Y .

Definition 4.3 We say that f : R2 → R is a joint probability density function if

1. f(x, y) ≥ 0 for all x, y ∈ R.

2.
∫∞
−∞

∫∞
−∞ f(x, y) dx dy = 1.

Similar to the univariate case, if we have a probability density function f , there exists a pair

of random variables (X,Y ) that are said to have joint p.d.f. f(x, y) = fX,Y (x, y). The joint

probability density function is analogous to the p.d.f. of a single random variable. It means

that, for D ⊆ R2 we have

P[(X,Y ) ∈ D] =

∫∫

D
fX,Y (x, y) dx dy. (4.1)

In words, to find the probability that the pair (X,Y ) lies in some region D of the plane then we

must integrate fX,Y over D; in other words Pictorially, if we plot the surface z = fX,Y (x, y) in

three dimensions then P[(X,Y ) ∈ D] is equal to the volume between the surface z = fX,Y (x, y)

and the image of D in the plane z = 0.

Note that if we choose D = (−∞, x]× (−∞, y] in (4.1) we get

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v) du dv, (4.2)

or equivalently that
∂2

∂x∂y
FX,Y (x, y) = fX,Y (x, y). (4.3)

These two equations allow us to find the joint distribution function from the joint p.d.f., and

vice versa.

Since evaluating probabilities with (4.1) involves double integration, often over a bounded

region, we must take care to get the limits of integration right. We’ll discuss this in the examples

below (and also in the solutions to Q4.1 and Q4.3).

In the univariate setting, we saw cases where different formulas for the p.d.f. were needed on

different intervals. We allow similar cases in the bivariate (and multivariate!) situations too;

the boundaries separating regions in which different formulas for the p.d.f. apply may now be

lines as well as points.
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Example 13: Joint probability density functions.

We can use the joint p.d.f. to evaluate expectations of g(X,Y ), where g : R2 → R. To do so,

we use the formula ∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dx dy. (4.4)

4.2 Marginal and conditional distributions

When we have a random vector (X,Y ), we can also think of both X and Y as (univariate)

random variables.

Definition 4.4 Given a random vector (X,Y ), with joint p.d.f. fX,Y (x, y) the marginal p.d.f. of

X is fX : R→ R given by

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy.

In words, we integrate out the y component. To find the marginal distribution of Y , we integrate

out the x component.

When viewed as a univariate random variable, fX is the p.d.f. of X; we say ‘marginal’ p.d.f. so

as we don’t forget that X is also part of the random vector (X,Y ). The marginal distribution

of X is the distribution with p.d.f. fX(x).

Example 14: Marginal distributions.

We can also think of the distribution of X given that Y takes a particular value, say y. We

could view this as taking the bivariate pair (X,Y ) and artificially imposing the condition that

Y = y, then asking what the distribution of X will be. This captures the fact that value of Y

might affect the value of X.

Definition 4.5 The conditional p.d.f. of X given Y = y is fX|Y=y : R→ R given by

fX|Y=y(x) =
fX,Y (x, y)

fY (y)
, (4.5)

which is defined only when fY (y) > 0. If we swap the roles of X and Y , we obtain fY |X=x(y).

It can be shown that, provided fY (y) > 0, the formula (4.5) does genuinely define a p.d.f. (as

a function of x), see Q4.12. It is also common to write fX|Y (x|y) for the conditional p.d.f.,

although we will always write fX|Y=y(x). The conditional distribution of X given Y = y, is the

distribution of a random variable with p.d.f. y 7→ fX|Y=y(x).

Example 15: Conditional distributions.
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4.3 Independence, covariance and correlation

Recall that, by definition, a pair (X,Y ) of random variables are independent if and only if

P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B]

for all A,B ⊆ R. If we have independent random variables X and Y with probability density

functions fX(x) and fY (y) respectively, then it is easy to find the joint p.d.f. of the random

vector (X,Y ):

Lemma 4.6 A pair of continuous random variables X and Y are independent if and only if

fX,Y (x, y) = fX(x)fY (y)

for all x, y.

Proof: Suppose X and Y are independent. Then

FX,Y (x, y) = P[X ≤ x, Y ≤ y] = P[X ≤ x]P[Y ≤ y] = FX(x)FY (y).

Differentiating both sides of this equation with respect to both x and y gives ∂FX,Y
∂x∂y = ∂FX

∂x
∂FY
∂y ,

which by definition of the (joint) marginal p.d.f. means that fX,Y (x, y) = fX(x)fY (y).

Alternatively, suppose that fX,Y (x, y) = fX(x)fY (y). Then, for any A,B ⊆ R we have

P[X ∈ A, Y ∈ B] =

∫

A

∫

B
fX(x)fY (y) dy dx

=

∫

A
fX(x)

(∫

B
fY (y) dy

)
dx

= P[Y ∈ B]

∫

A
fX(x) dx

= P[Y ∈ B]P[X ∈ A].

So X and Y are independent. �

Alternatively, if we are given a p.d.f. fX,Y (x, y), there is a simple test for independence. It

has the extra advantage that it does not require us to find fX or fY explicitly.

Corollary 4.7 A pair of continuous random variables X and Y are independent if and only if

fX,Y (x, y) = g(x)h(y) (4.6)

for some pair of functions g(x) and h(y).

Proof: Firstly, if X and Y are independent then Lemma 4.6 shows that (4.6) holds, just take

g(x) = fX(x) and h(y) = fY (y).

Alternatively, if we know (4.6) holds then

fX(x) =

∫

R
fX,Y (x, y) dy = g(x)

∫

R
h(y) dy

22



c©Nic Freeman, University of Sheffield 2019.

and similarly fY (y) = h(y)
∫
R g(x) dx. Using that P[(X,Y ) ∈ R2] = 1, we obtain

1 =

∫∫

R2

fX,Y (x, y) dx dy =

∫∫

R2

g(x)h(y) dx dy =

(∫

R
g(x) dx

)(∫

R
h(y) dy

)
(4.7)

and hence,

fX,Y (x, y) = g(x)f(y)

=

(∫∫

R2

g(x)h(y) dx dy

)−1

×
(
g(x)

∫

R
h(y) dy

)
×
(
h(y)

∫

R
g(x) dx

)

= 1× fX(x)× fY (y).

Here, the first line is just (4.6) and the second line follows from the equality on the right hand

side of (4.7). The third line follows by the left hand terms of (4.7) and the expressions obtained

for fX(x) and fY (y).

Thus, by Lemma 4.6, X and Y are independent. �

Usually, when we want to show independence we use Corollary 4.7, because then all we need

to do is factorize (and we don’t mind if g and h are p.d.f.s or not). If we are lucky, we can

then recognize g(x) and h(y) as p.d.f.s, and then we can write both X and Y as standard

distributions.

Example 16: Independence and factorizing fX,Y .

When X and Y are not independent, we can try to measure how much they depend on each

other. Let us write µX = E[X] and µY = E[Y ], along with σ2
X = Var(X) and σ2

Y = Var(Y ).

Definition 4.8 The covariance of X and Y is defined as

Cov(X,Y ) = E[(X − µX)(Y − µY )] = E[XY ]− E[X]E[Y ].

