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Chapter 0

Introduction

0.1 Organization

0.1.1 Syllabus

These notes are for two courses: MAS31002 and MAS61022.
Some sections of the course are included in MAS61022 but not in MAS31002. These sections

are marked with a (∆) symbol. We will not cover these sections in lectures. Students taking
MAS61022 should study these sections independently.

Some parts of the notes are marked with a (?) symbol, which means they are off-syllabus. These
are often cases where detailed connections can be made to and from other parts of mathematics.

0.1.2 Problem sheets

The exercises are divided up according to the chapters of the course. Some exercises are marked
as ‘challenge questions’ – these are intended to offer a serious, time consuming challenge to the
best students.

Aside from challenge questions, it is expected that students will attempt all exercises (for the
version of the course they are taking) and review their own solutions using the typed solutions
provided in the online version of these notes, in Appendix B.

At three points during each semester, an assignment of additional exercises will be set. About
one week later, a mark scheme will be posted, and you should self-mark your solutions.

0.1.3 Examination

The course will be examined in the summer sitting. Parts of the course marked with a (∆) are
examinable for MAS61022 but not for MAS31002. Parts of the course marked with a (?) will
not be examined (for everyone). Some advice on how to structure your revision can be found in
Appendix A.

0.1.4 Website

Further information, including the timetable, can be found on

https://nicfreeman1209.github.io/Website/MASx50/.
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0.2 Preliminaries

This section contains lots of definitions, mostly from earlier courses, that we will use later on. It
should be familiar to you but there may be one or two minor extensions of ideas you have seen
before.

1. Set Theory.

Let S be a set, with subsets A,B and An.

Complement: Ac = {x ∈ S;x /∈ A}.

Union: A ∪B = {x ∈ S;x ∈ A or x ∈ B}.

Intersection: A ∩B = {x ∈ S;x ∈ A and x ∈ B}.

Set theoretic difference: A \B = A ∩Bc.

Finite unions and intersections:
⋃n

i=1Ai = A1∪A2∪. . .∪An and
⋂n

i=1Ai = A1∩A2∩. . .∩An.

More generally, if I is some set and Ai ⊆ S for all i ∈ I then we define⋃
i∈I

Ai = {x ; x ∈ Ai for some i ∈ I}
⋂
i∈I

Ai = {x ; x ∈ Ai for all i ∈ I}.

Countable unions and intersections are precisely the case I = N, usually written as
⋃∞

i=1Ai

and
⋃∞

i=1Ai.

De Morgan’s laws state that:

S \

(⋂
i∈I

Ai

)
=
⋃
i∈I

S \Ai,

S \

(⋃
i∈I

Ai

)
=
⋂
i∈I

S \Ai.

The Cartesian product of sets S and T is the set S × T = {(s, t) ; s ∈ s, t ∈ T}.

2. Sets of Numbers

• Natural numbers N = {1, 2, 3, . . .}.

• Non-negative integers Z+ = N ∪ {0} = {0, 1, 2, 3, . . .}.

• Integers Z.

• Rational numbers Q.

• Real numbers R.

• Complex numbers C.

A set X is countable if there exists an injection between X and N. A set is uncountable if
it fails to be countable. N,Z+,Z and Q are countable. R and C are uncountable. All finite
sets are countable.
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3. Images and Preimages.
Suppose that S1 and S2 are two sets and that f : S1 → S2 is a mapping (or function).
Suppose that A ⊆ S1. The image of A under f is the set f(A) ⊆ S2 defined by

f(A) = {y ∈ S2; y = f(x) for some x ∈ S1}.

If B ⊆ S2 the inverse image or pre-image of B under f is the set f−1(B) ⊆ S1 defined by

f−1(B) = {x ∈ S1; f(x) ∈ B}.

Note that f−1(B) makes sense irrespective of whether the mapping f is invertible.
Key properties are, with A,A1, A2 ⊆ S1 and B,B1, B2 ⊆ S2 :

f−1(B1 ∪B2) = f−1(B1) ∪ f−1(B2),

f−1(B1 ∩B2) = f−1(B1) ∩ f−1(B2),

f−1(Ac) = f−1(A)c,

f(A1 ∪A2) = f(A1) ∪ f(A2),

f(A1 ∩A2) ⊆ f(A1) ∩ f(A2),

Note also that if A ⊆ B then f(A) ⊆ f(B) and f−1(A) ⊆ f−1(B).

4. Extended Real Numbers
We will often find it convenient to work with ∞ and −∞. These are not real numbers, but
we find it convenient to treat them a bit like real numbers. To do so we specify some extra
arithmetic rules:

• for all x ∈ R we have ∞+ x = x+∞ = ∞,

• for x > 0 we have x×∞ = ∞× x = ∞,
• for all x ∈ R we have x

∞ = 0 and ∞
x = ∞,

• ∞× (−1) = −∞ and (−∞)× (−1) = ∞.

Combining these rules and using the usual properties of real arithmetic (e.g. a× b = b× a)
allows us to deduce further properties, for example for x < 0 we have x×∞ = (−1)×(−x)×
∞ = (−1)×∞ = −∞. Any arithmetic expressions involving ±∞ that are not specified by
the above rules are undefined. In particular, ∞−∞, 0×∞ and ∞

∞ are undefined.
We write R = {−∞} ∪ R ∪ {∞}, which is known as the extended real numbers. We also
specify that, for all x ∈ R,

−∞ < x <∞.

5. Analysis.

• sup and inf. If A is a bounded set of real numbers, we write sup(A) and inf(A) for the
real numbers that are their least upper bounds and greatest lower bounds (respectively.)
If A fails to be bounded above, we write sup(A) = ∞ and if A fails to be bounded below
we write inf(A) = −∞. Note that inf(A) = − sup(−A) where −A = {−x ; x ∈ A}.
If f : S → R is a mapping, we write supx∈S f(x) = sup{f(x);x ∈ S}. A very useful
inequality is

sup
x∈S

|f(x) + g(x)| ≤ sup
x∈S

|f(x)|+ sup
x∈S

|g(x)|.
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• Sequences and Limits. Let (an) = (a1, a2, a3, . . .) be a sequence of real numbers. It
converges to the real number a if given any ε > 0 there exists a natural number N so
that whenever n > N we have |a− an| < ε. We then write a = limn→∞ an.
A sequence (an) which is monotonic increasing (i.e. an ≤ an+1 for all n ∈ N) and
bounded above (i.e. there exists K > 0 so that an ≤ K for all n ∈ N) converges to
supn∈N an.
A sequence (an) which is monotonic decreasing (i.e. an+1 ≤ an for all n ∈ N) and
bounded below (i.e. there exists L > 0 so that an ≥ L for all n ∈ N) converges to
infn∈N an.
A subsequence of a sequence (an) is itself a sequence of the form (arn) where rn < rn+1

for all n ∈ N.

• Series. If the sequence (sn) converges to a limit s where sn = a1 + a2 + · · · + an we
write s =

∑∞
n=1 an and call it the sum of the series. If each an ≥ 0 then the sequence

(sn) is either convergent to a limit or properly divergent to infinity. In the latter case
we write s = ∞ and interpret this in the sense of extended real numbers.

• Continuity. A function f : R → R is continuous at a ∈ R if given any ε > 0 there exists
δ > 0 so that |x−a| < δ ⇒ |f(x)−f(a)| < ε. Equivalently f is continuous at a if given
any sequence (an) that converges to a, the sequence (f(an)) converges to f(a).
f is a continuous function if it is continuous at every a ∈ R.

7
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Chapter 1

Measure Spaces

1.1 What is measure theory?

Measure theory is the abstract mathematical theory that underlies all models of measurement
of ‘size’ in the real world. This includes measurement of length, area and volume, weight and
mass, and also of chance and probability. Measure theory is a branch of pure mathematics, in
particular of analysis, but it plays key roles in both calculus and statistical modelling. This is
because measure theory provides the foundation of both the modern theory of integration and of
the modern theory of probability.

Suppose that we wish to measure the lengths of several line segments. We represent these as
closed intervals of the real number line R so a typical line segment is [a, b] where b > a. We all
agree that its length is b− a. We write this as

m([a, b]) = b− a

and interpret this as telling us that the measure m of length of the line segment [a, b] is the number
b− a. We might also agree that if [a1, b1] and [a2, b2] are two non-overlapping line segments and
we want to measure their combined length then we want to apply m to the set-theoretic union
[a1, b1] ∪ [a2, b2] and

m([a1, b1] ∪ [a2, b2]) = (b2 − a2) + (b1 − a1) = m([a1, b1]) +m([a2, b2]).

(1.1)

An isolated point c has zero length and so

m({c}) = 0.

If we consider the whole real line in its entirety then it has infinite length, i.e.

m(R) = ∞.

The key point here is that, if we try to abstract the notion of a ‘measure of length, then we should
regard it as a mapping m defined on subsets of the real line, that takes values in the extended
non-negative real numbers [0,∞].

We might wonder why there is any mathematical difficulty involved here, since it appears that
we can easily agree on how how long a line is. The problem is that subsets of R may arise naturally
and still be rather complicated.

8
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Example 1.1.1 (The Cantor Set) Let C0 = [0, 1]. Given Cn, define Cn+1 by taking each sub-
interval of Cn, cutting this sub-interval into three parts of equal length and removing the open
interval corresponding to the middle third. So, for each n, Cn is a set of 2n closed intervals each
of length (13)

n.
Let C =

⋂∞
n=0Cn. Clearly Cn+1 ⊆ Cn, so this is a decreasing sequence of sets, and C is

precisely the points that ‘never end up in the middle thirds’. For example, 0 ∈ Cn and 1
3 ∈ Cn.

The total length of the intervals in Cn is 2n(13)
n = (23)

n, which tends to zero as n → ∞.
This suggests C should have ‘length’ zero, but how can we make this intuition into rigorous
mathematics?

The Cantor set is a ‘fractal’, which is a general term for any shape with very detailed structure.
It is somewhat contrived – in fact, it was first introduced precisely as a contrived example of an
odd looking shape that appeared to exist within the real line, but with no obvious purpose. Today,
we know that fractal-like objects appear frequently within nature, which means that we also need
to deal with them within our theory of measure.

9
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1.2 Sigma fields

We need to be more ambitious that just measuring the length of intervals of R. More generally,
we want to work with a function m such that the map A 7→ m(A) corresponds to our intuitive
idea of measuring how ‘big’ the object A is. Length is one example of this, ‘weight’ and ‘volume’
are other examples. The function m will be known as a measure, and we say that m measures
the length/volume/size/weight/etc of A.

To do this rigorously, the first question we must answer is: which objects are we going to
measure? This question has a reasonably straightforward answer. We are going to take a set S,
and we are going to ‘measure’ subsets A of the set S. Note that at this stage we don’t specify
what property of A we are going to measure. We might measure length, or volume, or some other
property that might be more difficult to express in words.

However, there is a caveat. In many cases, particularly if the set S is very large (such as R
itself, which is uncountable) we will not be able to measure the size of every subset of S. The
reasons for this caveat are difficult, and we will come to them in Section 1.6. Instead, we do the
next best thing. We specify precisely which subsets of S we are going to measure.

Definition 1.2.1 Let S be a set. A σ-field on S is a set Σ, such that each A ∈ Σ is a subset of
S, satisfying the following properties:

(S1) ∅ ∈ Σ and S ∈ Σ.

(S2) If A ∈ Σ then Ac ∈ Σ.

(S3) If (An)n∈N is a sequence of sets with An ∈ Σ for all n ∈ N then
⋃∞

n=1An ∈ Σ.

Definition 1.2.2 Given a σ-field Σ, a set A ∈ Σ is said to be measurable with respect to Σ. We
will often shorten this to ‘Σ-measurable’, or simply ‘measurable’ if the context makes clear which
Σ is meant.

The purpose of (S1)-(S3) is to capture some of our intuition on what it means ‘to measure’.
Let us go through them carefully. The first part of (S1) says that we should be able to measure a
set ∅ that is empty (and, when the time comes, we will force ∅ to have measure zero). Property
(S2) is a statement that if we are going to be able to measure A, we also want to be able to
measure its complement Ac = S \ A. This is very natural from a physical point of view: if you
have a 1kg bag of flour and you take 450g out, then you expect to be able to measure how much
flour you have left. The complement of ∅ is ∅c = S \ ∅ = S, so this means we also need to be able
to measure S itself, thus leading us to the second half of (S1).

Property (S3) is a bit more subtle. Firstly note that if we can measure A and B then it
is reasonable (again, think flour) to want to measure their union A ∪ B. Similarly, if we can
measure A1, . . . , An then it is reasonable to want to measure their union ∪n

i=1An. However, we
can’t stop here. We need our theory of measure to handle infinite objects, like the interval [0, 2]
which contains infinitely many elements (even though it only has length 2!). For this reason we
also allow countable unions, of the form ∪∞

n=1 . . . in (S3).

Remark 1.2.3 We cannot ‘upgrade’ to allowing uncountable unions in (S3). Doing so would,
unfortunately, break our entire theory of measure, for a reason that we cannot easily see, yet. We
will discuss this point further in Section 1.6.

10
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Remark 1.2.4 The term σ-algebra is used by some books, with the same meaning as σ-field. I
prefer σ-field, you may use either.

Let us briefly note a few properties of σ-fields, which build on the properties (S1)-(S3).

• We have seen in (S3) that Σ is closed under countably infinite unions, meaning that taking
a countable unions of sets in Σ gives back a set in Σ. The same is true of finite unions. To
see this let A1, . . . , An ∈ Σ and define Ai = ∅ for i > n. By (S1) we have Ai ∈ Σ for all
i ∈ N. Note that

⋃∞
i=1Ai =

⋃n
i=1Ai, and thus by (S3) we have

⋃n
i=1Ai ∈ Σ.

• Σ is also closed under countably infinite intersections. To see this we can use the laws of
set algebra to write

⋂∞
i=1Ai = (

⋃∞
i=1A

c
i )

c , and then apply (S2) and (S3) to the right hand
side. By the same ideas as above, Σ is also closed under finite intersections.

• Σ is also closed under set theoretic differences. To see this note that A \ B = A ∩ Bc, and
apply (S2) along with closure under intersections to the the right hand side.

We can summarise the above properties as follows: if we have a σ-field Σ, and sets A1, A2, . . . ∈ Σ,
then applying any finite or countable number of set operations to the Ai will simply give us back
another set in Σ. We call this fact ‘closure under countable set operations’. We will use it
repeatedly throughout the course.

Definition 1.2.5 A pair (S,Σ) where S is a set and Σ is a σ-field of subsets of S is called a
measurable space.

Given a set S, there are typically many possible choices of Σ. The choice of Σ is determined
by what it is that we want to measure.

11
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1.2.1 Examples of σ-fields

The following examples are all σ-fields.

1. For any set S, the power set P(S) is a σ-field. Recall that P(S) is the set of all subsets of
S, so (S1)-(S3) are automatically satisfied.

2. For any set S, Σ = {∅, S} is a σ-field, called the trivial σ-field.

3. If S is any set and A ⊂ S then Σ = {∅, A,Ac, S} is a σ-field. Checking (S1)-(S3) in this
case is left for you.

4. Similarly, if A,B ⊂ S then Σ = {∅, A,B,A∪B, (A∪B)c, A∩B, (A∩B)c, A\B, (A\B)c, B\
A, (B \A)c, (A∪B) \ (A∩B), ((A∪B) \ (A∩B))c, A∪Bc, Ac ∪B,S} is a σ-field. I suggest
not checking this one.

I hope this is a convincing demonstration that we cannot hope to simply write down σ-fields,
for the most part. Instead we need a tool for constructing them, without needing to write them
down. This is done as follows.