Definition 4.9 The correlation coefficient of X and Y is defined as

ρ(X,Y ) =
Cov(X,Y )√

(Var(X) Var(Y ))
.

Here, E[(X−µX)(Y −µY )] and E[XY ] can be calculated using (4.4), for example to calculate

E[XY ] use g(x, y) = xy to obtain

E[XY ] =

∫ ∫

R2

xyfX,Y (x, y) dy dx.

If ρ(X,Y ) = 0 (or, equivalently, Cov(X,Y ) = 0), then we say X and Y are uncorrelated.

A useful fact is that, if X and Y are independent, then we have

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[X]E[Y ]− E[X]E[Y ] = 0. (4.8)

However, it is easy to find examples of uncorrelated random variables that are not independent,

see Q4.6.

Correlation and covariance measure the extent to which X and Y vary together; if both

X − E[X] and Y − E[Y ] tend to have the same sign then Cov(X,Y ) will be positive, but if

X − E[X] and Y − E[Y ] tend to have different signs, they are negative.
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Example 17: Covariance and correlation.

If you have a set of data which are a random sample from the distribution of (X,Y ), then

‘Pearson’s sample correlation coefficient’, which some of you will have seen, is an estimator of

ρ(X,Y ).

4.4 Conditional expectation

The conditional expectation of X given that Y takes the value y is defined as the expectation

of a random variable with the conditional distribution:

E[X|Y = y] =

∫ ∞

−∞
xfX|Y=y(x) dx.

Note that the formula above is a function of y; we could write it as g(y) = E[X|Y = y]. We

define

E[X|Y ] = g(Y ),

which formally means that E[X|Y ] is a random variable and, for each element s of the sample

space, E[X|Y ](s) = g(Y (s)) = E[X|Y = Y (s)].

Example 18: Calculating conditional expectation.

We define the conditional variance as the variance of the conditional distribution of X given

Y . In symbols,

Var(X|Y ) = E
[
(X − E[X|Y ])2 |Y

]
.

We can also define conditional covariances: if X, Y and Z are random variables, then the

conditional covariance of X and Y , given Z, is

Cov(X,Y |Z) = E[XY |Z]− E[X|Z]E[Y |Z].

Conditional variances and covariances are closely related to (unconditioned) variances and co-

variances, by the following lemma.

Lemma 4.10 It holds that

1. E[X] = E[E[X|Y ]].

2. Var(X) = E[Var(X|Y )] + Var(E[X|Y ]).

3. Cov(X,Y ) = E[Cov(X,Y |Z)] + Cov(E[X|Z],E[Y |Z]).

The proof of property 1 is:

Example 19: Proof of Property 1.

The proof of properties 2 and 3 are similar in style, and we don’t include them in this course.

Properties 1-3 are useful when the best way of finding the mean and variance of (say) X is

by conditioning on Y , or if we already know the distribution of X given Y .

Example 20: Calculation of expectation and variance by conditioning.
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Chapter 5

Transformations of Multivariate
Distributions

In Chapter 3 we looked at univariate transformations, and in particular how to find the p.d.f. of

g(X) from the p.d.f. of X. Recall that, in the one dimensional case, if U = g(X) (for monotone

g) then we had

fU (u) = fX
(
g−1(u)

)
×
∣∣∣∣
dg−1

du

∣∣∣∣ . (5.1)

for u within the image of the range of X (i.e. u ∈ g(RX)) and zero elsewhere.

We now ask this same question for a multivariate random variable X = (X1, . . . , Xk). We

will concentrate here on the bivariate case k = 2, but the theory described can be extended to

the general case.

Suppose that we have two continuous random variables, X and Y , with joint p.d.f. fX,Y (x, y).

We have a transformation u = u(x, y) and v = v(x, y), which we use to define two new random

variables, U = u(X,Y ) and V = v(X,Y ). We are interested to find the joint p.d.f. of (U, V ).

We require that the transformation used be ‘genuinely two dimensional’, in the sense that the

whole transformation is continuous, differentiable and one-to-one. Consequently, it is possible

to find an inverse of the transformation: x = x(u, v) and y = y(u, v).

In the bivariate case, the equivalent to (5.1), is the formula

fU,V (u, v) = fX,Y (x(u, v), y(u, v))×
∣∣∣∣∣det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)∣∣∣∣∣ , (5.2)

which is valid for all (u, v) in the image of the range of (X,Y ), and fU,V (u, v) is zero otherwise.

Remark 5.1 Comparing (5.2) to (5.1), we see that they are very similar. They both involve

writing our initial p.d.f. in terms of our new variables, and multiplying by a term involving

derivatives of the inverse transformation.

Let us briefly explain where the factor

J = det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
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comes from. We call J the Jacobian1. Recall that fX,Y (x, y) is a measure of how likely (X,Y )

is to be (infinitesimally) close to (x, y). We want fU,V (u, v) to be a measure of how likely (U, V )

is to be close to (u, v). Let A be a small region containing (u, v). To find out which values of

(x, y) would fall into this region, we need to find out how big the pre-image of A is in the (x, y)

plane.

It turns out, that the factor by which the area of A changes, in the above diagram, is precisely

|J |. See MAS211 for details of this; it is really just a change of variables (x, y) 7→ (u, v) for the

double integral
∫∫

fX,Y (x, y) dx dy.

It is important to identify the range of values taken by (U, V ), and it usually helps to draw a

sketch of the transformation. In particular, if X and Y take values in a restricted range given by

inequalities in x and y, then these must be translated into inequalities in u and v by substituting

for x and y in terms of u and v.

To summarise the steps, we must:

1. Write down the joint p.d.f. of X and Y .

2. Write down a transformation u = u(x, y) and v = v(x, y) such that U = u(X,Y ) and

V = v(X,Y ). Find the inverse transformation x = x(u, v), y = y(u, v), and calculate J .

3. Find region of (u, v) that corresponds to region of (x, y) for which fX,Y (x, y) > 0. Usually

a sketch is very helpful.

Having done so, we can the apply the formula

fU,V (u, v) =




fX,Y

(
x(u, v), y(u, v)

)
× |J | for (u, v) for which fX,Y (x, y) > 0

0 otherwise.

This process is best learned through practice. There are several exercise questions covering it,

starting with Q5.2 which goes through the steps explicitly.

Example 21: Transforming bivariate random variables.

Example 22: The Box-Muller transform, simulating normal random variables.

1Or, more precisely, the determinant of the Jacobian matrix.
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Sometimes we are interested in only one transformed random variable, U = g(X,Y ) say. In

this case one possibility is to simply choose a V (but we must still make sure the transformation

(x, y)→ (u, v) is genuinely two-dimensional). We can then find fU,V (u, v) as above, and integrate

out v to obtain fV (v).

If there is no obvious choice for V , using V = X or V = Y often works well.

Example 23: Summing Gamma random variables.

5.1 Sample mean, sample variance and Student’s t distribution

In this section we add one final distribution to our library of distributions, namely Student’s

t distribution, which is used in many statistical tests (see the second semester of this course).

Using multivariate transformations, we can explain why Student’s t distribution becomes im-

portant in statistics.