Lemma 1.2.6 Let I be any set and for each i ∈ I let Σi be a σ-field on S. Then

Σ =
⋂
i∈I

Σi (1.2)

is a σ-field on S.

Proof: We check the three conditions of Definition 1.2.1 for F .
(S1) Since each Σi is a σ-field, we have ∅ ∈ Σi. Hence ∅ ∈ ∩iΣi. Similarly, S ∈ Σ.
(S2) If A ∈ Σ = ∩iFi then A ∈ Σi for each i. Since each Σi is a σ-field, S \A ∈ Σi for each i.

Hence S \A ∈ ∩iΣi.
(S3) If Aj ∈ Σ for all j, then Aj ∈ Σi for all i and j. Since each Σi is a σ-field, ∪jAj ∈ Σi for

all i. Hence ∪jAj ∈ ∩iΣi. �

Example 1.2.7 Thanks to Lemma 1.2.6 we can construct a σ-field by making a statement along
the lines of

“Let Σ be the smallest σ-field on R containing all the open intervals.”

By this statement we mean: let Σ be intersection of all the σ-fields on R that contain all of the
open intervals, in the style of equation (1.2). We know that at least one σ-field exists with this
property, namely P(R). Therefore Lemma 1.2.6 applies, and tells that Σ is indeed a σ-field. The
σ-field resulting from this example is very special. It is known as the Borel σ-field on R, and it is
much smaller than P(R). We will introduce it formally in Definition 1.4.2, and study it in Section
1.4.

12
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1.3 Measure

The next question we need to ask is: what does it mean to measure an object? We want a general
framework that we can use for concepts such as length, weight and volume. From the last section,
we know that we are looking for a function m : Σ → [0,∞] where Σ will be an appropriately
chosen σ-field.

Definition 1.3.1 Let (S,Σ) be a measurable space. A mapping m : Σ → [0,∞] is known as a
measure if it satisfies

(M1) m(∅) = 0.

(M2) If (An)n∈N is a sequence of sets where each An ∈ Σ and if these sets are pairwise disjoint
(meaning that An ∩Am = ∅ if m 6= n) then

m

( ∞⋃
n=1

An

)
=

∞∑
n=1

m(An).

Note that (M2) relies on property (S3), to make sure that
⋃∞

n=1An ∈ Σ. Property (M2) is often
known as σ-additivity. Crucially, it will allow us to take limits in ways that involve measures,
thanks to the fact that (M2) considers a (countably) infinite sequence of sets (An). Limits are
how we rigorously justify that approximations work – consequently we need them, if we are to
create a theory that will, ultimately, be useful to experimentalists and modellers.

Property (M2) encapsulates the idea that if we take a collection of objects, then their total
measure should equal to the sum of their individual measures – providing they don’t overlap with
each other. For example, we might take 1kg of flour and divide it into 3 piles weighing 100g, 250g
and 650g. We could also imagine dividing our 1kg of flour into an infinite sequence of piles, with
sizes 500g, 250g, 125g, 67.5g, …, that sum (as an infinite series) to 1kg.

Property (M1) is much less remarkable. It simply states that the empty set has zero measure.
This represents our feeling that an empty region of space has zero length/weight/volume/etc.

Definition 1.3.2 A triplet (S,Σ,m) where S is a set, Σ is a σ-field on S, and m : Σ → [0,∞] is
a measure is known as a measure space.

Definition 1.3.3 The extended real number m(S) is called the total mass of m. The measure m
is said to be finite if m(S) <∞.

Let us now assume that (S,Σ,m) is a measure space, and record some useful properties of
measures.

• If A1, . . . , An ∈ Σ and are pairwise disjoint then

m(A1 ∪ . . . ∪An) = m(A1) + . . .+m(An).

This is known as finite additivity of measures. We’ll often think of it as part of (M2).

To prove it we use the same idea on (M2) as we used, for σ-fields, on (S3). Define A′
i = Ai

for i ≤ n and A′
i = ∅ for i > n. By (M2) we have m (

⋃∞
i=1A

′
i) =

∑∞
i=1m(A′

i). By (M1) we
have m(∅) = 0, so this reduces to m(

⋃n
i=1Ai) =

∑n
i=1m(Ai).

13
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• If A,B ∈ Σ with A ⊆ B then m(A) ≤ m(B). This property is known as the monotonicity
property of measures.

To prove it write B as the disjoint union B = (B \A)∪A and then use that from part 1 we
have m(B) = m((B \A) ∪A) = m(B \A) +m(A).

Note that if m(A) is finite then we can subtract m(A) from both sides, and obtain that

m(B \A) = m(B)−m(A) (1.3)

However, this only works if m(A) is finite!

• If A,B ∈ Σ are arbitrary (i.e. not necessarily disjoint) then

m(A ∪B) +m(A ∩B) = m(A) +m(B). (1.4)

The proof of this is Problem 1.4 part (a). Note that if m(A∩B) <∞ we have m(A∪B) =

m(A) +m(B)−m(A ∩B), which you might recognize as similar to something you’ve seen
before in probability.

14
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1.3.1 Examples of measures

Here are three important first examples of measure spaces. We can’t yet introduce examples based
on length or volume; this will come later in the course.

1. Counting Measure Let S any set and take Σ = P(S). For each A ⊆ S the counting
measure m = # is given by

#(A) = the number of elements in A.

I hope its intuitively obvious to you that this is a measure. We’ll omit checking the details.

2. Dirac Measure This measure is named after the physicist Paul Dirac. Let (S,Σ) be an
arbitrary measurable space and fix x ∈ S. The Dirac measure m = δx is defined by

δx(A) =

{
1 if x ∈ A

0 if x /∈ A

Checking properties (M1) and (M2) in this case is left for you.

A useful fact: if S is countable then we can write the counting measure # in terms of Dirac
measures, as #(A) =

∑
x∈S δx(A).

3. Probability

Consider a finite set S = {x1, . . . , xn}, which we’ll call the sample space and call each of the
xi an outcome. Let Σ be the set of all subsets of S. Let (pi)

n
i=1 be set of numbers in [0, 1]

such that
∑n

i=1 pi = 1. For A ∈ Σ we define a measure m = P by setting

P[A] =
n∑

i=1

piδxi
(A). (1.5)

In words, to each outcome xi we assign probability pi, that is P[{xi}] = pi. If a set A contains
several outcomes, then its outcome is precisely the sum of their individual probabilities.
Finding the probability of an event is just another kind of measuring!

We could treat a countable set S similarly, with a countable sequence of pi and a countable
summation (i.e. an infinite series) in (1.5). Probability, however, mostly requires uncountable
sample spaces (e.g. the normal distribution on the real line). In this case (1.5) breaks down
completely, because there is no such thing as an uncountable sum. One of the outcomes of
this course will be a rigorous basis for probability theory with uncountable sample spaces.

In general, a measure m is said to be a probability measure if its total mass is 1 i.e. m(S) = 1.

4. Integration

In previous analysis courses you viewed Riemann integration as a way of calculating area –
that is, measuring the area of two-dimensional shapes. You’ve probably also viewed various
types of integrals as ways of calculating volumes, at some point. So, we should expect
integration to fit naturally into our theory of measures.

In Chapter 4 we will introduce Lebesgue integration. Lebesgue integration is ‘the’ modern
theory of integration on which mathematical modelling now relies. We will see that Lebesgue
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integration interacts nicely with measure theory, whilst Riemann integration doesn’t. In fact,
Lebesgue integration will also be the key tool for setting up a rigorous basis for probability
theory.
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1.4 The Borel σ-field

In this section introduce another example of a measure space, which will represent the notion of
measuring the ‘length’ of subsets of R. For an interval [a, b] it is clear that the length should be
b−a, but as we saw in Section 1.1 for more complicated subsets of R the situation is not so clear.

Example 1.4.1 Consider, for example, the irrational numbers I and the rational numbers Q.
Both I and Q are found throughout R, but they are both full of tiny holes. Can we find a
meaningful way to decide what is the ‘length’ of I and Q? In fact, we will see that we can – to
come in Section 1.5. But in Section 1.6 we will also show that it is possible to construct subsets
of R for which there is no meaningful idea of length.

In this section we take S = R. The first question is: which σ-field should we use? The power set
P(R) is too big, for reasons that we will make clear in Section 1.6. However, for practical purposes
we do need our σ-field to contain all open and closed intervals, and also unions, intersections and
complements of these. This provides a starting point.

Definition 1.4.2 The Borel σ-field of R, denoted by B(R), is the smallest σ-field on R that
contains all open intervals (a, b) where −∞ ≤ a < b ≤ ∞. Sets in B(R) are called Borel sets.

Note that B(R) also contains isolated points {a} where a ∈ R. To see this first observe
that (a,∞) ∈ B(R) and also (−∞, a) ∈ B(R). Now by (S2), (−∞, a] = (a,∞)c ∈ B(R) and
[a,∞) = (−∞, a)c ∈ B(R). Finally as σ-fields are closed under intersections, {a} = [a,∞) ∩
(−∞, a] ∈ B(R). You can show that B(R) also contains all closed intervals – see Problem 1.6.
With open and closed intervals in hand, the closure of σ-fields under countable set operations
gives us a way to construct a huge variety of Borel sets.

As a general rule, all ‘sensible’ subsets of R are Borel sets. We might hope to find some sort of
formula for a general element of B(R), but this is not possible. Unless you deliberately set out to
find a non-Borel subset of R you will never come across one – and even when you look for them
it is hard work to find them, as we will see in Section 1.6.
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1.5 Lebesgue measure

The measure that precisely captures the notion of length is called Lebesgue measure in honour
of the French mathematician Henri Lebesgue (1875-1941), who founded the modern theory of
integration. We will denote it by λ. First we need a definition.

Let A ∈ B(R) be arbitrary. A covering of A is a finite or countable collection of open intervals
{(an, bn), n ∈ N} so that

A ⊆
∞⋃
n=1

(an, bn). (1.6)

Definition 1.5.1 Let CA be the set of all coverings of the set A ∈ B(R). The Lebesgue measure
λ on (R,B(R)) is defined by the formula:

λ(A) = inf
CA

∞∑
n=1

(bn − an), (1.7)

where the inf is taken over all possible coverings of A, with notation as in (1.6)

It would take a long time to prove that λ really is a measure, and it wouldn’t help us understand
λ any better if we did it, so we’ll omit that from the course. You can find a proof in any standard
text book on measure theory e.g. Cohn, Schilling or Tao. Instead, let’s check that the Definition
1.5.1 agrees with some of our intuitive ideas about length.

(L1) If A = (a, b) then λ((a, b)) = b − a as expected, since (a, b) is a covering of itself and any
other cover will have greater length.

(L2) If A = {a} then λ({a}) = 0. To see this, choose any ε > 0. Then (a − ε/2, a + ε/2) is a
cover of a and so λ({a}) ≤ (a+ ε/2)− (a− ε/2) = ε. But ε is arbitrary and so we conclude
that λ({a}) = 0.

(L3) Combining (L2) with (M2), we deduce that for a < b,

λ([a, b)) = λ({a} ∪ (a, b)) = λ({a}) + λ((a, b)) = b− a.

Similarly, λ([a, b]) = λ((a, b]) = b− a.

(L4) If A = [0,∞), write A =
⋃∞

n=1[n−1, n). Then by (M2) we obtain λ([0,∞)) =
∑∞

n=1 1 = ∞.
By a similar argument, λ((−∞, 0)) = ∞ and so λ(R) = λ((−∞, 0)) + λ([0,∞)) = ∞.

(L5) If A ∈ B(R), and for some x ∈ R we define Ax = {x+ a ; a ∈ A}, then λ(A) = λ(Ax).
In words, if we take a set A and translate it (by x), we do not change its measure. We’ll
often refer to this property as the translation invariance of Lebesgue measure. It is easily
seen from (1.7), because any cover of A can be translated by x to be a cover of Ax.

Example 1.5.2 In simple practical examples on Lebesgue measure, it is best not to try to use
(1.7) directly, but to just apply the properties listed above. For example, to find λ ((−3, 10) \ (−1, 4)),
use (L3) and (M2) to obtain

λ ((−3, 10) \ (−1, 4)) = λ ((−3,−1] ∪ [4, 10))

= λ((−3,−1]) + λ([4, 10))

= ((−1)− (−3)) + (10− 4) = 8.
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It is possible for a set to be quite ‘large’ and still have Lebesgue measure zero. The next two
lemmas give examples of such sets.

Lemma 1.5.3 Let A ⊂ R be countable. Then λ(A) = 0.

Proof: Since A is countable we may write A = {a1, a2, . . .} =
⋃∞

n=1{an}. Since A is a countable
union of singletons, it is in B(R). Then, using (M2) and (L2)

λ(A) = λ

( ∞⋃
n=1

{an}

)
=

∞∑
n=1

λ({an}) = 0.

�

It follows that
λ(N) = λ(Z) = λ(Q) = 0.

Further, for any A ∈ B(R) we have λ(A ∩ Q) ≤ λ(Q), which implies λ(A ∩ Q) = 0. Thus also,
if A has finite measure, λ(A) − λ(A ∩ I) = λ(A \ (A ∩ I)) = λ(A ∩ Q) = 0. This is particularly
intriguing as it tells us that

λ(A) = λ(A ∩ I),

so the only contribution to length of sets of real numbers comes from the irrational numbers.
Hence also for all n, λ(I) ≥ λ(I ∩ [−n, n]) = λ([−n, n]) = 2n, and letting n → ∞ gives that
λ(I) = ∞.

Lemma 1.5.4 The Cantor Set has Lebesgue measure zero.

Proof: Recall the construction of the Cantor set C =
⋂∞

n=1Cn given in Example 1.1.1, and
the notation used there. Recall also that the Cn are decreasing, that is Cn+1 ⊆ Cn, and hence
also C ⊆ Cn for all n. Since Cn is a union of 2n disjoint intervals of length 3−n using (M2) and
(L3) we have λ(Cn) = 2n(13)

n = (23)
n. Using monotonicity of measure we thus have 0 ≤ λ(C) ≤

λ(Cn) = (23)
n. Letting n→ ∞, and applying the sandwich rule we obtain λ(C) = 0. �

We’ll tend to use (L1)-(L5) without explicitly referencing them, from now on. Hopefully, by
this point, you’re happy to trust that Lebesgue measure matches your intuitive concept of length
within R.

Remark 1.5.5 If I is a closed interval (or in fact any Borel set) in R we can similarly define
B(I), the Borel σ-field of I, to be the smallest σ-field containing all open intervals in I. In fact,
it holds that B(I) = {B ∩ I ; B ∈ B(R)}. The Lebesgue measure λI on (I,B(I)) is obtained by
restricting the sets A in (1.7) to be in B(I). It can be seen that for A ⊆ I we have λI(A) = λ(A).
We won’t include a proof of these claims.
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1.6 An example of a non-measurable set (?)

Note that this section has a (?), meaning that it is off-syllabus. It is included for interest.
We might wonder, why go to all the trouble of defining the Borel σ-field? In other words, why

can’t we measure (the ‘size’ of) every possible subset of R? We will answer these questions by
constructing a strange looking set V ⊆ R; we will then show that it is not possible to define the
Lebesgue measure of V .

As usual, let Q denote the rational numbers. For any x ∈ R we define

Qx = {x+ q ; q ∈ Q}. (1.8)

Note that different x values may give the same Qx. For example, an exercise for you is to prove
that Q√

2 = Q1+
√
2. You can think of Qx as the set Q translated by x.

It is easily seen that Qx ∩ [0, 1] is non-empty; just pick some rational q that is slightly less
than x and note that x+ (−q) ∈ Qx ∩ [0, 1]. Now, for each set Qx, we pick precisely one element
r ∈ Qx ∩ [0, 1] (it does not matter which element we pick). We write this number r as r(Qx).
Define

V = {r(Qx) ; x ∈ R},

which is a subset of [0, 1]. For each q ∈ Q define

Vq = {q +m ; m ∈ V }.

Clearly V = V0, and Vq is precisely the set V translated by q. Now, let us record some facts
about Vq.

Lemma 1.6.1 It holds that

1. If q1 6= q2 then Vq1 ∩ Vq2 = ∅.

2. R =
⋃

q∈Q Vq.

3. [0, 1] ⊆
⋃

q∈Q∩[−1,1] Vq ⊆ [−1, 2].

Before we prove this lemma, let us use it to show that V cannot have a Lebesgue measure. We
will do this by contradiction: assume that λ(V ) is defined.

Since V and Vq are translations of each other, they must have the same Lebesgue measure. We
write c = λ(V ) = λ(Vq), which does not depend on q. Let us write Q ∩ [−1, 1] = {q1, q2, . . . , },
which we may do because Q is countable. By parts (1) and (3) of Lemma 1.6.1 and property
(M2) we have

λ

 ⋃
q∈Q∩[−1,1]

Vq

 =

∞∑
i=1

λ(Vqi) =

∞∑
i=1

c.

Using the monotonicity property of measures (see Section 1.7) and part (3) of Lemma 1.6.1 we
thus have

1 ≤
∞∑
i=1

c ≤ 3.

However, there is no value of c which can satisfy this equation! So it is not possible to define of
the Lebesgue measure of V . Since we know that we can define the Lebesgue measure on all Borel
sets, the set V is not a Borel set.
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The set V is known as a Vitali set. In higher dimensions even stranger things can happen with
non-measurable sets; you might like to investigate the Banach-Tarski paradox.
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Proof: [Of Lemma 1.6.1.] We prove the three claims in turn.
(1) Let q1, q2 ∈ Q be unequal. Suppose that some x ∈ Vq1 ∩ Vq2 exists – and we now look for

a contradiction. By definition of Vq we have

x = q1 + r(Qx1
) = q2 + r(Qx2

). (1.9)

By definition of Qx we may write r(Qx1
) = x1 + q′1 for some q′1 ∈ Q, and similarly for x2, so we

obtain x = q1 + x1 + q′1 = q2 + x2 + q′2 where q, q′ ∈ Q. Hence, setting q = q2 − q1 + q′2 − q′1 ∈ Q,
we have x1 + q = x2, which by (1.8) means that Qx1

= Qx2
. Thus r(Qx1

) = r(Qx2
), so going

back to (1.9) we obtain that q1 = q2. But this contradicts our assumption that q1 6= q2. Hence x
does not exist and Vq1 ∩ Vq2 = ∅.

(2) We will show ⊇ and ⊆. The first is easy: since Vq ⊆ R it is immediate that R ⊇
⋃

q∈Q Vq.
Now take some x ∈ R. Since we may take q = 0 in (1.8) we have x ∈ Qx. By definition of

r(Qx) we have r(Qx) = x+ q′ for some q′ ∈ Q. By definition of V we have r(Qx) ∈ V and since
x = r(Qx)− q′ we have x ∈ V−q′ . Hence x ∈

⋃
q∈Q Vq.

(3) Since V ⊆ [0, 1], we have Vq ∩ [0, 1] = ∅ whenever q /∈ [−1, 1]. Hence, from part (2) and
set algebra we have

R ∩ [0, 1] =

⋃
q∈Q

Vq

 ∩ [0, 1] =
⋃
q∈Q

Vq ∩ [0, 1] =
⋃

q∈Q∩[−1,1]

Vq ∩ [0, 1] ⊆
⋃

q∈Q∩[−1,1]

Vq.

This proves the first ⊆ of (3). For the second simply note that V ⊆ [0, 1] so Vq ⊆ [−1, 2] whenever
q ∈ [−1, 1]. �

Remark 1.6.2 We used the axiom of choice to define the function r(·).

22



©Nic Freeman, University of Sheffield, 2025.

1.7 Measures and limits

In this section we return to the consideration of arbitrary measure spaces (S,Σ,m). Let (An) be
a sequence of sets in Σ. We say that it is increasing if An ⊆ An+1 for all n ∈ N, and decreasing
if An+1 ⊆ An. When (An) is increasing, it is easily seen that (Ac

n) is decreasing.
When (An) is increasing, a useful technique is the disjoint union trick whereby we can write⋃∞

n=1An =
⋃∞

n=1Bn where the Bns are all mutually disjoint by defining B1 = A1 and for
n > 1, Bn = An −An−1. e.g. R =

⋃∞
n=1[−n, n] and here B1 = [−1, 1], B2 = [−2,−1) ∪ (1, 2] etc.

Lemma 1.7.1 Let An ∈ Σ for all n. It holds that:

1. If (An) is increasing and A =
⋃∞

n=1An then m(A) = limn→∞m(An).

2. If (An) is decreasing and A =
⋂∞

n=1An, and m(A1) <∞, then m(A) = limn→∞m(An).

Proof: We will prove the first claim here. The second claim can be deduced from the first,
which is for you to do in Problem 1.7. We use the disjoint union trick and (M2) to find that

m(A) = m

( ∞⋃
n=1

Bn

)
=

∞∑
n=1

m(Bn) = lim
N→∞

N∑
n=1

m(Bn) = lim
N→∞

m

(
N⋃

n=1

Bn

)
= lim

N→∞
m(AN ).

Here we use that AN = B1 ∪B2 ∪ · · · ∪BN . �

Lemma 1.7.2 (Union bound) If (An) is an arbitrary sequence of sets with An ∈ Σ for all
n ∈ N then

m

( ∞⋃
n=1

An

)
≤

∞∑
n=1

m(An).

Proof: From Problem 1.4, we have m(A1 ∪A2) +m(A1 ∩A2) = m(A1) +m(A2) from which
we deduce that m(A1 ∪A2) ≤ m(A1) +m(A2). By induction we then obtain for all N ≥ 2,

m

(
N⋃

n=1

An

)
≤

N∑
n=1

m(An).

Now defineXN =
⋃N

n=1An. ThenXN ⊆ XN+1 and so (XN ) is increasing to
⋃∞

n=1Xn =
⋃∞

n=1An.
By Lemma 1.7.1 we have

m

( ∞⋃
n=1

An

)
= m

( ∞⋃
n=1

Xn

)
= lim

N→∞
m(XN ) = lim

N→∞
m

(
N⋃

n=1

An

)
≤ lim

N→∞

N∑
n=1

m(An) =

∞∑
n=1

m(An).

�
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1.8 Null sets

Sets of measure zero play an important role in measure theory, and in advanced probability. In
fact, there is a special terminology for them, which we introduce in this section. In a general
measure space (S,Σ,m) we say that a set E ∈ Σ is a null set if m(E) = 0. If we need to specify
which measure is involved we might say e.g. m-null or Lebesgue null. We’ve already seen some
examples of Lebesgue null sets in Section 1.5.

Lemma 1.8.1 For each n ∈ N let En be a null set. Then
⋃∞

n=1En is a null set.

Proof: By Lemma 1.7.2 we have m(
⋃∞

n=1En) ≤
∑∞

n=1m(En) = 0. �

If a set E ∈ Σ is such that its complement is null (i.e. m(S \ E) = 0) then we say that E has
full measure. You can prove an analogue of Lemma 1.8.1 for sets of full measure in Exercise 1.8.

We say that a property holds for almost all x ∈ S if the set of x for which the property holds
has full measure. This is best understood by example: in Section 1.5 we deduce that the rational
numbers Q were a Lebesgue null subset of R. Therefore the set of irrational numbers has full
measure. We can rephrase this statement as ‘almost all x ∈ R are irrational numbers’. If we
needed to be specific that we meant to use Lebesgue measure, we might say ‘Lebesgue almost all
x ∈ R are irrational’.

Remark 1.8.2 (?) Those of you taking courses in topics such as topology, metric spaces and
functional analysis may wonder what relationships exist between sets of full measure and dense
sets, when using the Borel σ-field on some metric or topological space as in Remark 3.3.4. The
surprising answer is that in general a dense set might not have full measure, and a set of full
measure might not be dense. The perspectives of measure theory (i.e. a set of full measure) and
topology (i.e. a dense set) turn out to be quite different.
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1.9 Product measures

We calculate areas of rectangles by multiplying products of lengths of their sides. This suggests
trying to formulate a theory of products of measures. Let (S1,Σ1,m1) and (S2,Σ2,m2) be two
measure spaces. Form the Cartesian product S1 × S2. We can similarly try to form a product of
σ-fields

Σ1 × Σ2 = {A×B;A ∈ Σ1, B ∈ Σ2},

but it turns out that Σ1 × Σ2 is not a σ-field in general e.g. take Σ1 = Σ2 = R and note that
((0, 1)× (0, 1))c is not a rectangle. Instead the object we want is Σ1 ⊗Σ2, which is defined to be
the smallest σ-field containing all the sets in Σ1 × Σ2.

Theorem 1.9.1 There exists a measure m1 ×m2 on (S1 × S2,Σ1 ⊗ Σ2) such that

(m1 ×m2)(A×B) = m1(A)m2(B) (1.10)

for all A ∈ Σ1, B ∈ Σ2.

Definition 1.9.2 The measure m1 ×m2 is called the product measure of m1 and m2.

We won’t include a proof of Theorem 1.9.1 within this course. For example, consider R2 =

R × R. We equip it with the Borel σ-field, B(R2) = B(R) ⊗ B(R). Then the product Lebesgue
measure λ2 = λ× λ has the property that

λ2((a, b)× (c, d)) = (b− a)(d− c).

Of course, (b− a)(d− c) is the area of the rectangle (a, b)× (c, d). In fact, from a mathematical
point of view the measure λ2 is the definition of area. Similarly, λ3 = λ× λ× λ is how we define
volume, in three dimensions.

Remark 1.9.3 After thinking about λ× λ× λ, we might ask if, given measures m1,m2,m3, we
have (m1 ×m2) ×m3 = m1 × (m2 ×m3). It is true, but we won’t prove it. Consequently we
write both these as simply m1 ×m2 ×m3, without any ambiguity.

We can go beyond 3 dimensions. Given n-measure spaces (S1,Σ1,m1), (S2,Σ2,m2), . . . , (Sn,Σn,mn),
we can iterate the above procedure to define the product σ-field Σ1⊗Σ2⊗· · ·⊗Σn and the product
measure m1 ×m2 × · · · ×mn so that for Ai ∈ Σi, 1 ≤ i ≤ n,

(m1 ×m2 × · · · ×mn)(A1 ×A2 × · · · ×An) = m1(A1)m2(A2) · · ·mn(An).

In particular n-dimensional Lebesgue measure on Rn may be defined in this way.
Of course there are many measures that one can construct on (S1 × S2,Σ1 × Σ2) and not all

of these will be product measures. In probability spaces, product measures are closely related to
the notion of independence, as we will see later. If you write m1 = m2 = P in (1.10) you might
be able to see why.
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1.10 Exercises on Chapter 1

1.1 Let S = {1, 2, 3, 4}. Show that the set A =
{
∅, {1, 2, 3}, {4}, {1, 2}, {1, 2, 4}, {3}, S

}
is not?

a σ-field on S.

1.2 Let Σ1 and Σ2 be σ-fields of subsets of a set S. Note that? ?

Σ1 ∩ Σ2 = {A ⊆ S ; A ∈ Σ1 and A ∈ Σ2},
Σ1 ∪ Σ2 = {A ⊆ S ; A ∈ Σ1 or A ∈ Σ2}.

(a) Show that Σ1 ∩ Σ2 is a σ-field.
(b) Why is Σ1 ∪ Σ2 not in general a σ-field? Give an example to demonstrate this.

1.3 Let (S,Σ) be a measurable space and let X ∈ Σ. Show that ΣX = {A ∩ X ; A ∈ Σ} is a? ?

σ-field on X.

1.4 (a) Let (S,Σ,m) be a measure space. Show that for all A,B ∈ Σ,? ?

(i) m(A ∪B) +m(A ∩B) = m(A) +m(B),

(ii) m(A ∪B) ≤ m(A) +m(B).

(b) Use (a)(ii) to prove that if A1, A2, . . . , An ∈ Σ then m (
⋃n

i=1Ai) ≤
∑n

i=1m(Ai).

1.5 Let (S,Σ,m) be a measure space.? ?

(a) Let k > 0. Show that km is also a measure on (S,Σ) where for all A ∈ Σ,

(km)(A) = km(A).

Hence show that if m is a finite measure and m(S) > 0, then P(A) = m(A)
m(S) defines a

probability measure for A ∈ Σ.
(b) Let B ∈ Σ. Show that mB(A) = m(A ∩B) for A ∈ Σ defines a measure on (S,Σ).
(c) Suppose that m is a finite measure and m(B) > 0. Deduce that PB is a probability

measure where
PB(A) =

mB(A)

m(B)
.

How does this relate to the notion of conditional probability?

1.6 Using the definition and properties of B(R) in Section 1.4, show that B(R) contains all closed?

intervals [a, b], where −∞ < a < b <∞.

1.7 (a) Let m be a finite measure on the measurable space (S,Σ).? ? ?

(i) Let A ∈ Σ. Show that m(S \A) = m(S)−m(A).
(ii) Let (An)n∈N be a decreasing sequence of sets in Σ. Show that m(An) → m(∩jAj)

as n→ ∞.
Hint: Apply part of Lemma 1.7.1 to the sets Bn = S \An.

(iii) Combining (ii) with the result shown in another question above proves part 2 of
Lemma 1.7.1. Which question above is needed for this?

(b) Take S = N, let Σ = P(N) and let m = # be counting measure. Give an example of a
decreasing sequence of subsets An ⊆ Σ for which m(∩jAj) 6= limn→∞m(An).
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1.8 Let (S,Σ,m) be a measure space and for each n ∈ N let En have full measure. Show that? ? ⋂∞
n=1En has full measure.

1.9 Prove that if S is a set containing n elements, then the power set P(S) contains 2n elements.? ?

Hint: How many subsets are there of size r, for a fixed 1 ≤ r ≤ n? The binomial theorem
may also be of some use.

Challenge Questions

1.10 Let S be a finite set and Σ be a σ-field on S. Consider the set

Π = {A ∈ Σ ; if B ∈ Σ and B ⊆ A then either B = A or B = ∅}. (?)

(a) Show that Π is a finite set.

(b) Using (a), let us enumerate the elements of Π as Π = {Π1,Π2, · · · ,Πk}, where each Πi

is distinct from the others.

(i) Show that Πi ∩Πj = ∅ for i 6= j. Hint: Could Πi ∩Πj be an element of Π?
(ii) Show that ∪k

i=1Πi = S. Hint: If C = S \ ∪k
i=1Πi is non-empty, is C ∈ Π?

(iii) Let A ∈ Σ. Show that
A =

⋃
i∈I

Πi

where I = {i = 1, . . . , k ; A ∩Πi 6= ∅}.

1.11 Prove that both of the following claims are false.

(a) The Cantor set C contains an open interval (a, b) ⊆ C, where a < b.

(b) If a Borel set has non-zero Lebesgue measure then it contains an open interval.
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Chapter 2

Real Analysis

In this chapter we cover a small amount of content that would (mostly) fit more naturally within
a course on real analysis, but which was not covered as part of earlier courses due to lack of time.
We’ll first put together a natural way of dealing with limits that might take the values ±∞, and
then we’ll think about convergence of sequences of functions.