Student’s t distribution is a continuous distribution with a single parameter, n ∈ N, and

probability density function given by

fX(x) =
Γ(n+1

2 )√
nπΓ(n2 )

(
1 +

x2

n

)−n+1

2

(5.3)

for all x ∈ R. We write X ∼ tn. This distribution has a close connection to sample mean and

sample variance, which is explored in a series of questions on the exercise sheets. We summarize

the results of these questions here.

Suppose that we have a data set x1, . . . , xn, each of which is a real number. In many

situations, we can model (x1, . . . , xn) as a sequence of (samples from) independent normal ran-

dom variables, with unknown mean and variance. With this in mind, we consider a sequence

(X1, . . . , Xn) of i.i.d. N(µ, σ2) random variables.

The sample mean and (unbiased) sample variance of (X1, . . . , Xn) are, respectively,

X̄ =
1

n

n∑

i=1

Xi, s2 =
1

n− 1

n∑

i=1

(Xi − X̄)2.

In Q5.8, we show that the χ2
n chi-squared distribution is the sum of the squares of n i.i.d.

standard normals. Using this fact, in Q6.10 we show that

(n− 1)s2

σ2
has a χ2

n−1 distribution.

On the other hand, the sample mean is a sum of independent normal distributions. Using

(2.3), this means that the sample mean X̄ is normally distributed with mean µ and variance σ2

n .

Therefore, using standardization (2.2),
√
n

σ
(X̄ − µ) has a N(0, 1) distribution.

Let Z be a N(0, 1) random variable and let W be a chi-squared random variable with n

degrees of freedom, where Z and W are independent. In Q5.10, we show that

X =
Z√

W/
√
n
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has the t distribution and n degrees of freedom. Therefore, with n− 1 in place of n, using what

we know about the distributions of the sample mean and variance, the statistic

T =

√
n(X̄ − µ)

s
=

√
n
σ (X̄ − µ)√

(n−1)s2

σ2

/√
n− 1

(5.4)

has Student’s t distribution with n− 1 degrees of freedom (this is Q6.11).

The point of all this is: we now know that T ∼ tn−1, and in particular the distribution of T

does not depend on µ or σ2. At first glance this is very surprising, because equation (5.4) does

contain µ and σ2, as well as the (Xi). Crucially, this special property of T means, even if we

don’t know µ and σ2, we can still use T in statistical tests.
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Chapter 6

The Multivariate Normal
Distribution

The multi-variate normal is the most important continuous joint distribution, and is commonly

used to model multivariate data. Besides being a natural model in many situations, the multi-

variate normal has several nice properties that make it easy to work with.

Before we begin to look at the multivariate normal in detail, we need to set up two further

pieces of theory. For the duration of this chapter we write aT for the transpose of (the vector

or matrix) a.

6.1 Covariance matrices, mean vectors and affine transforma-
tions

In this section, we look at a general random vector, X = (X1, X2, . . . , Xk)
T .

Definition 6.1 The mean vector of X is the vector

E[X] =




E[X1]

E[X2]
...

E[Xk]



.

We will often write E[X] = µ, where µi = E[Xi]. It is often more convenient to write column

vectors, in which case we write E[X] = (E[X1], . . . ,E[Xk])
T = (µ1, . . . , µk)

T .

Definition 6.2 Then covariance matrix of X, denoted by Cov(X), is the k × k matrix in

which the (i, j)th element is σij = Cov(Xi, Xj). That is,

Cov(X) =




Cov(X1, X1) Cov(X1, X2) . . . Cov(X1, Xk)

Cov(X2, X1) Cov(X2, X2) . . . Cov(X2, Xk)
...

...
. . .

...

Cov(Xk, X1) Cov(Xk, X2) . . . Cov(Xk, Xk).



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Since Var(Xi) = Cov(Xi, Xi), this matrix has the variances σ2
1, σ

2
2, . . . σ

2
k of the Xi along its

leading diagonal. Note that have σii = σ2
i . From the definition of correlation coefficient we may

also write σij = ρijσiσj where ρij is the correlation coefficient between Xi and Xj .

The covariance matrix is a symmetric matrix, because σij = Cov(Xi, Xj) = Cov(Xj , Xi) =

σji. If the X1, X2, . . . Xk are independent (or merely uncorrelated) then Σ is a diagonal matrix,

meaning that only the diagonal elements σii are non-zero.

Example 24: Mean vectors and covariance matrices.

Matrix notation is useful when we consider linear transformations of X. Let A be a m × k
matrix and b be a vector with m components (both non-random). A transformation of X that

is in the form

Y = AX + b,

where Y is a vector with m components, is known as an affine transformation. It is a linear

transformation AX, plus a constant b. Examples of affine transformations are translations,

rotations, reflections, zooming in/out and shears.

Lemma 6.3 It holds that

E[Y] = AE[X] + b

Cov(Y) = A Cov(X)AT

Proof: The proof relies on linear algebra and it is outside the scope of this course; we include

it for completeness. Since multiplying by a matrix is a linear operation, and E is linear (i.e. it

satisfies E[aX + bY ] = aE[X] + bE[Y ]), we get

E[Y] = E[AX + b] = AE[X] + b.

For the second part, we note that Cov(X) = E
[
(X− µ)(X− µ)T

]
where the expectation is

taken componentwise. Note that here, (X−µ) is a 1×k matrix and (X−µ)T is a k×1 matrix;

they are multiplied together as matrices to give a k×k matrix. Since E[Y] = AE[X]+b, writing

µ = E[X] we have

Cov(Y) = E
[
(Y −Aµ− b)(Y −Aµ− b)T

]

= E
[
A(X− µ)(A(X− µ))T

]

= E
[
A(X− µ)(X− µ)TAT

]

= AE
[
(X− µ)(X− µ)T

]
AT

= A Cov(X)AT

as required. �

Example 25: Affine transformation of a random vector.

Example 26: Special case: Variance of a sum.
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6.2 The bivariate normal distribution

Consider two independent random variables U and V , each with the (univariate) standard

normal distribution; that is U ∼ N(0, 1) and V ∼ N(0, 1), both with pdf

f(x) =
1√
2π
e−x

2/2.

for all x ∈ R. By independence (Lemma 4.6), the joint p.d.f. of U and V is given by the product

of the individual p.d.f.s,

fU,V (u, v) = fU (u)fV (v) =
1

2π
e−(u2+v2)/2 (6.1)

for (u, v) ∈ R2. This is a first example of our multivariate normal.

More generally, we are interested in the case of a pair of (non-standard) normal random vari-

ables, N(µ1, σ
2
1) and N(µ1, σ

2
2), and we are interested in the case where they are not, necessarily,

independent.

Definition 6.4 The bivariate normal distribution X = (X1, X2)T , with mean vector µ =

(µ1, µ2)T and covariance matrix Σ = ( σ11 σ12
σ21 σ22

) is the distribution with p.d.f.

fX1,X2
(x1, x2) =

1

2π
√
σ2

1σ
2
2 − σ2

12

exp

(
−σ

2
2(x1 − µ1)2 − 2σ12(x1 − µ1)(x2 − µ2) + σ2

1(x2 − µ2)2

2(σ2
1σ

2
2 − σ2

12)

)

We write X ∼ N2(µ,Σ).