Given a set A ⊆ R, or more generally a subset A ⊆ S for some measurable space (S,Σ), we
define the indicator function 1A : S → R by

1A(x) =

{
1 if x ∈ A

0 if x /∈ A.

We will study indicator functions a little in this chapter, in Exercise 2.5. They will become very
important to us in Chapters 3 and 4.
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2.1 The extended reals

The extended reals are the real numbers, with ±∞ included,

R = R ∪ {−∞,∞}.

We have already seen that measures take values in [0,∞], and we’ll need to learn how to deal
naturally ±∞ within this course. Let’s recap a few key definitions.

You should remember the definition of a convergent sequence an → a of real numbers:

∀ε > 0

‘eventually’︷ ︸︸ ︷
∃N ∈ N ∀n ≥ N, |an − a| ≤ ε.

The best way to understand this is definition is by thinking about the terms marked as the word
‘eventually’. By eventually we mean that, if you look far enough down the sequence, we will see
some event happen for all remaining terms. So convergence means that for all ε > 0, eventually
|an − a| ≤ ε. Note that we can use < ε or ≤ ε here – it is straightforward to show that these give
equivalent definitions.

We also need to think about limits that have the value ±∞. In real analysis we might call
this ‘divergence’ because ±∞ are not elements of R, but when we work within the extended real
numbers R = R ∪ {∞,−∞} we can also use the term ‘convergence to ±∞’ for this case. We
won’t be fussy about that point of language within this course. The definition of an → ∞ is that

∀M ∈ (0,∞) ∃N ∈ N ∀n ≥ N, an ≥M.

In words, for all M ∈ (0,∞), eventually an ≥ M . For the case an → −∞ we use M ∈ (−∞, 0)

and require instead that an ≤M .
You already know that a bounded monotone sequence of real numbers converges. Working in

R allows us to remove the boundedness requirement.

Lemma 2.1.1 Let (an) be a monotone sequence of extended real numbers. Then there exists
a ∈ R such that an → a.

Proof: Without loss of generality we can assume that (an) is monotone increasing i.e. an+1 ≥ an
for all n ∈ N, or else we could consider (−an) in place of (an). Note that in real analysis you have
already proved the case where (an) is a bounded sequence. If (an) is unbounded and increasing
then supn an = ∞, so for any M ∈ (0,−∞) there exists N with aN ≥ M , which implies that
M ≤ aN ≤ aN+1 ≤ aN+2 ≤ . . .. In words, eventually an ≥M . Hence an → ∞. �

Remark 2.1.2 (?) The extended reals are a compact metric space, for example with the metric
given in Exercise 2.8. This provides a better way to study convergence in R where the points
±∞ do not need to be viewed as special cases. Metric spaces are not pre-requisite to our course,
however for this reason we will tend to omit treating the ‘special cases’ ±∞ within proofs involving
R, for example in Lemma 2.2.2.

We can do arithmetic in R in natural ways, for example if a ∈ R then a+∞ = ∞. We have
to be careful though, some objects like ∞ − ∞ and ∞

∞ do not make sense (formally, they are
undefined) but otherwise it works as you’d expect. Such restrictions are necessary. They exist to
prevent nonsensical calculations like 1 = ∞

∞ = ∞+∞
∞ = ∞

∞ + ∞
∞ = 1 + 1 = 2. You can find the

precise rules for arithmetic in R in Section 0.2.
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2.1.1 The Borel σ-field and Lebesgue measure on R

Recall that we defined the Borel σ-field B(R) in Section 1.4. We extend the Borel σ-field to R by
defining

B(R) = σ(B(R), {∞}, {−∞}),

that is the smallest σ-field that contains all elements of B(R) and the singleton sets {∞} and
{−∞}. The following lemma summarizes the connection.

Lemma 2.1.3 Let A ⊆ R. Then A ∈ B(R) if and only if A ∩ R ∈ B(R).

Proof: We’ll prove the forwards and backwards implications in turn. We’ll start with the
reverse implication. Let A ⊆ R and assume that A ∩ R ∈ B(R). We can write

A = (A ∩ R) ∪ (A ∩ {∞}) ∪ (A ∩ {−∞}).

Note that A ∩ {∞} is either empty or equal to {∞}, which in either case is an element of B(R).
Similarly, A ∩ {−∞} ∈ B(R). Hence A ∈ B(R), as required.

For the forwards implication, define

Σ = B(R) ∪
{
A ∪ {∞} ; A ∈ B(R)

}
∪
{
A ∪ {−∞} ; A ∈ B(R)

}
∪
{
A ∪ {−∞,∞} ; A ∈ B(R)

}
.

(2.1)
It is straightforward (but tedious) to check that Σ is a σ-field on R. We have {∞} ∈ Σ and
{−∞} ∈ Σ, and for all A ∈ B(R) we have A ∈ B(R). Hence, using that B(R) is the smallest
σ-field generated by such sets, we have B(R) ⊆ Σ. In particular, if A ∈ B(R) then A ∈ Σ, which
means that A is within one of the sets making up the right hand side of (2.1). In all four such
cases we have A ∩ R ∈ B(R), as required. �

Recall that we defined Lebesgue measure λ(A) for A ∈ B(R) in Section 1.5. We extend
Lebesgue measure to A ∈ B(R) by setting

λ(A) = λ(A ∩ R). (2.2)

Lemma 2.1.3 ensures that A ∩ R ∈ B(R), so the right hand side of (2.2) may be used to define
the left. In words, we don’t put any weight at ±∞. It is straightforward to check that this gives
a measure on (R,B(R)), in very similar style to part (b) of Exercise 1.5.
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2.2 Liminf and limsup

The main difficulty with limits is that, in general, limits do not exist. Most sequences do not
converge to anything. However there are two closely related concepts that always exist. They are
much easier to work with but they take more care to define.

Let (an) be a sequence of real numbers. Note that the sequence bn = supk≥n ak is monotone
decreasing, because as n gets larger the set {ak ; k ≥ n} contains less terms. Lemma 2.1.1 implies
that this sequence has a limit, with the caveat that the limit might be infinite. The sequence (bn)

is monotone decreasing, so its limit is equal to infn∈N bn. With this is mind we make the following
definition:

lim sup
n→∞

an = lim
n→∞

(
sup
k≥n

ak

)
= inf

n∈N

(
sup
k≥n

ak

)
. (2.3)

Heuristically, lim supn an is the smallest value that the tail of the sequence (an) stays below.
We can do the same construction the other way up, which gives

lim inf
n→∞

an = lim
n→∞

(
inf
k≥n

ak

)
= sup

n∈N

(
inf
k≥n

ak

)
. (2.4)

Heuristically, lim infn an is the largest value that the tail of the sequence (an) stays above. Note
that (2.3) and (2.4) are always well defined, as extended real numbers, and that lim infn an ≤
lim supn an.

Example 2.2.1 It is helpful to see a picture:

The sequence displayed is a sample of an = cos(n) + 10 (−1)n

n Un, where (Un) are i.i.d. uniform
random variables on [0, 1]. This is chosen to make a clear picture. As n→ ∞ the cos(n) term will
oscillate within [−1, 1] and the second term will tend to zero. Note that the dotted lines converge
downwards to lim supn an = 1 (in red) and upwards to lim infn an = −1 (in green).

We will spend the rest of this section making connections between lim inf, lim sup and lim.

Lemma 2.2.2 Let (an) be a sequence of extended reals. Then:

1. The sequence (an) converges if and only if lim inf
n→∞

an = lim sup
n→∞

an.

2. If (an) converges then lim inf
n→∞

an = lim sup
n→∞

an = lim
n→∞

an.
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Proof: Suppose first that (an) converges, say an → a. We will consider the case a ∈ R here;
the case a = ±∞ is similar and we will omit it, as discussed in Remark 2.1.2. For all ε > 0 there
exists n ∈ N such that |ak − a| ≤ ε for all k ≥ n. Hence a− ε ≤ ak ≤ a+ ε for all k ≥ n, which
implies that

a− ε ≤ inf
k≥n

ak ≤ sup
k≥n

ak ≤ a+ ε

Without loss of generality we may choose n ≥ 1
ε . Letting ε→ 0, upon which n→ ∞, gives that

a = lim inf
n

an = lim sup
n

an.

We have therefore proved both part 2 and the forwards implication of part 1.
We need to prove the reverse implication from part 1. Suppose that lim infn an = lim supn an ∈

R (and we don’t yet know that (an) converges). For all n ∈ N we have

0 ≤ an − inf
k≥n

ak ≤ sup
k≥n

ak − inf
k≥n

ak. (2.5)

Note also that

lim
n→∞

(
sup
k≥n

ak − inf
k≥n

ak

)
= lim sup

n→∞
an − lim inf

n→∞
an = 0. (2.6)

Combining (2.5) with (2.6) and using the sandwich rule, we have

lim
n→∞

(
an − inf

k≥n
ak

)
= 0. (2.7)

We can write an = (an − infk≥n ak) + infk≥n ak, and we know that both of these terms have
a limit as n → ∞. The first tends to zero by (2.7) and the second converges to lim infn an.
From the algebra of limits we thus obtain that (an) converges and limn an = lim infn an. Since
lim infn an = lim supn an was our assumption, this completes the proof. �

Lemma 2.2.3 Let (an) be a sequence of extended reals. Then lim supn(−an) = − lim infn an.

Proof: You already know from real analysis that supn(−an) = − infn an for real an. This
equation also holds for extended reals, but we’ll omit checking the extra cases involving infinities
here. The result follows from this along with (2.3) for lim sup, and with (2.4) for lim inf. �
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2.3 Convergence of functions

We’ve thought about convergence of (extended) real numbers in Sections 2.1 and 2.2. In this
section we will think about convergence of functions, defined on a general measure space (S,Σ,m).
We will write this section for functions taking values in R, but it applies equally to functions taking
values in R.

First we need to introduce pointwise definitions of functions. This is best done by example.
If f and g are functions defined from S → R then we define the function f + g : S → R by
setting (f + g)(x) = f(x) + g(x). We can apply the same idea to fg to define the function
(fg)(x) = f(x)g(x), and so on.

Definition 2.3.1 Let fn and f be functions defined from : S → R. We say that fn → f pointwise
if fn(x) → f(x) as n→ ∞, for all x ∈ S.

Pointwise convergence is the simplest type of convergence of functions. You’ve already seen
one other type: if supx∈A |fn(x) − f(x)| → 0 as n → ∞, then we say that fn → f uniformly on
the set A. We will use pointwise and uniform convergence within this course, but for us the most
interesting type of convergence is something slightly different. Recall the term ‘almost all’ from
Section 1.8. A property holds for almost all x ∈ S if the set of x on which it fails is a null set.

Definition 2.3.2 Let fn and f be functions defined from : S → R. We say that fn → f almost
everywhere if fn(x) → f(x) for almost all x ∈ S.

We will sometimes abbreviate fn → f almost everywhere as fn
a.e.→ f . Unpacking the termi-

nology in Definition 2.3.2, we have that fn
a.e.→ f if and only m({x ∈ S ; fn(x) 9 f(x)}) = 0.

Convergence almost everywhere is very similar to pointwise convergence. The difference is that
we allow fn(x) → f(x) to fail on some null set of x ∈ S. This is much more natural from the
perspective of measure theory, because we want to forget about things that have measure zero.

Example 2.3.3 Let fn : R → R by fn(x) = e−nx2 and let f(x) = 0. We take our measure space
to be (R,B(R), λ), and note that as n → ∞ we have fn(x) → 0 for all x ∈ R except x = 0 (at
which fn(0) = 1). The set {0} is Lebesgue null, so fn

a.e.→ f .

Lemma 2.3.4 Let fn and f be functions from S → R.

1. If fn → f uniformly then fn → f pointwise.

2. If fn → f pointwise then fn → f almost everywhere.

Proof: For the first claim, if supx∈A |fn(x)− f(x)| → 0 then, for any x ∈ A, we have fn(x) →
f(x). For the second claim, pointwise convergence implies that the set {x ∈ S ; fn(x) 9 f(x)} is
empty, hence it has measure zero. �

Example 2.3.3 shows that we can have convergence almost everywhere without having pointwise
convergence. Exercise 2.7 gives an example of functions that converge pointwise but not uniformly.
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2.4 Exercises on Chapter 2

2.1 Let (an) be a sequence of extended reals. Show that (an) is bounded if and only if we have
−∞ < lim infn an ≤ lim supn an <∞.

Hint: Recall from real analysis that sequences which converge in R are necessarily bounded.

2.2 Let fn : R → R by fn(x) = n1[0, 1
n
](x). Show that fn → 0 almost everywhere.

2.3 Let (S,Σ,m) be a measure space. Let f, g and, for each n ∈ N, fn and gn be functions from
S to R. Suppose that fn → f almost everywhere, and gn → g almost everywhere. Show
that fn + gn → f + g almost everywhere, and fngn → fg almost everywhere.

2.4 (a) For each n ∈ N let an, bn ∈ [0,∞]. Show that
∞∑
n=1

an +

∞∑
n=1

bn =

∞∑
n=1

(an + bn).

If an, bn ∈ R and the summations converge in R, implying absolute convergence because
all terms are non-negative, then you already know this. The point of this question is to
work in R.

(b) Let m and n be measures on (S,Σ). Deduce that m+ n is a measure on (S,Σ), where
(m+ n)(A) = m(A) + n(A) for all A ∈ Σ.

(c) Let S = {x1, x2, . . . , xn} be a finite set and c1, c2, . . . , cn be non-negative numbers. Let

m =

n∑
i=1

ciδxi
.

(i) Show that m is a measure on (S,P(S)).
(ii) What condition should be imposed on {c1, c2, . . . , cn} for m to be a probability

measure?

2.5 Let S be a set.

(a) Let A,B ⊆ S. Show that:

(i) 1A∪B = 1A + 1B − 1A∩B.
(ii) 1A∩B = 1A1B.
(iii) If B ⊆ A then 1A\B = 1A − 1B.

(b) Let (An) be a sequence of disjoint subsets of S and let A =
⋃∞

n=1An. Explain how the
function

∑∞
n=1 1An

is defined and show that 1A =
∑∞

n=1 1An
.

2.6 Let (an) and (bn) be a sequences of extended reals.

(a) Show that:

(i) lim supn an + lim supn bn ≤ lim supn (an + bn)

(ii) (lim supn an) (lim supn bn) ≤ lim supn anbn

(iii) c lim supn an = lim supn (can) for c ∈ [0,∞)

(iv) if an ≤ bn for all n, then lim supn an ≤ lim supn bn.
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(b) Derive similar relationships for lim inf.

2.7 Let fn : R → R be given by fn(x) = e−nx2 and let f : R → R be given by f(x) = 1{0}(x).
Show that fn → f pointwise but not uniformly.

Challenge questions

2.8 This question involves metric spaces and is off-syllabus for that reason. (?)

(a) Show that (R, d) is a metric space, where d(x, y) = | arctan(x) − arctan(y)|. Here we
set arctan(−∞) = −1 and arctan(∞) = 1.

(b) Show that (R, d) is compact.

(c) Let (an) be a sequence of extended real numbers. Show that the following are equivalent:

(i) an → a

(ii) If (arn) is a convergent subsequence of (an) then arn → a.

2.9 Let (an) be any sequence within R and let

L = {a ∈ R ; there exists a subsequence (arn) of (an) with arn → a}.

Show that lim infn an = inf L and lim supn an = sup L .

Part (c) of Exercise 2.8 will help. If you prefer to avoid using that, you should impose the
extra condition that an ∈ R is a bounded sequence and use 2.1.
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Chapter 3

Measurable Functions

In this chapter we restrict ourselves to studying a particular kind of function, known as a mea-
surable function. For measure theory, this is an important step, because it allows us to exclude
some very strangely behaved examples that would disrupt our theory.

More specifically, in Section 1.6 we saw the existence subsets of R that were not measurable,
with respect to Lebesgue measure. These sets had no meaningful concept of ‘length’. It is clear
that integration is closely connected to length, for example integrating the indicator function

1A(x) =

{
1 if x ∈ A

0 if x /∈ A

in the case A = [a, b] using a naive ‘area under the curve’ approach gives
∫
R 1A(x) dx = b− a =

λ(A). If A is non-measurable then integrating the function 1A would be dangerously close to
trying to measure the length of A, which we know we cannot do. We conclude that, just as with
sets, we need a similar concept of a measurable function.
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3.1 Overview

In this section, we deal with functions f : S → R, where (S,Σ) is a measurable space. The key
definition is the following.

Definition 3.1.1 We say that f : S → R is measurable if f−1(A) ∈ Σ whenever A ∈ B(R).

We will sometimes wish to restrict to the case S = R, in which case we would normally take
Σ = B(R) as the Borel sets. In this case, measurable functions f : R → R are often known as
Borel measurable. Note that in Definition 3.1.1 f−1 refers to the pre-image (and not the inverse
function, which may not exist). You can find the definition and properties of pre-image within
earlier courses, and summarised within Section 0.2.

We can’t yet explain exactly why Definition 3.1.1 is a sensible class of functions to be interested
in. This will become clear in Section 4.1 when we begin to construct the Lebesgue integral. Note
that the σ-field Σ is the key object in Definition 3.1.1. If we were to use a different σ-field Σ on
the same set S, then we might change whether f : S → R was measurable.

Example 3.1.2 Let X ∈ Σ. Then 1X is measurable. To see this let us write f = 1X and note
that f(x) takes the values 1 if x ∈ X and 0 if x /∈ X. Therefore we have

f−1(A) =


∅ if 0 /∈ A and 1 /∈ A

S if 0 ∈ A and 1 ∈ A

X if 0 /∈ A and 1 ∈ A

S \X if 0 ∈ A and 1 /∈ A.

In all cases we have that f−1(A) ∈ Σ.
A interesting special case is provided the indicator function 1Q of the rational numbers, defined

from R → R. This function is discontinuous at all points, because between any pair of rationals
there is an irrational number, and vice versa. Since Q ∈ B(R), the function 1Q is Borel measurable.

Example 3.1.3 (?) It is possible to construct non-measurable functions, for example if we take
(S,Σ) = (R,B(R) and define f : R → R by f(x) = 1V (x) where V is the non-measurable set
constructed in Section 1.6. Then f−1({1}) = V /∈ B(R).

It is usually impossible to use Definition 3.1.1 to check directly that some function f is mea-
surable, because B(R) is too big to check f−1(A) for all A ∈ B(R). In fact it is sufficient to check
a much smaller class of subsets, for example using the following result.

Lemma 3.1.4 Let f : S → R. Then the following statements are equivalent.

1. f is measurable.

2. f−1((a,∞)) ∈ Σ for all a ∈ R.

3. f−1([a,∞)) ∈ Σ for all a ∈ R.

4. f−1((−∞, a)) ∈ Σ for all a ∈ R.

5. f−1((−∞, a]) ∈ Σ for all a ∈ R.
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Proof: It is immediate that part 1 ⇒ all of the other parts. We will show here that parts 2,
3, 4 and 5 are all equivalent to each other. Proof that these (all) imply part 1 can be found in
Section 3.3, which is marked with a (∆) for independent study.

Note first that part 2 ⇔ part 5, as f−1(A)c = f−1(Ac) and Σ is closed under taking comple-
ments. The fact that part 3 ⇔ part 4 is proved similarly. To see that part 2 ⇒ part 3 we use
that [a,∞) =

⋂∞
n=1(a− 1/n,∞) and so

f−1([a,∞)) =

∞⋂
n=1

f−1((a− 1/n,∞))

and the result follows since Σ is closed under countable intersections. Similarly, to see that part
3 ⇒ part 2 we use that

f−1((a,∞)) =

∞⋃
n=1

f−1([a+ 1/n,∞))

and the fact that Σ is closed under countable unions. We thus have part part 5 ⇔ part 2 ⇔ part
3 ⇔ part 4. �

There is nothing special about half-open intervals in Lemma 3.1.4. Lots of other types of
subset of R will do and we will encounter a few more within this course, such as in Exercise 3.2,
or Lemma 3.3.5 within the independent reading.

Lemma 3.1.4 provides a direct way of showing that functions are measurable, but an indirect
way is often easier: we can use measurable functions to construct more measurable functions. In
fact, nearly everything that combines measurable functions together will create more measurable
functions – much like the situation we already established for measurable sets. There are also
similarities to the algebra of limits from real analysis, which gives the next theorem its name.

Recall the ‘pointwise’ notation for functions that we introduced in Section 2.3 e.g. f +g means
the function with values (f + g)(x) = f(x) + g(x).

Theorem 3.1.5 (Algebra of measurable functions) Let f, g : S → R be measurable and let
α ∈ R. The following functions are measurable:

f + g, fg, αf, 1/f, f ∨ g, f ∧ g. (3.1)

In the case of 1/f we must assume f(x) 6= 0 for all x ∈ S.
If fn : S → R for all n ∈ N then the following functions are measurable:

inf
n
fn sup

n
fn lim inf

n→∞
fn, lim sup

n→∞
fn, lim

n→∞
fn (3.2)

In the case of limn fn we must assume that the limit exists (pointwise).
If G : R → R is Borel measurable then G ◦ f , defined by (G ◦ f)(x) = G(f(x)), is measurable.

Proof: The proof is in Section 3.4, which is marked with a (∆) for independent study. �

The functions in (3.1) are defined pointwise, as introduced in Section 2.3. The functions in
(3.2) are also defined pointwise, for example (infn fn)(x) = infn fn(x), and similarly for the others.
Note that in the case of lim, the function (limn fn)(x) = limn fn(x) is only defined if the limit
exists for all x. Strictly, at this point we treat only real valued functions so we should require
that the infs, sups, and so on are not ±∞, but we will remove this restriction in Section 3.6.
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3.2 Borel measurable functions

To make use of the various parts of Theorem 3.1.5 we need some functions that we already know
are measurable. Example 3.1.2 is a good start and you’ll find some more examples within the
exercises at the end of this chapter. In the special case of functions f : R → R the following
lemma is very useful.

Lemma 3.2.1 If f : R → R is continuous then f is Borel measurable.

Proof: The proof is in Section 3.3, which is marked with a (∆) for independent study. �

The most important fact to realize about functions f : R → R is that, although it is possible
to construct non-measurable examples, essentially all examples of functions f : R → R that we
encounter in practice are Borel measurable. We have now set up all these tools to prove this,
for the functions that we commonly use. There are several examples in Exercise 3.1. Here’s one
more.

Example 3.2.2 The function

f(x) =

{
sinx if x ∈ [−π

2 ,
π
2 ],

0 otherwise,

is Borel measurable. To see this, note that the function sin is continuous on R, and hence
measurable by Lemma 3.2.1, which is a good start. To make the link to f we note that

f(x) = 1[−π

2
,π
2
](x) sin(x).

Example 3.1.2 gives that 1[−π

2
,π
2
] is measurable, because intervals are Borel sets. Theorem 3.1.5

(in particular, the multiplication part) then gives that f is Borel measurable.
We could reach the same conclusion in many different ways. For example, the function

g(x) =


−1 if x < −π

2 ,

sinx if x ∈ [−π
2 ,

π
2 ],

1 if x > π
2 ,

is continuous and hence measurable by Lemma 3.2.1. We can write f as

f(x) = g(x)− 1(π

2
,∞)(x) + 1(−∞,−π

2
)(x)

and Theorem 3.1.5 (this time, the addition part) tells us that f is Borel measurable.
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3.3 Measurable functions and open sets (∆)

In this section we prove the remaining part of Lemma 3.1.4, in particular that part (1) of that
lemma is equivalent to the other parts. We will also prove Lemma 3.2.1. Note that this section is
marked with a (∆), meaning that it is off-syllabus for those taking MAS31002 and is independent
reading for those taking MAS61022. Our arguments will use open subsets of R. For purposes of
this course we work from the following definition.

Definition 3.3.1 A set O ⊆ R is open if for every x ∈ O there is an open interval I ⊆ R
containing x, with I ⊆ O.

Some of you will have seen open sets in more general contexts e.g. metric or topological spaces.
We won’t use those more general contexts within this course, but if you are familiar with metric
spaces you will know that some of the results in this section are true in greater generality than
we include here.

It follows immediately from Definition 3.3.1 that every open interval in R is an open set. We
might ask what other kinds of open subset we can find within R. The following result gives a
surprisingly clear answer, a consequence of which is that all open subsets of R are Borel sets.

Proposition 3.3.2 Every open set O in R is a countable union of disjoint open intervals.

Proof: Note that a ‘countable union’ includes the case where we only need finitely many
intervals. Let us first note that if Oi are opens sets for all i ∈ I then (even if I is uncountable)
the set O = ∪iOi is open. See Exercise 3.7 for a proof of this fact.

For x ∈ O, let Ix be the union of all open intervals containing x for which Ix ⊆ O. Then Ix
is open. Also, Ix is an interval, because if a < b < c with a, c ∈ Ix then there are open intervals
(a− ε1, x+ ε2) and (x− ε3, c+ ε4) within Ix and b is within their union, so b ∈ Ix.

If x, y ∈ O and x 6= y then Ix and Iy are either disjoint or identical. To see this, note that if
Ix ∩ Iy is non-empty then Ix ∪ Iy is a non-empty open interval contained within O, which implies
Ix ∪ Iy is also contained within both Ix and Iy. Thus Ix = Iy.

However, there can only be countably many different Ix, because we can only fit at most
countably many (non-empty) disjoint open intervals within R. We now select a rational number
r(x) in every distinct Ix and rewrite O as the countable disjoint union over intervals Ix labelled
by distinct rationals r(x). �

Lemma 3.3.3 Let O = σ(O ⊆ R ; O is open) be the σ-field generated by the open subsets of R.
It holds that O = B(R).

Proof: Recall that, by Definition 1.4.2, B(R) is the smallest σ-field that contains the open
intervals (a, b) for −∞ ≤ a < b ≤ ∞. It follows immediately that B(R) ⊆ O, because O is a
σ-field containing all the such intervals and B(R) is the smallest such σ-field. To see the reverse
inclusion, note by Proposition 3.3.2, every open set is an element of B(R). Thus O ⊆ B(R),
because B(R) therefore contains any σ-field that contains the open sets, and O is the smallest
such σ-field. �

Remark 3.3.4 (?) In advanced textbooks on measure theory, Lemma 3.3.3 is usually used as the
definition of the Borel σ-field, because open sets make sense in a more general context than open
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intervals. In particular this definition makes sense for all metric spaces, and more generally for
all topological spaces.

Lemma 3.3.5 Let f : S → R. Then f is measurable if and only if f−1(O) ∈ Σ for all open sets
O in R.

Proof: We will prove the forwards and backwards implications in turn. Suppose first that f is
measurable. Let O ⊆ R be open, and note that Proposition 3.3.2 implies that O ∈ B(R). Hence,
by Definition 3.1.1 we have f−1(O) ∈ Σ, as required.

For the reverse implication, suppose instead that f−1(O) ∈ Σ is for all open O ⊆ R. Let
A = {E ⊆ R ; f−1(E) ∈ Σ}. We will first show that A is a σ-field, by checking (S1)-(S3).

(S1): R ∈ A as S = f−1(R).

(S2): If E ∈ A then Ec ∈ A since f−1(Ec) = f−1(E)c ∈ Σ.

(S3): If (An) is a sequence of sets in A then
⋃

n∈NAn ∈ A since f−1 (
⋃

nAn) =
⋃

n f
−1(An) ∈ Σ.

We are now ready to finish the proof. By our assumption, O ∈ A for all open A ⊆ R. Writing
O = σ(O ⊆ R ; O is open) as in Lemma 3.3.3, by Lemma 1.2.6 we have that O ⊆ A, because A
is a σ-field containing all the open subsets and O is the smallest such σ-field. By Lemma 3.3.3
we thus have B(R) ⊆ A. By definition of A, this gives that f−1(E) ∈ Σ for all B(R), so f is
measurable. �

Proof of Lemma 3.1.4, part 2 implies part 1: With Lemma 3.3.5 we can finish the proof
of Lemma 3.1.4. Using the notation from that lemma, assume that part 2 holds. From what we
have already proved of Lemma 3.1.4, part 4 therefore also holds. By Proposition 3.3.2 we may
write any open set O as O = ∪n(an, bn) for some −∞ ≤ an < bn ≤ ∞, where the union is
countable. Hence,

f−1(O) =
⋃
n

f−1((an, bn)) =
⋃
n

f−1((−∞, bn)) ∩ f−1((an,∞)).

The right hand side of the above is in Σ by parts 2 and 4, which means that f−1(O) ∈ Σ for any
open set O ⊆ R. From this, Lemma 3.3.5 gives that f is measurable. �

The above completes the proof of Lemma 3.1.4, as promised from Section 3.1. We now move
on to the proof of Lemma 3.2.1, starting with a proposition that links continuous functions to
open sets.

Proposition 3.3.6 A mapping f : R → R is continuous if and only if f−1(O) is open for every
open set O in R.

Proof: First suppose that f is continuous. Choose an open set O and let a ∈ f−1(O) so that
f(a) ∈ O. Then there exists ε > 0 so that (f(a) − ε, f(a) + ε) ⊆ O. By definition of continuity
of f , for such an ε there exists δ > 0 so that x ∈ (a − δ, a + δ) ⇒ f(x) ∈ (f(a) − ε, f(a) + ε).
But this tells us that (a− δ, a+ δ) ⊆ f−1((f(a)− ε, f(a) + ε)) ⊆ f−1(O). Since a is arbitrary we
conclude that f−1(O) is open.

Conversely, suppose that f−1(O) is open for every open set O in R. Choose a ∈ R and
let ε > 0. Then since (f(a) − ε, f(a) + ε) is open so is f−1((f(a) − ε, f(a) + ε)). Since a ∈
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f−1((f(a) − ε, f(a) + ε)) there exists δ > 0 so that (a − δ, a + δ) ⊆ f−1((f(a) − ε, f(a) + ε)).
From here you can see that whenever |x− a| < δ we must have |f(x)− f(a)| < ε. But then f is
continuous at a and the result follows. �

Proof of Lemma 3.2.1: Let f : R → R be continuous and O be an arbitrary open set in R. By
Proposition 3.3.6 f−1(O) is an open set in R. Hence, by Proposition 3.3.2 we have f−1(O) ∈ B(R)
for all open O ⊆ R. Lemma 3.3.5 gives that f is measurable. �
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3.4 Algebra of measurable functions (∆)

In this section we prove Theorem 3.1.5. That is, we will show that, sums, products, limits etc of
measurable functions are themselves measurable. The proof will be split across several lemmas.
Throughout this section, (S,Σ) is a measurable space.

Lemma 3.4.1 Let f, g be measurable functions from S → R. Then f∨g and f∧g are measurable.

Proof: Note that for all c ∈ R we have

(f ∨ g)−1((c,∞)) = f−1((c,∞)) ∪ g−1((c,∞))

(f ∧ g)−1((c,∞)) = f−1((c,∞)) ∩ g−1((c,∞)).