Remark 6.5 The p.d.f. of the bivariate normal does not appear on the sheet of common distri-

butions, but you are not expected to memorize it.

Example 27: The case where X1 and X2 are independent.

Example 28: Plotting the p.d.f. of the bivariate normal.

It will take a little time to explain where the formula above comes from; it is the p.d.f. that

results from an affine transformation of a pair of independent standard normals. We’ll use a

combination of Chapter 5 and Lemma 6.3 to see this.

Let

S =

(
s11 s12

s21 s22

)

be a non-singular 2×2 matrix, and let µ = (µ1, µ2)T be a 2-vector. We now consider the random

vector

X =

(
X1

X2

)
= S

(
U

V

)
+ µ.

Here, U = (U, V ) is a pair of independent standard normals.
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Let’s think first about the mean and covariance matrix of (X1, X2)T . The transformation

SU + µ is affine, so we calculate these using Lemma 6.3. They are

E

(
X1

X2

)
= S

(
0

0

)
+

(
µ1

µ2

)
=

(
µ1

µ2

)

and

Σ = Cov

(
X1

X2

)
= S

(
1 0

0 1

)
ST = SST (6.2)

=

(
s2

11 + s2
12 s22s12 + s21s11

s22s12 + s21s11 s2
21 + s2

22

)
=

(
σ2

1 σ12

σ12 σ2
2

)
. (6.3)

The last line here is the definition of σij , in terms of the sij . Therefore, σ2
1 and σ2

2 are the

variances of X1 and X2, and σ12 is their covariance.

Now, let’s move on to think about the joint p.d.f. of (X1, X2)T . Since

X1 = s11U + s12V + µ1,

X2 = s21U + s22V + µ2, (6.4)

we can view (X1, X2)T as a bivariate transformation of (U, V )T . So, we can use the method

from Section 5 to transform the probability density function. We know the p.d.f. of (U, V )T

from (6.1).

The forward transformation is given by
(
x1

x2

)
= S

(
u

v

)
+

(
µ1

µ2

)
,

and the inverse transformation is given by
(
u

v

)
= S−1

(
x1 − µ1

x2 − µ2

)
=

1

det S

(
s22 −s21

−s12 s11

)(
x1 − µ1

x2 − µ2

)

Therefore,

u =
1

det S
(s22(x1 − µ1)− s12(x2 − µ2)), v =

1

det S
(−s21(x1 − µ1) + s11(x2 − µ2)),

and (after a short calculation) the Jacobian of the inverse transformation turns out to be | 1
detS |.

Hence, the joint p.d.f. fX1,X2
(x1, x2) of X1 and X2 is

1

2π|det S| exp

{
−
[
(s22(x1 − µ1)− s12(x2 − µ2))2 + (−s21(x1 − µ1) + s11(x2 − µ2))2

]

2(det S)2

}
,

which, with a little work, can be rearranged as

1

2π| det S| exp

{
−
[
σ2

2(x1 − µ1)2 + σ2
1(x2 − µ2)2 − 2σ12(x1 − µ1)(x2 − µ2)

]

2(det S)2

}
. (6.5)
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Finally, by (6.2) we have det Σ = det(SST ) = (det S)2, so we can replace (det S)2 by det Σ in

the above. As det Σ = σ2
1σ

2
2 − σ2

12, we can re-write the joint p.d.f. fX1,X2
as

1

2π
√
σ2

1σ
2
2 − σ2

12

exp

{
−σ

2
2(x1 − µ1)2 − 2σ12(x1 − µ1)(x2 − µ2) + σ2

1(x2 − µ2)2

2(σ2
1σ

2
2 − σ2

12)

}
,

for all x = (x1, x2)T ∈ R2. This matches the p.d.f. in Definition 6.4.

Remark 6.6 (Off-syllabus.) Given any covariance matrix Σ, with all of its diagonal entries

positive, it is possible to find a non-singular matrix S such that (6.2) holds. To prove this claim

we must use several facts from linear algebra; this part is outside the scope of our course but we

include it here for completeness.

A positive definite k × k matrix M is a matrix for which aTMa > 0 for all non-zero vectors

a ∈ Rk. Any covariance matrix Cov(X) for which Var(Xi) > 0 (for all i) is positive definite

because

a Cov(X)aT = aE[(X− µX)(X− µX)T ]aT = E[aT (X− µX)(X− µX)Ta] = E[s2] > 0

where s is the (scalar) random variable s = aT (X − µX). Note that none of the entries in

(X− µX) are zero because Var(Xi) > 0 for all i, hence a 6= 0 implies s 6= 0, and hence s2 > 0.

Any positive definite covariance matrix (because it is symmetric) can be diagonalised as Σ =

PDP−1 = PDPT , where P is orthogonal and D is diagonal. Moreover, D has positive entries on

its diagonal (because Σ is positive definite). So D can be written as D̂2, and hence Σ = PD̂D̂P
T

.

If we let S = PD̂Q for any orthogonal matrix Q then, using orthogonality,

SST = PD̂Q(PD̂Q)
T

= PD̂QQ
T
D̂P

T
= PD̂D̂P

T
= Σ,

as required.

6.3 Marginal distributions and conditional distributions

For the remainder of Chapter 6, let X = (X1, X2)T be a bivariate normal with mean vector

µ = (µ1, µ2)T and covariance matrix Σ = ( σ11 σ12
σ21 σ22

).

We now go on to investigate several properties of the bivariate normal distribution. All the

properties we study can be generalize to the multi-variate normal, in any dimension.

Lemma 6.7 The marginal distributions of X are X1 ∼ N(µ1, σ11) and X2 ∼ N(µ2, σ22).

Proof: One way to see this is to ‘integrate out’, using the method of Section 4.2 with the

bivariate normal p.d.f. (and see Q6.6 for this approach), but there is an easier way.

During derivation of the bivariate normal in Section 6.2, in (6.4), we wrote the components

of a bivariate normal random vector X as a linear combination of independent normals and

constants. The theory of linear combinations of univariate normal distribution, from (2.3), tells

us that X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2). �

We can also ask precisely when the components of the bivariate normal are independent. It

turns out that this can be checked using a very simple condition.
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Lemma 6.8 The two components, X1 and X2, of a bivariate normal distribution are indepen-

dent if and only if Cov(X1, X2) = 0.

Proof: We proved this fact in Example 27. �

It is important to remember that this result does not hold for general random variables;

in general Cov(X,Y ) = 0 does not imply independence! But it does hold for components of

multivariate normals.

Example 29: Marginal distributions of the bivariate normal, and their covariance.

After seeing that the marginals distributions of the bivariate are themselves (univariate)

normals, it should not be surprising to learn that the conditional distributions of bivariate

normal distributions are also normal.

Let us write ρ for the correlation of X1 and X2, that is ρ = σ12

σ1σ2
.

Lemma 6.9 The conditional distribution of X2 given that X1 = x1 is a normal distribution

with mean µ2 + ρσ2

σ1
(x1 − µ1) and variance (1− ρ2)σ2

2.

Proof: We can prove this using the definition of the conditional p.d.f.

fX2|X1=x(x2) =
fX1,X2

(x1, x2)

fX1
(x1)

.