We have that f−1((c,∞)) and g−1((c,∞)) are in Σ, hence the right hand side is in Σ. By parts
2 and 4 of Lemma 3.1.4, f ∨ g and f ∧ g are measurable. �

We write {f > g} = {x ∈ S ; f(x) > g(x)}. We’ll use similar notation for multiple inequalities
of all types, and for constants. For example if a, b ∈ R then {a ≤ f < c} = {x ∈ S ; a ≤ f(x) < c}.

Lemma 3.4.2 Let f, g be measurable functions from S → R. Then:

1. {f > g} ∈ Σ.

2. f + g and fg are measurable.

Proof: We will use the results of Exercise 3.6 within this proof. For the first part, recall that
the rational number Q are countable, and let {rn, n ∈ N} be an enumeration of Q. Recall also
that there is a rational number between any two distinct real numbers. Hence,

{f > g} =
⋃
n∈N

{f > rn > g}

=
⋃
n∈N

{f > rn} ∩ {g < rn}

=
⋃
n∈N

f−1((rn,∞)) ∩ g−1((−∞, rn)) ∈ Σ.

The right hand side is in Σ, hence so is {f > g}.
For the second part, let us first consider f + g. From part (a) of Exercise 3.6, we have that

α− g is measurable for all α ∈ R. Hence

(f + g)−1((α,∞)) = {f + g > α} = {f > α− g},

is a measurable set by part 1 of the present lemma, so Lemma 3.4.2 gives that f+g is measurable.
It remains to consider fg. Note that

fg =
1

4
[(f + g)2 − (f − g)2] (3.3)

From part (c) of Exercise 3.6 we have that a composition of measurable functions is measurable.
In particular, if G(x) = x2 then G ◦ h = h2 is measurable whenever h is measurable. We have
already shown that sums of measurable functions are measurable. Part (b) of Exercise 3.6 tells
that αh is measurable whenever α ∈ R and h is measurable. Thus f + g is measurable, and
f − g = f +(−1)× g is measurable, hence so are both of these squared, hence so is the right hand
side of (3.3). This completes the proof. �
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Remark 3.4.3 (?) Equation (3.3) is known as the polarization identity and is often useful when
connecting multiplication and addition. A more general version of the same identity is used in
functional analysis to connect norms with inner products.

Lemma 3.4.4 For each n ∈ N let fn : S → R be a measurable function. Then, providing that all
of the following are real valued:

1. infn fn and supn fn are measurable.

2. lim infn fn and lim supn fn are measurable.

3. If (fn) converges pointwise to f as n→ ∞, then f is measurable.

Proof: For part 1, note that for all c ∈ R,(
inf
n∈N

fn

)−1

([c,∞))= {∀n, fn ≥ c} =
⋂
n∈N

{fn ≥ c}=
⋂
n∈N

f−1
n ([c,∞)),

(
sup
n∈N

fn

)−1

((c,∞))= {∃n, fn > c} =
⋃
n∈N

{fn > c}=
⋃
n∈N

f−1
n ((c,∞)).

In both cases the right hand is in Σ, hence so is the left hand side. By Lemma 3.1.4, both infn fn
and supn fn are measurable.

For part 2, recall from Section 2.2 that lim infn fn = supn infk≥n fk and lim supn fn = infn supk≥n fk.
By several applications of part 1, we have that lim infn fn and lim supn fn are measurable.

For part 3, if fn → f pointwise then by Lemma 2.2.2 we have f(x) = lim infn fn(x) for all
x ∈ S, so f is measurable by part 2. �
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3.5 Simple functions

In this section we are interested in the following class of functions.

Definition 3.5.1 Let (S,Σ) be a measurable space. We say that a function f : S → R is simple
if it has the form

f =

n∑
i=1

ci1Ai
(3.4)

where ci ∈ R and Ai ∈ Σ, with Ai ∩Aj = ∅ whenever i 6= j.

In words, a simple function is a (finite) linear combination of indicator functions of non-overlapping
measurable sets. It follows from Example 3.1.2 and Theorem 3.1.5 that every simple function is
measurable. Exercise 3.5 shows that sums and scalar multiples of simple functions are themselves
simple, so the set of all simple functions forms a vector space.

Our next theorem explains the purpose of simple functions. They are a natural class of
functions with which to approximate measurable functions. This will be a key ingredient of
Lebesgue integration. Loosely, we will (in Chapter 4) specify how to integrate simple functions,
and then use an approximation scheme to extend the same idea to measurable functions.

Our pointwise notation for functions, from Section 2.3, is also useful for inequalities involving
functions. For example, we say that f : S → R is non-negative if f ≥ 0, meaning that f(x) ≥ 0

for all x ∈ S. Similarly, we write f ≤ g to mean that f(x) ≤ g(x) for all x. It is easy to check
that a simple function of the form (3.4) is non-negative if and only if ci ≥ 0 for all i.

Theorem 3.5.2 Let f : S → R be measurable and non-negative. Then there exists a sequence
(sn) of non-negative simple functions on S with sn ≤ sn+1 ≤ f for all n ∈ N so that (sn) converges
pointwise to f as n→ ∞. Moreover, if f is bounded then the convergence is uniform.

Proof: We split this into three parts.
Step 1: Construction of (sn). Divide the interval [0, n) into n2n subintervals {Ij , 1 ≤ j ≤

n2n}, each of length 1
2n by taking Ij =

[
j−1
2n ,

j
2n

)
. Let Ej = f−1(Ij) and Fn = f−1([n,∞)). Then

S =
⋃n2n

j=1Ej ∪ Fn. We define for all x ∈ S

sn(x) =

n2n∑
j=1

(
j − 1

2n

)
1Ej

(x) + n1Fn
(x).

Step 2: Properties of (sn). For x ∈ Ej , sn(x) = j−1
2n and j−1

2n ≤ f(x) < j
2n and so

sn(x) ≤ f(x). For x ∈ Fn, sn(x) = n and f(x) ≥ n. So we conclude that sn ≤ f for all n ∈ N.
To show that sn ≤ sn+1, fix an arbitrary j and consider Ij =

[
j−1
2n ,

j
2n

)
. For convenience, we

write Ij as I and we observe that I = I1∪ I2 where I1 =
[
2j−2
2n+1 ,

2j−1
2n+1

)
and I2 =

[
2j−1
2n+1 ,

2j
2n+1

)
. Let

E = f−1(I), E1 = f−1(I1) and E2 = f−1(I2). Then sn(x) = j−1
2n for all x ∈ E, sn+1(x) =

j−1
2n for

all x ∈ E1, and sn+1(x) =
2j−1
2n+1 for all x ∈ E2. It follows that sn ≤ sn+1 for all x ∈ E. A similar

(easier) argument can be used on Fn.
Step 3: Convergence of (sn). Fix any x ∈ S. Since f(x) ∈ R there exists n0 ∈ N so that

f(x) ≤ n0. Then for each n > n0, f(x) ∈ Ij for some 1 ≤ j ≤ n2n, i.e. j−1
2n ≤ f(x) < j

2n . But
sn(x) = j−1

2n and so |f(x) − sn(x)| < 1
2n and pointwise convergence follows. Note that if f is
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bounded we can find n0 ∈ N so that f(x) ≤ n0 for all x ∈ R. Then the argument just given yields
|f(x)− sn(x)| < 1

2n for all x ∈ R which gives uniform convergence �
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3.6 Extended real functions

Let (S,Σ,m) be a measure space. An extended real function on S is a mapping f : S → R, which
might take the values ±∞. We introduced extensions of the Borel σ-field and Lebesgue measure
to R in Section 2.1.1. Using these extensions, all of theory that we have developed in this Chapter
can also be made to work for extended real functions. In that context, in Lemma 3.1.4 we would
use half-open intervals that contained ±∞ e.g. (a,∞] instead of (a,∞), but everything else works
essentially the same.

Remark 3.6.1 (?) To extend Section 3.4 to extended real functions we would need to use conti-
nuity and open sets involving ±∞. This happens naturally when treating R as a metric space (as
in Exercise 2.8), but this course does not assume knowledge of metric spaces and such arguments
are outside of what we can cover here.
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3.7 Exercises on Chapter 3

3.1 Show that the following functions are Borel measurable, as maps from R to itself.

(a) The constant function f(x) = α, where α ∈ R.

(b) g(x) =

{
0 for x < 0

ex for x ≥ 0.

(c) h(x) = sin(cos(x))
(d) i(x) = sin(x21[0,∞)(x))

3.2 Let (S,Σ) be a measurable space and let f : S → R. Show that f is measurable if and only
if f−1((a, b)) ∈ Σ for all −∞ ≤ a < b ≤ ∞.

3.3 Let (S,Σ) be a measurable space and let f : S → R be measurable. Show that |f | is
measurable.

3.4 Let f : R → R and let α ∈ R.

(a) Suppose that f is Borel measurable. Show that the mapping h : R → R is measurable,
where h(x) = f(x+ α).

(b) Suppose that f is differentiable. Explain why both f and its derivative f ′ are measurable
functions.

(c) Suppose that f is monotone increasing. Show that f is measurable.
Hint: Show that f−1((c,∞)) is an interval. Recall that I ⊆ R is an (open, closed or
half-open) interval of R if, whenever a, b ∈ I and a < c < b we have c ∈ I.

3.5 Let (S,Σ) be a measurable space. Show that the set V of simple functions f : S → R, with
pointwise addition and scalar multiplication, is a real vector space.

3.6 (∆) Let (S,Σ) be a measurable space and f : S → R be measurable. Let α ∈ R.
In this question you may not use the algebra of measurable functions (Theorem 3.1.5) or any
of the results in Section 3.4. We use the results (a)-(c) in the proof of Theorem 3.1.5.

(a) Show that g = f + α is measurable.
(b) Show that g = αf is measurable.
(c) Let G : R → R be Borel measurable. Show that G ◦ f : S → R is measurable, where

(G ◦ f)(x) = G(f(x)).

3.7 (∆) Recall the definition of an open set, from Definition 3.3.1.

(a) Let O1 and O2 be open subsets of R. Show that O1 ∪O2 and O1 ∩O2 are also open.
(b) For each n ∈ N let On be an open subset of R. Consider the following claims:

(i) A =
⋃

n∈NOn is open.
(ii) B =

⋂
n∈NOn is open.

Which of these claims are true? Give a proof or a counterexample in each case.
(c) A set C ⊆ R is said to be closed if R \C is open. Which of your results from parts (a)

and (b) hold for closed sets?
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Challenge questions

3.8 A function f : R → R is said to be upper-semicontinuous at x ∈ R, if given any ε > 0 there
exists δ > 0 so that f(y) < f(x) + ε whenever |x− y| < δ.

(a) Show that f = 1[a,∞) (where a ∈ R) is upper-semicontinuous for all x ∈ R,

(b) Deduce that the floor function f(x) = bxc, which is equal to the greatest integer less
than or equal to x, is upper-semicontinuous at all x ∈ R.

(c) Show that if f is upper-semicontinuous for all x ∈ R then f is measurable.
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Chapter 4

Lebesgue Integration

The concept of integration as a technique that both acts as an inverse to the operation of differ-
entiation and also computes areas under curves goes back to the origin of the calculus and the
work of Isaac Newton (1643-1727) and Gottfried Leibniz (1646-1716). It was Leibniz who intro-
duced the

∫
· · · dx notation. The first rigorous attempt to understand integration as a limiting

operation within the spirit of analysis was due to Bernhard Riemann (1826-1866). The approach
to Riemann integration that is often taught (as in MAS2004/2009) was developed soon after by
Jean-Gaston Darboux (1842-1917). At the time it was developed, this theory seemed to be all
that was needed, but as the 19th century drew to a close, some problems appeared:

• One of the main tasks of integration is to recover a function f from its derivative f ′. But
some functions were discovered for which f ′ existed and was bounded, but where f ′ was not
Riemann integrable.

• Suppose (fn) is a sequence of functions converging pointwise to f . People wanted a useful
set of conditions under which ∫

f(x) dx = lim
n→∞

∫
fn(x) dx. (4.1)

but weren’t able to find any suitable conditions. Problem 4.18 illustrates some of the
difficulties here; it gives an example of fn, f such that fn(x) → f(x) for all x, but in which
(4.1) fails.

• Riemann integration was limited to computing integrals over Rn with respect to Lebesgue
measure. Although it was not yet apparent, the emerging theory of probability would re-
quire the calculation of expectations of random variables X using the formula E(X) =∫
ΩX(ω)dP(ω). This requires a version of integration that works on a general measure space.

A new approach to integration was needed. In this chapter, we’ll study Lebesgue integration,
which allow us to investigate

∫
S f(x) dm(x) where f : S → R is a ‘suitable’ measurable function

defined on a general measure space (S,Σ,m). It was developed by Henri Lebesgue (pronounced
‘Leb-eyg’) and first published in 1902.

We will see that if we take m to be Lebesgue measure on (R,B(R)) then we recover the
familiar integral

∫
R f(x) dx but we will now be able to integrate a much bigger class of functions

than Riemann and Darboux could. Most importantly, the Lebesgue integral solves all three of
the issues discussed above.
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4.1 The Lebesgue integral for simple functions

We’ll present the construction of the Lebesgue integral in three steps. We’ll work over a general
measure space (S,Σ,m) for most of Chapter 4, and we’ll integrate functions f : S → R. The
first step will involve simple functions. In the second step we extend to non-negative measurable
functions, and the final step we extend to what are known as ‘Lebesgue integrable’ functions.

Definition 4.1.1 (Lebesgue Integral, Step 1) If A ∈ Σ then the integral of the indicator
function 1A is defined as ∫

S
1A dm = m(A). (4.2)

More generally, if f =
∑n

i=1 ci1Ai
is a non-negative simple function (i.e. all ci ≥ 0) then we define∫

S
f dm =

n∑
i=1

cim(Ai). (4.3)

Note that m(Ai) might be infinite, so
∫
S fdm ∈ [0,∞].

Note that we can represent f in more than one way as a simple function. For example if
f = 1[0,1] then also f = 1[0, 1

2
) + 1[ 1

2
,1]. It is easy to guess that the value of (4.3) does not depend

on the choice of representation. We’ll omit a formal proof of this fact. Note also that equations
(4.2) and (4.3) are consistent with each other, in the sense that if we take n = 1 and c1 = 1 in
(4.3) then we obtain (4.2). We restrict to non-negative simple functions to make sure ‘∞ − ∞’
does not occur in (4.3).

When we work with the theory of integration we will tend to write
∫
S f dm for the Lebesgue

integral of f . We will sometimes use the shorthand notation

I(f) =
∫
S
f dm,

to make our proofs easier to read. For calculations it is often more helpful to write
∫
S f(x) dm(x),

which is closer to the notation you’ve used before in the case S = R. We’ll come back to this
point after we’ve reached Step 2 of the construction.

In each step of defining the Lebesgue integral, we’ll establish some useful properties of the
integral. Because we expand the amount of functions we can integrate at each step, this will
mean that we carry several properties with us as we go, and we do some work in each step to
upgrade them. We begin this process with the next lemma.

Lemma 4.1.2 If f and g are non-negative simple functions then:

1. Linearity: for all α, β ∈ R∫
S
(αf + βg) dm = α

∫
S
f dm+ β

∫
S
g dm,

2. Monotonicity:
f ≤ g ⇒

∫
S
f dm ≤

∫
S
g dm.
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Proof: Let us write f =
∑n

i=1 ci1Ai
. Note that we can assume without loss of generality

that
⋃n

i=1Ai = S by including an extra term with cn+1 = 0 and An+1 = S \ (
⋃n

i=1Ai) into the
summation. Similarly, write g =

∑m
j=1 dj1Bj

where
⋃n

i=1Bi = S. By the definition of simple
functions we have Ai ∩Aj = ∅ and Bi ∩Bj = ∅ for all i 6= j.