We know the joint p.d.f. from Definition 6.4 and we know the marginal p.d.f. from Lemma 6.7.

We can then recognize fX2|X1=x(x2) as the p.d.f. of N(µ2 + ρσ2

σ1
(x1 − µ1), (1 − ρ2)σ2

2). The

calculations are a bit messy, so we won’t go through them in full. (The special case of standard

normals, where X1 and X2 have mean 0 and variance 1, can be found in Q6.6). �

Example 30: Conditional distributions for bivariate normal

6.4 Affine transformations of the bivariate normal

We obtained the bivariate normal distribution by applying a affine transformation to a pair of

independent standard normals. As a result, it is natural to ask what happens if we apply an

affine transformation to a bivariate normal.

Let A be a 2× 2 matrix and let b be a 2× 1 vector. We define

Y = AX + b,

so as Y is an affine transformation of X.

Lemma 6.10 Suppose that A is non-singular. Then the random vector Y has a bi-variate

normal distribution, with mean vector Aµ + b and covariance matrix AΣAT .

Proof: This proof is off syllabus because it relies on Remark 6.6, but we include it for

completeness. From Remark 6.6, we have that

X = SU + µ
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for some matrix S, where U = (U, V )T is a pair of independent (univariate) standard normals.

So we can write

Y = A(SU + µ) + b

= ASU + Aµ + b

= (AS)U + (Aµ + b).

Both A and S are non-singular, so AS is also non-singular. Hence, Y is a affine transformation

of U and we can apply our theory from Section 6.2 (with AS in place of S and Aµ+ b in place

of b). It follows immediately that Y has a bivariate normal distribution with mean vector and

covariance matrix

E[Y] = Aµ + b

Cov[Y] = AS(AS)T = ASSTAT = AΣAT ,

as required. �

Example 31: Transformations of the bivariate normal

We are now ready to provide the (long delayed!) proof of (2.3). Take µ = ( µ1
µ2

), Σ =
(
σ2
1 0

0 σ2
2

)
,

A = ( 1 1
1 0 ) and b = 0. Note that det(A) 6= 0 so as can apply Lemma 6.10. From Lemma 6.8 we

have that X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) are independent, and from Lemma 6.10 we have

Y =

(
X1 +X2

X1

)

with E[Y] = Aµ =
(
µ1+µ2
µ1

)
, Cov(Y) = AΣAT =

(
σ2
1+σ2

2 σ2
1

σ2
1 σ2

1

)
. Considering just the first

coordinate of the above, we obtain

X1 +X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2)

Iterating this equation provides the proof of (2.3).

It is also possible to prove (2.3) using the methods from Chapter 5, but it would take more

work to do it that way. See Q5.6 for a special case of this.

6.5 Higher dimensions

The joint p.d.f. of the bivariate normal can also be written in terms of µ and Σ as

f(x) =
1

(2π)k/2(det(Σ))1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

Here f : Rk → R. This p.d.f. is well defined for any symmetric positive definite 2× 2 matrix Σ.

In this form, we could also take µ to be a vector in Rk, and Σ to be a k × k matrix. Doing so

gives the p.d.f. of the general multivariate normal distribution Nk(µ,Σ).

Suppose that we are dealing with X = (X1, . . . , Xk), a multivariate normal for general k ∈ N.

We refer to k as the dimension of the multivariate normal. The results of the previous sections

(which were stated with k = 2) extend naturally to general k ∈ N, and let us briefly mention

these extensions:
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• If we pick any subset of the X1, . . . , Xk, their marginal distribution will still be a (now,

possibly multivariate) normal.

• A pair of components, Xi and Xj are independent if and only if Cov(Xi, Xj) = 0.

• An onto AX + b transformation results in another (now, possibly multivariate) normal.

• If we condition on the values of any subset of the X1, . . . , Xk, the distribution of the

other components will be a (now, possibly multivariate) normal. The parameters can be

calculated explicitly, but we will not give formulae here.

Recall that the univariate normal p.d.f. cannot be integrated explicitly, with the consequence

that (in general) normal probabilities have to be approximated numerically. High dimensional

numerical integration is a hard problem, even for a powerful computer, and multivariate normal

probabilities can be very difficult to evaluate.

Example 32: Affine transformation of a three dimensional normal distribution.
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Chapter 7

Likelihood

We will now look at statistical inference, which means analysing data to obtain information

about the processes which produced the data. In particular, we will be looking at methods of

inference based on likelihood. Many common methods of data analysis rely on likelihood.

7.1 Likelihood

In Chapter 2, we built up a library of standard distributions. Each of these distributions had

one or more parameters; for example the Poisson distribution Poi(θ) has the single parameter

θ > 0. Up to this point, we viewed the parameters as constants; the key idea of likelihood is to

view the parameters as variables – with values that we must choose.

7.1.1 Recap: maximising functions

We will need to find the global maximums of functions, as a key part of our inference methods.

You should already know how to do this, but let us briefly recap.

Suppose that I ⊆ R and that we have a differentiable function f : I → R. We say that a

point x0 maximises f if

f(x0) ≥ f(x) for all x ∈ I.

That is, if x0 is the location of the global maximum value of f(·).
Two key facts:

A point x0 ∈ I is a turning point of f if and only if
df

dx

∣∣∣∣
x=x0

= 0. (7.1)

A turning point x0 of f is a local maximum if
d2f

dx2

∣∣∣∣
x=x0

< 0. (7.2)

One useful note is that, if a differentiable function f has a single turning point, and this turning

point is a local maximum, then it is automatically the global maximum.

Example 33: Maximisation of a function

If more than one turning point appears, we have to be more careful (and, in this course, we

will approach such cases through curve sketching or by using R).
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7.1.2 Discussion

Let us first illustrate the idea with an example. Suppose that we know (or suspect, or hope!)

that it is sensible to use the Geometric distribution Geom(θ) to model the number of times we

have to roll a biased die before we get a 6. What we don’t know, is which value of θ is best

to use. Clearly, we must have θ ∈ (0, 1) because we use the Geometric distribution, but how

should we choose exactly which value of θ to use?

Since we now care about the value of the parameter(s) θ, we will tend to write probability

density functions as f(x; θ), and probability functions as p(x; θ). In this case, the Geometric

distribution has probability function p(x; θ) = θx(1− θ).
Suppose, for now, that we have a just single item of data; we roll the die 5 times until we

first see a 6. We will worry about handling multiple data points later. If we let X ∼ Geom(θ),

the probability of this event is

p(5; θ) = θ5(1− θ).

This is a function of θ.

Now, here is the key idea: since we observed the value 5, it would make sense if we chose θ

to make p(5; θ) = P[X = 5] as large as possible. That is, we want to choose θ so as our model

Geom(θ) is as likely as possible to reproduce the data that we actually observed. So, what it

comes down to, is finding the value of θ which maximises the function

L(θ; 5) = p(5; θ) = θ5(1− θ)

amongst the range of possible choices of θ, in this case Θ = [0, 1). We call L(θ; 5) the likelihood

of the parameter value θ, given the data 5. We write the (hopefully, unique) maximiser of L(θ; 5)

as θ̂, and we call it the maximum likelihood estimator of θ, given the (single) data point 5. We

can find θ̂ using the method from Section 7.1, in fact from Example 33 we know that θ̂ = 5
6 .