We have

f =

n∑
i=1

ci1Ai∩S =

n∑
i=1

ci1Ai∩
⋃m

j=1 Bj
=

n∑
i=1

ci1⋃m
j=1(Ai∩Bj) =

n∑
i=1

ci

m∑
j=1

1Ai∩Bj

=

n∑
i=1

m∑
j=1

ci1Ai∩Bj
. (4.4)

Here, we use that
⋃m

j=1Bj = S and part (a)(i) of Exercise 2.5 (note that Ai ∩Bj1 and Ai ∩Bj2

are disjoint whenever j1 6= j2). We can obtain a similar expression for g, giving

g =

n∑
i=1

m∑
j=1

dj1Ai∩Bj
. (4.5)

It follows that

αf + βg =

n∑
i=1

m∑
j=1

(αci + βdj)1Ai∩Bj
. (4.6)

Using (4.3), and the representations of f, g and αf + βg as simple functions in (4.4)-(4.6),

I(αf + βg) =

n∑
i=1

m∑
j=1

(αci + βdj)m(Ai ∩Bj), (4.7)

I(f) =
n∑

i=1

m∑
j=1

cim(Ai ∩Bj),

I(g) =
n∑

i=1

m∑
j=1

dj m(Ai ∩Bj).

From these formulae we have I(αf + βg) = αI(f) + βI(g), which proves linearity.
For monotonicity, we now assume that f ≤ g. Hence g − f is non-negative. Putting α = −1

and β = 1 into (4.6), we have that g − f is a non-negative simple function, and that ci ≤ dj
whenever Ai ∩Bj 6= ∅. Hence, from (4.7), we have I(g − f) ≥ 0. Linearity gives that

I(f) = I(g) + I(g − f)

and thus I(f) ≤ I(g), as required. �
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4.1.1 Integration over subsets

Integrals over the real numbers are commonly written in the form
∫ b
a , which denotes integration

over the interval [a, b] ⊆ R. We now introduce some notation for this, in the general case.

Definition 4.1.3 If A ∈ Σ, whenever
∫
S fdm is defined for some f : S → R we define

IA(f) =
∫
A
f dm =

∫
S
1Af dm.

We call IA(f) the integral of f over the set A. In general there is no guarantee that IA(f) is
defined for some function f . We need f to be one of the types of functions that we work with in
the steps used to define the integral.

The following lemma is another property of the Lebesgue integral that we will carry with us
as we build up the definition.

Lemma 4.1.4 Let f : S → R be a simple function. Then ν : Σ → R by

ν(X) =

∫
X
f dm

is a measure.

Proof: Let us write f =
∑n

i=1 ci1Ai
. Note that 1Xf =

∑n
i=1 ci1Ai

1X =
∑n

i=1 ci1Ai∩X , where
we have used the identity 1A1B = 1A∩B from Exercise 2.5. By Definition 4.1.3 and (4.3) we have∫

X
f dm =

n∑
i=1

cim(Ai ∩X). (4.8)

By part (b) of Exercise 1.5 we have that X 7→ m(Ai ∩X) defines a measure, for all i. Using part
(a) of the same exercise, X 7→ cim(Ai ∩ X) also defines a measure. In Exercise 2.4 we showed
that a finite sum of measures was also a measure, hence in fact the right hand side of (4.8) defines
a measure. This completes the proof. �
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4.2 The Lebesgue integral for non-negative measurable func-
tions

We continue to work over a general measure space (S,Σ,m). When f : S → R is measurable and
non-negative, it is tempting to try and take advantage of Theorem 3.5.2 by defining “

∫
S fdm =

limn→∞
∫
S sndm”, where (sn) is increasing sequence of simple functions, converging pointwise to

f . There is a problem with this idea: many different choices of simple functions could be used
for sn, which risks making the limiting integral depend on that choice. We’d need to show that
didn’t happen – which it doesn’t, but proving that turns out to be very difficult. Lebesgue’s key
idea was to work around the problem, using the weaker notion of the supremum to ‘approximate
f from below’ as follows.

We say that function f : S → R is non-negative if f ≥ 0. Equivalently, if f : S → [0,∞). In
this section we focus on non-negative measurable functions.

Definition 4.2.1 (Lebesgue Integral, Step 2) Let f : S → [0,∞) be measurable. The inte-
gral of f is defined as∫

S
f dm = sup

{∫
S
s dm ; s is a simple function and 0 ≤ s ≤ f

}
. (4.9)

With this definition
∫
S f dm ∈ [0,∞].

We would like to upgrade the monotonicity and linearity properties from Lemma 4.1.2. The
use of the sup makes it easy to prove some properties but hard to prove others, so we’ll only make
partial progress for now. In particular, we’ll have to postpone the upgrade of linearity until the
next section.

Lemma 4.2.2 Let f, g : S → [0,∞) be measurable functions.

1. If f ≤ g then
∫
S fdm ≤

∫
S gdm.

2. If A,B ∈ Σ with A ⊆ B then
∫
A f dm ≤

∫
B f dm.

Proof: For part 1, if f ≤ g then any simple function s with s ≤ f also satisfies s ≤ g. Hence∫
S
f dm = sup

{∫
S
s dm ; s is simple, 0 ≤ s ≤ f

}
≤ sup

{∫
S
s dm ; s is simple, 0 ≤ s ≤ g

}
=

∫
S
g dm.

Part 2 follows by noting that 1A ≤ 1B, hence 1Af ≤ 1Bf and applying part 1. �

Lemma 4.2.3 (Markov’s Inequality) Let f : S → [0,∞) be measurable and let c > 0. Then

m
(
{x ∈ S; f(x) ≥ c}

)
≤ 1

c

∫
S
f dm
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Proof: Let E = {x ∈ S; f(x) ≥ c}. Note that E = f−1([c,∞)) ∈ Σ as f is measurable. By
part 1 of Lemma 4.2.2 and the linearity property (for integrals of simple functions) from Lemma
4.1.2, ∫

S
f dm ≥

∫
S
1Ef dm ≥

∫
S
c1E dm = c

∫
S
1E dm = cm(E),

and the result follows. �

You have already seen Markov’s inequality in the context of probability theory, that is P[X ≥
c] ≤ 1

cE[X] for c > 0 and a random variable X ≥ 0. In Exercise 5.1 we will see how the
probabilistic version can be deduced from Lemma 4.2.3. For now, it is a useful tool within our
development of integration, because it allows us to control how often some function f takes large
values.

4.2.1 Almost everywhere equality

In Section 2.3 we introduce the concept of convergence almost everywhere. The idea behind a.e.→
was that we can allow pointwise convergence to fail on a null set, and from the point of measure
theory that will tend not to matter. We will see this in practice within the next section, but first
let us note that we can also apply ‘almost everywhere’ to the concept of equality, as follows.

Definition 4.2.4 Let f, g : S → R be measurable. We say that f = g almost everywhere if
f(x) = g(x) for almost all x ∈ S.

We will often abbreviate f = g almost everywhere to f a.e.
= g. In symbols, f a.e.

= g means that
m({x ∈ S; f(x) 6= g(x)} = 0. In Problem 4.11 you can show that a.e.

= is an equivalence relation
on the set of measurable functions from S to R. You should think of f a.e.

= g as saying ‘as far as
measure theory is concerned, f and g might as well be equal’.

Lemma 4.2.5 Let f : S → [0,∞) be measurable. If
∫
S f dm = 0 then f

a.e.
= 0.

Proof: Suppose that
∫
S f dm = 0. Let A = {x ∈ S; f(x) 6= 0} and for each n ∈ N, An =

{x ∈ S; f(x) ≥ 1/n}. Note that A =
⋃∞

n=1An. By Lemma 1.7.2 we have we have m(A) ≤∑∞
n=1m(An), hence it is sufficient to show that m(An) = 0 for all n ∈ N. By Lemma 4.2.3 we

have m(An) ≤ n
∫
S fdm = 0, which completes the proof. �

Lemma 4.2.6 Let f, g : S → [0,∞) be measurable. If f a.e.
= g then

∫
S f dm =

∫
S g dm.

Proof: Let us write E = {x ∈ S ; f(x) 6= g(x)} and note that m(E) = 0. Let s =
∑n

i=1 ci1Ai

be a simple function such that 0 ≤ s ≤ f . We claim that s∗ =
∑n

i=1 ci1Ai\E is a simple function:
this follows because we have Ai, E ∈ Σ so Ai\E ∈ Σ, and disjointness of the Ai implies disjointness
of the Ai \ E. By definition of E we have

s∗(x) =

{
0 if x ∈ E

f(x) if x ∈ S \ E
=

{
0 if x ∈ E

g(x) if x ∈ S \ E
≤ g(x).

Hence s∗ is a simple function such that 0 ≤ s∗ ≤ g. Using that m(E) = 0, from (4.3) we can
deduce that

∫
S s dm =

∫
S s

′ dm, which by (4.9) implies that
∫
S f dm ≤

∫
S g dm.

We can apply the same argument with the roles of f and g swapped to deduce that
∫
S g dm ≤∫

S f dm, hence in fact they are equal. �
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We can apply the same idea to inequalities too. For example, we say that f ≤ g almost
everywhere if m({x ∈ § − f(x) ≤ g(x)}) = 0.
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4.3 The monotone convergence theorem

It is helpful to work with non-negative measurable functions for a bit longer, before we take the
final step of defining the Lebesgue integral. We continue to work over a general measure space
(S,Σ,m).

In this section we will see interaction between integrals and limits for the first time. In
particular we establish a set of conditions under which, for the Lebesgue integral, we can deduce
that

∫
S fn dm →

∫
S f dm. This marks a key step in our development of the Lebesgue integral.

It is the first point at which we see Lebesgue integration do something that Riemann integration
cannot.

We say that a sequence (fn) of functions is monotone increasing if fn ≤ fn+1 for all n ∈ N.
Note that in this case by Lemma 2.1.1 the pointwise limit f = limn→∞ fn automatically exists,
is non-negative and measurable, and may take values in [0,∞]. Similarly, we say that (fn) is
monotone decreasing if fn ≥ fn+1 for all n.

Theorem 4.3.1 (Monotone Convergence Theorem) Let fn, f be measurable functions from
S to [0,∞). Suppose that:

1. for all n ∈ N we have fn ≤ fn+1,

2. fn → f almost everywhere.

Then ∫
S
fn dm→

∫
S
f dm (4.10)

as n→ ∞.

Proof: Since (fn) is increasing, f∗(x) = limn→∞ f(x) exists for all x ∈ R. By Lemma 3.1.5 we
have that f∗ is measurable. We have f a.e.

= f∗ by our second assumption, which by Lemma 4.2.6
means that

∫
s f dm =

∫
S f

∗ dm. Hence we may assume, without loss of generality by using f∗ in
place of f , that fn → f pointwise.

We now aim to prove (4.10). Since (fn) is increasing and pointwise convergent to f , we have
f = supn fn. We have f1 ≤ f2 ≤ . . . ≤ f , so by monotonicity from Lemma 4.2.2 we have∫

S
f1 dm ≤

∫
S
f2 dm ≤ · · · ≤

∫
S
f dm.

Hence n 7→
∫
S fn dm defines an increasing sequence that, by Lemma 2.1.1, has a limit in [0,∞]

and
lim
n→∞

∫
S
fn dm ≤

∫
S
f dm. (4.11)

In order to establish (4.10) we must also prove the reverse inequality. To simplify notation,
let us write a = limn

∫
S fndm. So, we need to show that a ≥

∫
S fdm. Let s be a simple function

with 0 ≤ s ≤ f and choose c ∈ R with 0 < c < 1. Our plan is to show that a ≥ c
∫
S s dm and

then take a sup over c and s.
For each n ∈ N, let

En = {x ∈ S; fn(x) ≥ cs(x)}.
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Note that En ∈ Σ because by Theorem 3.1.5 the function fn − cs is measurable, and En =

(fn − cs)−1([0,∞)). We claim that

En ⊆ En+1 for all n ∈ N and
∞⋃
n=1

En = S. (4.12)

The first claim in (4.12) follows because (fn) is increasing. To prove the second claim in (4.12),
note first that if x ∈ S with s(x) = 0 then x ∈ En for all n ∈ N. If x ∈ S with s(x) 6= 0 then
f(x) ≥ s(x) > cs(x), and since fn(x) is monotone increasing to f(x) we must therefore have
N ∈ N such that fn(x) ≥ cs(x) for all n ≥ N . For such n we have x ∈ En.

By parts 1 and 2 of Lemma 4.2.2 we have

a ≥
∫
S
fn dm ≥

∫
En

fn dm ≥
∫
En

cs dm. (4.13)

The function s is simple, and it is easily checked that this means cs is also simple. Hence by Lemma
4.1.4 ν(X) =

∫
X cs dm defines a measure. By (4.12) and Lemma 1.7.1 we have ν(En) → ν(S),

that is
∫
En
cs dm→

∫
S cs dm as n→ ∞. Letting n→ ∞ in (4.13) thus gives

a ≥
∫
S
cs dm.

Lemma 4.1.2 gives
∫
S cs dm = c

∫
S s dm, hence

a ≥ c

∫
S
s dm.

This holds for any c ∈ (0, 1) and any simple function s with 0 ≤ s ≤ f . Letting c ↑ 1, and using
that limits preserve weak inequalites, gives

a ≥
∫
S
s dm.

Taking a supremum over all simple functions s with 0 ≤ s ≤ f and using Definition 4.2.1 gives
that

a ≥
∫
S
f dm.

This provides the reverse inequality to (4.11) and completes the proof. �

We will look at examples of calculating integrals, using tools like the monotone convergence
theorem, in Section 4.7. For now we press onwards with developing the Lebesgue integral, and
upgrade the linearity property to cover non-negative measurable functions. Theorem 3.5.2 (which
have not used until now!) turns out to be crucial here.

Lemma 4.3.2 Let f, g : S → [0,∞) be measurable. Then for all α, β ∈ [0,∞) we have∫
S
αf + βg dm = α

∫
S
f dm+ β

∫
S
g dm.

Proof: By Theorem 3.5.2 we can find an increasing sequence of simple functions (sn) that
converges pointwise to f and an increasing sequence of simple functions (tn) that converges
pointwise to g. Exercise 3.5 gives that αsn + βtn is a simple function, and it is clear that
αsn + βtn is an increasing sequence of functions that converges pointwise to αf + βg.

By Lemma 4.1.2 part 2 we have
∫
S αsn+βtn dm = α

∫
S sn dm+β

∫
S tn dm. Letting n→ ∞ and

using Theorem 4.3.1 to take the limit of all of the integral terms, we obtain that
∫
S αf +βg dm =

α
∫
S f dm+ β

∫
S g dm as required. �
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4.4 Integration as a measure

In Lemma 4.1.4 we saw that integrals of simple functions gave us a way of constructing measures.
We’ll now carry that property over to integrals of non-negative functions. In this case the upgrade
to non-negative measurable functions provides the final version of the property. Other properties,
such as monotonicity and linearity, will receive one more upgrade in Section 4.5. We continue to
work over a general measure space (S,Σ,m).

Theorem 4.4.1 Let f : S → [0,∞) be measurable. Then ν : Σ → [0,∞] by

ν(A) =

∫
A
f dm

is a measure.