7.1.3 Maximum likelihood estimation I

In what situations can we use the method from Section 7.1.2?

We might want to use a continuous random variable in our model. Then we use the probability

density function instead of the probability function. The theory in this case is very similar, so it

is common to use the same notation in both cases. We will do so, only in this chapter! Therefore,

from now on

in discrete examples we will have fX(x) = P[X = x].

We will discuss more general situations, including how to use multiple data points, in Section

7.2. For now, we are ready to define likelihood.

To summarise, let X be a random variable with a known distribution, with p.d.f. (or p.f.)

f(x; θ), where θ is an unknown parameter. Let Θ be the set of possible values of θ. Let x be

our data point, which we view as a sample of X.

Definition 7.1 The likelihood function of X, given the data x, is L : Θ→ R defined by

L(θ;x) = f(x; θ)
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We refer to the value of L(θ;x) as the likelihood of θ given the data x.

The (hopefully unique!) θ ∈ Θ which maximises L(θ;x) is known as the maximum likeli-

hood estimator of θ. We usually denote it by θ̂.

Sometimes, we will refer to the likelihood function of a distribution; this is the likelihood

function of a random variable with that distribution. The process of finding the maximum

likelihood estimator θ̂ is known as maximum likelihood estimation.

Note that when we view the likelihood function as a function of θ, it is not a probability

density function. For example, it typically will not integrate over θ to give 1.

Example 34: Likelihood functions and maximum likelihood estimators

The value θ̂ which maximises L(θ;x) changes if we use a different value for x. This is natural

- the choice of parameters that we think is best, depends on the data that we have.

7.2 Models and data

In Section 7.1.3 we estimated a parameter value based on a single data point. Using only

one data point is highly unreliable, and in this section we discuss how to carry out maximum

likelihood estimation using many data points.

We begin by defining some common terminology used in statistical inference.

7.2.1 Data

Typically we will have a set of n data points which we can think of as a vector, x =

(x1, x2, . . . , xn). We will think of the data as being realisations of a random vector X =

(X1, X2, . . . , Xn). Note the use of capital letters for the random variables and lower case letters

for the values they take.

The random vector X will have a joint p.d.f. (or p.f.)

fX(x) = fX1,X2,··· ,Xn(x1, x2, . . . , xn).

This p.d.f. will be unknown, the aim of the inference being to obtain information about it.

We will assume that our data points x1, x2, . . . , xn come from independent, identically dis-

tributed experiments. With this in mind, we call them i.i.d. samples. Because of this, we also

assume that the random variables X1, X2, . . . , Xn are independent and identically distributed.

In this case, the joint p.d.f. fX(x) will be a product of terms for each experiment:

fX(x) =

n∏

i=1

f(xi), (7.3)

where f(x) is the common p.d.f. of the random variables X1, X2, . . . , Xn.

7.2.2 Models and parameters

We assume that we already know that the joint p.d.f. of X takes a particular form, usually

involving some standard distribution. We refer to this as our model. However, the parameters
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of this standard distribution are unknown, and our aim in analysing the data will be to obtain

good choices of values for these parameters, based on the data we have.

Example 35: Models, parameters and data (aerosols).

Remark 7.2 It may seem odd to declare that f is unknown, and then assume that in fact f

takes a particular form with only unknown parameters. There are statistical methods aimed

at handling completely unknown f , but they are outside of the scope of this course. In many

situations it is sensible to assume a carefully chosen model with unknown parameters.

Our choice of model may well be wrong. But we hope that it is approximately correct, and in

future statistics course you will discover that there are so-called ‘goodness of fit’ tests to help us

check.

We denote the parameters of our model by θ and we represent θ = (θ1, θ2, . . .) as a vector.

We write Θ for the set of possible parameter values.

Sometimes some of the unknown parameters are so-called nuisance parameters: their

values are unknown, and we have to take account of this in our analysis, but they are not what

we are really interested in.

Given a model, and a particular set of parameter values θ, we write the p.d.f. of X as fX(x;θ),

to make sure that we don’t forget the importance of the parameters. As before, we use the same

notation in the discrete case, but it now means a probability function.

7.2.3 Maximum likelihood estimation II

How can we apply the ideas of maximum likelihood estimation in our new setting? The key is

to note that Definition 7.1 already makes sense in the multivariate case, with our model X in

place of X and a vector of data x in place of x. We also allow more than just one unknown

parameter.

So, to summarise, let X = (X1, . . . , Xk) be a random vector, with a known distribution that

has one or more unknown parameters θ = (θ1, θ2, . . . , θj). Write Θ for the set of all possible

choices θ of parameter(s). Let x be our vector of data, which we think of as a sample of X.

Definition 7.3 The likelihood function of X, given the data x, is the function L : Θ → R
defined by

L(θ; x) = fX(x;θ).

The (hopefully, unique) value θ ∈ Θ which maximises L(θ; x) is known as the maximum

likelihood estimator of θ, written θ̂.

As usual, here f(x; θ) is the probability function if X is discrete, or the probability density

function if X is continuous.

It is worth noting that, when an explicit numerical value is found for θ̂, some people refer

to the value found for θ̂ as a maximum likelihood estimate (and they would only refer to the

general formula for θ̂, in terms of x, as the maximum likelihood estimator). You can choose

whichever convention you prefer.
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We are mainly interested in the case where our data are i.i.d. samples, and we assume

the X1, X2, . . . , Xn are independent and identically distributed. In this case, from (7.3), the

likelihood function of our model is

L(θ; x) = fX(x;θ) =

n∏

i=1

f(xi;θ). (7.4)

where f is the common p.d.f. of the Xi.

Example 36: Maximum likelihood estimation with i.i.d. data.

Example 37: Maximum likelihood estimation (radioactive decay).

7.3 Maximisation techniques

Maximum likelihood estimation comes down to a maximisation problem. Whether this is easy or

difficult depends on (a) the statistical model we use in the form f(x|θ) and (b) the parameter vec-

tor θ. One-parameter problems are clearly easier to handle and in many cases multi-parameter

problems require the use of numerical maximisation techniques.

7.3.1 Log-likelihood

When maximising L(θ; x) it is usually easier to work with the logarithm of the likelihood instead

of the likelihood itself. In this course we always work with natural logarithms. These work well

when dealing with the many standard distributions whose p.d.f.s include an exponential term.

Definition 7.4 Given a likelihood function L(θ; x), the log-likelihood function is

`(θ; x) = logL(θ; x).

Maximising `(θ; x) over θ ∈ Θ produces the same estimator θ̂ as maximising L(θ; x), because

the function log(·) is strictly increasing. However, maximising ` is usually easier!

Using the log-likelihood is by far the most important maximisation technique. Part of the

reason is that log(ab) = log(a) + log(b), so in the case of i.i.d. data points, from (7.4) we have

`(θ; x) = log(L(θ; x)) = log

(
n∏

i=1

f(xi;θ)

)
=

n∑

i=1

log(f(xi;θ)).

Using ` instead of L changes the
∏

into a
∑

, and it is usually easier to work with a sum than

a product.

Example 38: Maximum likelihood estimation through log-likelihood (mutations in DNA).
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7.3.2 Discrete parameters

When we maximise L(θ; x) (or l(θ; x)), we need to be careful to keep θ within the parameter

set Θ. In most of the examples we will meet in this module θ will be continuous and so we can

use differentiation to obtain the maximum. However, in some cases, such as the next example,

the possible values of θ may be discrete (i.e. Θ is a discrete set) and in such cases we cannot

use differentiation. Instead, we just check each value of θ in turn and find out which θ gives the

biggest L(θ; x).

Remark 7.5 Note that saying θ 7→ L(θ,x) is continuous is not the same thing as saying that

the distribution of X is continuous!

Example 39: Maximum likelihood estimation for discrete parameters (mass spectroscopy).

7.3.3 Multi-parameter problems

For multi-parameter problems, where θ is a vector, a similar procedure can be followed. Here

for simplicity we consider only the case where there are 2 parameters (so that θ is a 2×1 vector)

and write θ = (θ1, θ2). Now we find a stationary point θ̂ = (θ̂1, θ̂2) of the log-likelihood by

solving the simultaneous equations

∂`(θ,x)

∂θ1
= 0,

∂`(θ,x)

∂θ2
= 0. (7.5)

These equations are the analogue of (7.1); that is, of looking for turning points in the one

parameter case by solving df
dx = 0. In two dimensions and higher, the turning points that we

find may be maxima or minima, or saddle points.

To check that a turning point is a (local) maximum, we have to check an analogue of equation

(7.2). First we calculate the so called Hessian matrix:

H =




∂2`(θ; x)

∂θ2
1

∂2`(θ; x)

∂θ1∂θ2

∂2`(θ; x)

∂θ1∂θ2

∂2`(θ; x)

∂θ2
2




and then we evaluate H at θ = θ̂, where θ̂ is the stationary point we found using (7.5).

In the 2 variable case we can use a fact from multi-variable calculus: if

∂2`(θ; x)

∂θ2
1

∣∣∣∣
θ=θ̂

< 0 and detH
∣∣∣
θ=θ̂

> 0 (7.6)

then we can conclude that our turning point is a local maximum.

Example 40: Multi-parameter maximum likelihood estimation (rainfall).

Remark 7.6 In the general multivariate case, to check that a turning point is a local maxima

we should check that H, when evaluated at the turning point, is a negative definite matrix. This

fact is outside of the scope of our course, but we mention it here for completeness.

A negative definite k× k matrix M is a matrix for which aTMa < 0 for all non-zero vectors

a ∈ Rk. When k = 2 this is equivalent to (7.6). For example, you can easily check that −I,

where I is the identity matrix, is negative definite.
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7.3.4 Using a computer

In some cases, particularly when a complex model is used, or when many parameters are un-

known, it is not possible to obtain an expression for the maximum likelihood estimator θ̂.

These cases can be approached with the aid of a computer, and machine optimization,

which means using a computer to try and approximate the maximum value of the likelihood

function. There are a wide range of algorithms designed to maximise functions numerically, but

this is outside the scope of our current course.

There are also other methods of statistical inference! See later courses.

7.3.5 A warning example

Sometimes, we have to be very careful about using differentiation to maximise the likelihood

function. We illustrate with an example.

Example 41: Maximum likelihood estimation for the uniform distribution

The moral of the story is: if something seems strange during maximisation, draw a picture

of the function you are trying to maximise.

7.4 Quantifying uncertainty

Maximum likelihood estimation gives us a single value for the unknown parameters θ, a so-

called point estimate. In many settings in statistical inference we want to go further than

point estimation, in particular to give some idea of the uncertainty in our point estimate. For

example, where we are trying to estimate a single parameter θ, we may want to produce an

interval estimate, typically a set of values [θ1, θ2] which we believe that the true value θ lies in.

Alternatively, we may want to test a hypothesis about θ. The likelihood function can often be

used to construct appropriate methods in these settings too, and as with maximum likelihood

estimation it can often be shown that they are in some sense optimal.

We will start off by thinking about interval estimation. Assume, in the one parameter

case, that we have a likelihood function L(θ; x) defined for θ ∈ Θ, maximised at its maximum

likelihood estimate θ̂. Then a natural choice of interval estimate is to set some threshold, L0

say, and to use the values of θ such that L(θ; x) ≥ L0 as an interval estimate. One common

choice for the threshold is to choose L0 to be a fixed multiple of the maximum likelihood, say

L0 = e−kL(θ̂; x)

for some chosen k > 0. Equivalently in terms of the log-likelihood,

logL0 = `(θ̂; x)− k.

Our choice of k here will involve a trade off between a precise answer (meaning a narrow interval)

and minimising the risk of missing the true value from the interval: a small k will give a narrow

interval but relatively low confidence that the interval contains the true value, while a large k

will give a larger interval and higher confidence.
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More generally, we can make the following definition. The k-unit likelihood region for

parameters θ based on data x is the region

Rk =
{
θ : L(θ; x) ≥ e−kL(θ̂; x)

}
,

or equivalently

Rk =
{
θ : `(θ; x) ≥ `(θ̂; x)− k

}
,

where θ̂ is the maximum likelihood estimate of θ based on x.

The values of θ within the k-unit likelihood region are those whose likelihood is at least

within a factor e−k of the maximum. For instance, points in the 1-unit region have likelihoods

within a factor e−1 = 0.368 of the maximum. The 2-unit region contains points with likelihoods

within a factor e−2 = 0.135 of the maximum. The 2-unit region is the most commonly used in

practice.

Example 42: Likelihood regions

If we are trying to test a null hypothesis H0 : θ = θ0 against a general alternative hypothesis

H1 : θ 6= θ0, then we can use a similar idea: we choose a suitable k, construct the k-likelihood

region Rk, and accept H0 if θ0 is inside Rk, or reject H0 if θ is outside Rk.

Example 43: Hypothesis tests based on likelihood

This leads into the idea of so-called ‘likelihood ratio tests’, which you will see more of if you

take further courses in statistics.
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Chapter 8

Case Studies

Maximum likelihood is one of the most widely used methods of statistical inference. It has many

variants and extensions, some of which can be found in future statistics courses. In this chapter,

we look at two case studies, taken from the recent literature, in which maximum likelihood

estimators were used in ‘real world’ problems.

Our two case studies are chosen somewhat at random; many other examples exist and could

equally fill their place. Our first case study comes from ecotoxicology, which is the science of

measure the impact of toxins on the environment, and focuses on asking if expert opinions can

be used as a substitute for experimental data. The second concerns clinical trials; the process

in which drugs are analysed to determine if they are fit for general use.

8.1 Ecotoxicology

We look at a study1 relating to of the levels of toxic chemicals found in rivers.

The study was part of the process of setting standards for toxic chemicals in rivers. The aim

is to discover safe levels for the concentrations of pollutants, aiming to protect aquatic animals.

However, there is a very large variety of species to protect; fish, snails, insects, leeches, etc. Data

on the toxicity of any given chemical is available for only a small number of the species that are

of interest.

Due to the shortage of toxicity data, the study was trying to find out if it was possible to use

the expert opinions of freshwater biologists as a substitute for (expensive, lengthy) experiments

to produce more toxicity data. We will focus our attention on one particular toxin, the insecticide

chlorpyrifos.

Our data comes in two parts:

• All the available toxicity data for chlorpyrifos. The data are experimentally obtained

estimates, for a small number of species, of the LC50 (the concentration that will kill 50%

of the individuals) after a 96-hour exposure to chlorpyrifos.

1Grist, E.P.M., O’Hagan, A., Crane, M., Sorokin, N., Sims, I. and Whitehouse, P. (2006). Bayesian and time-
independent species sensitivity distributions for risk assessment of chemicals. Environmental Science and Technology 40,
395–401.
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Species Taxon 96hr LC50 Expert
(µg/L) (average sensitivity score)

Anguilla anguilla Anguillidae (eels) 540 4.17
Asellus aquaticus Asellidae (water hoglice) 2.7 4.08
Caenis horaria Caenidae (mayflies) 0.5 5.86
Chironomus tentatus Chironomidae (midges) 0.47 3.56
Corixa punctata Corixidae (lesser waterboatmen) 2 5.11
Rutilus rutilus Cyprinidae (carp) 120 4.08
Gammarus lacustris Gammaridae (shrimps) 0.11 5.57
Pungitus pungitus Gasterosteidae (sticklebacks) 4.7 4.13
Peltodytes sp. Haliplidae (water beetles) 0.8 5.00
Leptocerida sp. Leptoceridae (caddis flies) 0.77 6.00
Oncorhynchus mykiss Salmonidae (salmon) 7.1 5.40

Figure 8.1: LG50 and expert opinions on the effects of chlorpyrifos.
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Figure 8.2: The log of LC50 plotted against the expert sensitivity score.

• Estimated scores, from freshwater biologists, on a scale of 1-8, of the sensitivity of these

species to chlorpyrifos.

The aim is to work out if we can correlate the experimental data with the estimated scores; if

we can then we have grounds to hope that our expert opinions are reliable to be used for a wider

range of species (and if so, we might use their opinions to set levels for the species on which we

don’t have good experimental data).

Our data is tabulated in Figure 8.1. In Figure 8.2, we see a graph of the logs of the LG50

scores, plotted against the experts sensitivity scores. This plot suggests an (approximately)

linear relationship between them. As we expect, when experts estimate low sensitivity, a higher

concentration is needed to damage the organism. More precisely, lets build a model.

First, we need some notation for the data in Figure 8.1. For i = 1, 2, . . . , 11, let yi = log zi,

where zi is the ith toxicity measurement, and let xi be the corresponding expert sensitivity

score.
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The following statistical model will be assumed for these data. We suppose that a linear

regression relationship applies between these variables, so that

yi = α+ βxi + εi ,

where the εis are independentN(0, v) errors, which would often be called noise, and θ = (α, β, v)

are the unknown parameters. This type of model is often known as a linear model.

Our first step is find estimators α̂, β̂ and v̂ for the parameters, using maximum likelihood.

We expect that β̂ will turn out to be negative, because increasing sensitivity to chlorpyrifos

should (intuitively) be associated with a lower LC50; moreover it is suggested by Figure 8.2. We

are then interested in comparing the likelihood of β = 0 (i.e. no correlation) to that of β = β̂.

We have εi ∼ N(yi − α − βxi, v), for i = 1, . . . , 11, and the observations are assumed inde-

pendent. So, the likelihood function is

L(α, β, v; y,x) =

11∏

i=1

1√
2πv

exp

(
−(yi − α− βxi)2

2v

)
,

and the log likelihood is thus

`(α, β, v; y,x) = −11

2
(log(2π) + log v)− 1

2v

11∑

i=1

(yi − α− βxi)2.

From this, because there is no v in the second term on the right hand side, we can start by

minimising the ‘sum of squares’ term
∑11

i=1(yi−α−βxi)2. After doing so, we can then maximise

with respect to v. This type of maximisation will be studied in the second half of MAS223 and

there is no need for us to go into details here. After maximisation (with the help of R), it turns

out that our MLEs are

α̂ = 7.78, β̂ = −1.39, v̂ = 4.48.

The log likelihood at the MLE is −23.86.

If β is assumed to be zero, we get MLEs of 1.10 for α and 5.72 for v. The log likelihood

of these values is −25.20. A difference of 1.34 is generally not high, so we do not get strong

evidence for β 6= 0. Since 1.34 < 2, it would fail a 2-likelihood test.

8.2 Clinical trials

We look at a study2 concerning clinical trials. Clinical trials typically come in phases I, II and

III, which are done in increasing order of size, complexity and (consequently) cost. A successful

drug must pass through all three stages.

The study is interested in modelling the results of phases I and II, which are assumed to

have already happened, and then using this model to predict the outcome of phase III. These

predictions can help to design the phase III trial. We will now try and describe how this can be

done, using a simplified3 version of their model.

2De Ridder, F. (2005), Predicting the Outcome of Phase III Trials using Phase II Data: A Case Study of Clinical Trial
Simulation in Late Stage Drug Development. Basic & Clinical Pharmacology & Toxicology, 96: 235-–241

3The model also incorporated multiple time steps, an extra factor relating to the variability of the drugs effect on
individual patients, and allowed for the possibility of a placebo effect; we omit all of these!
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The effect of the drug on the patients was measured using a so-called ‘symptom score’, which

is arrived at by a combination of medical tests, doctors opinions, patient questionnaires, etc. A

symptom score Ri is measured for the ith patient at the start of the trial. At the end of the

trial, aftera second symptom score Si is also measured. The model is

Si = Ri +Nλ
i + α(di)

β.

Here:

• di is the dose given to patient i, and α ∈ (0,∞) and β ∈ R are unknown parameters that

describe how the effect of the drug varies for different doses.

• Nλ
i is an (independent) Poi(λ) random variable, with parameter λ ∈ (0,∞), which models

the noise involved in measuring patients symptom scores.

The (already obtained) data from the earlier phases was used to find maximum likelihood es-

timators α̂, β̂ and λ̂. The maximisers were found numerically, using SAS (which is a similar

software package to R).

Once the MLEs had been found, the real data was compared against the results of simulating

data from the model with its parameters set to the MLEs. For two (entirely separate) drugs,

the article represents the result of doing this with a graph:

We can see that the model, with its parameters set to (α̂, β̂, λ̂), compares favourably with known

data. Therefore, we hope that the model could predict the outcome of larger trials with some

degree of accuracy. To do so, we pretend that our model is reality and use it to simulate data.

This predicts how the phase III trial might look, which in turn allows us to improve the design

of the (much larger) phase III trial.

For example, for one of the drugs, it was asked: if we carried out a phase III trial in which we

gave 1000 patients the drug and compared their results to those of 1000 patients who received

a placebo, would we expect to see a statistically significant result? If not, would increasing the

sample size help?
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Appendix A

Tables of distributions

The tables of common distributions and their properties, which can be found on the following

two pages, will be made available in the MAS223 exam. You will also find these tables useful

when solving questions from the exercise booklet.
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