Proof: We check the two properties in Definition 3.1.1. We have ν(∅) =
∫
∅ f dm =

∫
S 1∅f dm.

Since 1∅ = 0 this gives ν(∅) =
∫
S 0 dm. The zero function is a simple function 0 = 01S , and (4.3)

gives that it has integral zero. Thus ν(∅) = 0.
We need to show that ν is countably additive. Let (En)n∈N be pairwise disjoint subsets of

S and let E =
⋃∞

n=1En. Set Fn =
⋃n

i=1Ei. Then Fn ⊆ Fn+1 and hence 1Fn
≤ 1Fn+1

, so
1Fn

f ≤ 1Fn+1
f . Also,

⋃∞
n=1 Fn =

⋃∞
n=1En, so 1Fn

→ 1E pointwise. Hence 1Fn
f → 1Ef

pointwise so by Theorem 4.3.1 we have∫
S
1Fn

f dm→
∫
S
1Ef dm. (4.14)

The right hand side of the above is equal to
∫
E f dm = ν(E). By Lemma 4.3.2 the left hand side

is equal to ∫
S

n∑
i=1

1Ei
f dm =

n∑
i=1

∫
S
1Ei

f dm =

n∑
i=1

∫
Ei

f dm =

n∑
i=1

ν(Ei).

Putting these into (4.14) gives that limn
∑n

i=1 ν(Ei) = ν(
⋃∞

i=1Ei), as required. �

Example 4.4.2 The Gaussian measure on R is obtained by taking f = φ where φ : R → R is
given by φ(x) = 1√

2π
e−x2/2 and taking m as Lebesgue measure. We note an explicit connection

with probability theory:
IA(φ) =

∫
A

1

2π
e−x2/2 dλ(x)

which you should recognize as equal to P[Z ∈ A] where Z ∼ N(0, 1). Thus A 7→
∫
A φdλ is the

law of a standard normal random variable. Normal random variables are often known as Gaussian
random variables.
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4.5 The Lebesgue integral

At last we are ready for the final step in the construction of the Lebesgue integral, which extends
our current framework to a class of measurable functions that are real-valued, instead of just non-
negative. This step requires a little preparation. We continue to work over an arbitrary measure
space (S,Σ,m).

For a function f : S → R we define

f+ = max(f, 0), f− = max(−f, 0),

which are pointwise definitions of functions f+, f− : S → R. It is easiest to see what is going on
here with a picture:

Note that
f = f+ − f−,

and that by Theorem 3.1.5 both f+ and f− are non-negative measurable functions from S to R.
Step 2 (Definition 4.2.1) tells us the values of

∫
S f+ dm and

∫
S f− dm, which are extended real

numbers in [0,∞]. Note also that |f | = f+ + f−, and that
∫
S |f | dm is also covered by Step 2.

Definition 4.5.1 (Lebesgue Integral, Step 3) Let f : S → R be measurable. If at least one
of
∫
S f+ dm and

∫
S f− dm is not equal to +∞, then we define∫

S
f dm =

∫
S
f+ dm−

∫
S
f− dm, (4.15)

which is an extended real number.
If both

∫
S f+ dm and

∫
S f− dm are equal to +∞ then

∫
S f dm is undefined. Note that in this

case (4.15) would give ∞−∞, which is undefined.

It is important that we have a way to avoid handling infinities. This is provided by the following
definition:

L1 =

{
f : S → R ; f is measurable and

∫
S
|f | dm <∞

}
. (4.16)

60



©Nic Freeman, University of Sheffield, 2025.

It is common to refer to f ∈ L1 as Lebesgue integrable functions. We will not call them that
within this course, because of potential confusion with Definition 4.5.1. We will mostly work with
functions in L1 from now on. We might write L1(S) or even L1(S,Σ,m) if we need to be specific
about which measure space we mean to use as the domain. The following lemma explains the
connection between (4.15) and (4.16).

Lemma 4.5.2 Let f : S → R be measurable. Then f ∈ L1 if and only if both
∫
S f+ dm and∫

S f− dm are finite.

Proof: We have 0 ≤ f+ ≤ |f | and 0 ≤ f− ≤ |f |, hence if
∫
S |f | dm < ∞ then Lemma

4.2.2 gives that both
∫
S f+ dm and

∫
S f − dm are finite. The reverse implication follows because

|f | = f+ + f−, which are all non-negative measurable functions, hence by Lemma 4.3.2 we have∫
S |f | dm =

∫
S f+ dm+

∫
S f− dm <∞. �

We will begin to look at examples where we evaluate integrals in Section 4.7. First, let us
complete the process of establishing the key properties of the Lebesgue integral.

Theorem 4.5.3 Suppose that f, g ∈ L1(S,Σ,m) and A,B ∈ Σ.

1. Domain additivity: If A ∩B = ∅ then∫
A
f dm+

∫
B
f dm =

∫
A∪B

f dm.

2. Linearity: For all α, β ∈ R we have αf + βg ∈ L1 and∫
A
αf + βg dm = α

∫
A
f dm+ β

∫
A
g dm.

3. Montonicity: If f ≤ g then ∫
A
f dm ≤

∫
A
g dm.

4. Absolute values: ∣∣∣∣∫
A
f dm

∣∣∣∣ ≤ ∫
A
|f | dm.

5. Almost everywhere equality: If f a.e.
= g then

∫
A f dm =

∫
A g dm.

Proof: For non-negative measurable functions part 1 is contained within Theorem 4.4.1. Thus∫
A f± dm+

∫
B f± dm =

∫
A∪B f± dm. Subtracting the f− case from the f+ case gives∫

A
f+ dm−

∫
A
f− dm+

∫
B
f+ dm−

∫
B
f− dm =

∫
A∪B

f+ dm−
∫
A∪B

f− dm

which by (4.15) is exactly what we need to prove part 1.
For parts 2-5, it suffices to prove the case S = A. Note that in view of Definition 4.1.3 we can

recover the general case by replacing f and g by 1Af and 1Ag. Part 5 follows immediately from
Lemma 4.2.6 and (4.15). Several of the remaining parts are left for you as excerises. Part 3 is
Exercise 4.4 part (c). Part 4 is Exercise 4.4 part (a). For part 2, Exercise 4.4 part (d) shows
that

α

∫
S
f dm =

∫
S
αf dm (4.17)
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for all f ∈ L1. In order to prove part 2 it remains only to show that∫
S
f + g dm =

∫
S
f dm+

∫
S
g dm. (4.18)

We will prove (4.18) here. Note that we may assume that both f, g are not identically 0, because∫
S 0 dm = 0. The fact that f + g is in L1 if f and g are follows from Exercise 4.4 part (b).

To show (4.18) we first need to consider six different special cases. Writing h = f + g, these
cases are (1) f ≥ 0, g ≥ 0, h ≥ 0, (2) f ≤ 0, g ≤ 0, h ≤ 0, (3) f ≥ 0, g ≤ 0, h ≥ 0, (4)
f ≤ 0, g ≥ 0, h ≥ 0, (5) f ≥ 0, g ≤ 0, h ≤ 0, (6) f ≤ 0, g ≥ 0, h ≤ 0. Note that case (1) is
precisely Lemma 4.3.2. We’ll just prove case (3) here, and note that the others are similar. To
show case (3) we write f = h+ (−g) and, noting that all these are non-negative functions, from
Lemma 4.3.2 we obtain

∫
S f dm =

∫
S(f + g) dm +

∫
S(−g) dm, and hence from (4.17) we have∫

S(f + g) dm =
∫
S f dm−

∫
S(−g) dm =

∫
S f dm+

∫
S g dm, which proves case (3).

For a general f ∈ L1, we write S = S1 ∪S2 ∪S3 ∪S4 ∪S5 ∪S6, where Sl is the set of all x ∈ S

for which case (l) holds for l = 1, 2, . . . , 6. These sets are disjoint and measurable. We then have∫
S
(f + g) dm =

6∑
i=1

∫
Si

(f + g) dm =

6∑
i=1

∫
Si

f dm+

6∑
i=1

∫
Si

g dm =

∫
S
f dm+

∫
S
g dm.

In the above, the first and last equalities use part 1 of the present lemma, and the middle equality
uses cases (1)-(6) above. This completes the proof of part 2. �
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4.6 The dominated convergence theorem

We continue to work over a general measure space (S,Σ,m). Let f, g : S → R be measurable.
We say that g dominates f if |f | ≤ |g| almost everywhere. This concept is naturally connected to
L1 via the following lemma.

Lemma 4.6.1 Let g ∈ L1 and suppose that f : S → R is measurable with |f | ≤ |g| almost
everywhere. Then f ∈ L1.

Proof: By part 1 of Lemma 4.2.2 we have
∫
S |f | dm ≤

∫
S |g| dm, which completes the proof.

(Exercise: Why don’t we use Theorem 4.5.3 here?) �

We now present the second of our convergence theorems, the famous Lebesgue dominated
convergence theorem - an extremely powerful tool in both the theory and applications of modern
analysis.

Theorem 4.6.2 (Dominated Convergence Theorem) Let fn, f be functions from S to R.
Suppose that fn is measurable and:

1. There is a function g ∈ L1 such that |fn| ≤ |g| almost everywhere.

2. fn → f almost everywhere.

Then f ∈ L1 and ∫
S
fndm→

∫
S
fdm

as n→ ∞.

The monotone convergence theorem is the basis of the interaction of Lebesgue integrals with
limits, but it has the disadvantage that it only applies to monotone sequences of functions. The
dominated convergence theorem does not require monotonicity but does require that all functions
involved are dominated by some g ∈ L1. For this reason g is often known as a dominating function
for the (fn). The monotone and dominated convergence theorems are often known for short as the
MCT and DCT. The proof of the DCT appears in Section 4.6.1. This completes our development
of the Lebesgue integral.

We’re now in a position to use Lebesgue integration for doing calculations with integrals. We’ll
do so in Section 4.7, which will include examples of both the MCT and DCT.
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4.6.1 Proof of the DCT (?)

The proof of the DCT is off-syllabus, although we might cover it in lectures if we have time. We’ll
begin with a famous lemma before we give the main proof. It is called Fatou’s lemma after the
French mathematician and astronomer Pierre Fatou (1878-1929). It tells us how lim inf and

∫
interact. Understanding this is they key step for moving from monotone seqences of functions;
non-monotone sequences of functions might not have pointwise limits but they do always have
pointwise lim infs.

Lemma 4.6.3 (Fatou’s Lemma) If (fn) is a sequence of non-negative measurable functions
from S to R then

lim inf
n→∞

∫
S
fn dm ≥

∫
S

lim inf
n→∞

fn dm

Proof: Define gn = infk≥n fk. Then (gn) is an increasing sequence which converges to
lim infn→∞ fn. Now as fl ≥ infk≥n fk for all l ≥ n, Lemma 4.2.2(1)) we have that for all l ≥ n∫

S
fl dm ≥

∫
S

inf
k≥n

fk dm,

and so
inf
l≥n

∫
S
fl dm ≥

∫
S

inf
k≥n

fk dm.

Take limits on both sides of this last inequality and then apply the monotone convergence theorem
(on the right hand side) to obtain

lim inf
n→∞

∫
S
fn dm ≥ lim

n→∞

∫
S

inf
k≥n

fk dm

=

∫
S

lim
n→∞

inf
k≥n

fk dm

=

∫
S

lim inf
n→∞

fn dm

as required. �

Note that we do not require (fn) to be a bounded sequence, so lim infn→∞ fn should be
interpreted as an extended measurable function, as discussed at the end of Chapter 2. The
corresponding result for lim sup, in which case the inequality is reversed, is known as the reverse
Fatou lemma and can be found as Exercise 4.12.
Proof of Theorem 4.6.2: Note that we didn’t assume explicitly that fn ∈ L1, because this
fact follows immediately from the first assumption and Lemma 4.6.1. For the same reason as in the
proof of Theorem 4.3.1, we may assume without loss of generality that fn → f pointwise and that
|fn| ≤ |g| pointwise. Thus f is measurable by Theorem 3.1.5. We may further assume without
loss of generality that |fn| ≤ g, by using |g| in place of g and noting that g ∈ L1 ⇔ |g| ∈ L1.

Since fn → f pointwise, |fn| → |f | pointwise. By Fatou’s lemma (Lemma 4.6.3) and mono-
tonicity from Theorem 4.5.3, we have∫

S
|f | dm =

∫
S

lim inf
n→∞

|fn| dm

≤ lim inf
n→∞

∫
S
|fn| dm
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≤
∫
S
g dm <∞,

so f ∈ L1.
For all n ∈ N, since |fn| ≤ g we have g + fn ≥ 0, so by Fatou’s lemma∫

S
lim inf
n→∞

(g + fn) dm ≤ lim inf
n→∞

∫
S
(g + fn) dm. (4.19)

As pointwise limits we have lim infn(g + fn) = g + limn fn = g + f so by linearity from Theorem
4.5.3 we have∫

S
lim inf
n→∞

(g + fn) dm =

∫
S
g + lim inf

n→∞
fn dm =

∫
S
g dm+

∫
S

lim inf
n→∞

fn dm,

lim inf
n→∞

∫
S
(g + fn) dm =

∫
S
g dm+ lim inf

n→∞

∫
S
fn dm

Putting these two equations in (4.19) gives that∫
S
fdm ≤ lim inf

n→∞

∫
S
fndm. (4.20)

Next, we repeat the argument with g+fn replaced by g−fn. Note that |fn| ≤ g gives that g−fn
is also non-negative for all n ∈ N. The result of doing so is

−
∫
S
fdm ≤ lim inf

n→∞

(
−
∫
S
fndm

)
which from Lemma 2.2.3 rearranges to∫

S
fdm ≥ lim sup

n→∞

∫
S
fndm (4.21)

Combining (4.20) and (4.21) we see that

lim sup
n→∞

∫
S
fndm ≤

∫
S
fdm ≤ lim inf

n→∞

∫
S
fndm. (4.22)

Recall that lim infn an ≤ lim supn an for any sequence, so in fact all three terms in (4.22) are
equal. It now follows from Lemma 2.2.2 that

∫
S fdm = limn

∫
S fndm. �
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4.7 Calculations with the Lebesgue integral

From now on, we’ll often write
∫
S f(x) dm(x) in place of

∫
S f dm. This notation has the advantage

that we can write an expression like
∫
S e

−x2

dλ(x) without having to specify the function f(x) =
e−x2 in advance. We follow common convention and write

∫
. . . dx for integration with respect

to Lebesgue measure, which we would formally write as
∫
. . . dλ(x). We’ll allow ourselves to do

this in cases where its clear from the context that we mean to integrate with respect to Lebesgue
measure.

Remark 4.7.1 (?) In some countries (e.g. France) it is common to write
∫
S dmf instead of∫

S f dm. We won’t use that notation within this course. The notation
∫
S f(x)m(dx) in place of∫

S f(x) dm(x) is also widely used.

We will show in Theorem 4.10.3 that, if f : [a, b] → R is Riemann integrable, over a closed
bounded interval [a, b] ⊆ R, then f is also Lebesgue integrable (i.e f ∈ L1), and in this case
the value of the two integrals is equal. Consequently, you may use all the facts you already
know about Riemann integration on R to evaluate integrals of the form

∫
[a,b] f(x) dx, which we

would normally write as
∫ b
a f(x) dx. This includes integration by substitution, by parts, the

Fundamental Theorem of Calculus, and so on. A word of warning is necessary: such results only
apply on bounded intervals [a, b] and in general are not true on unbounded intervals.

The Lebesgue integral also gives us the MCT and DCT, for when we need limits and integrals
to interact. In this section we look at a few examples of using the major results of Chapter 4
to integrate particular functions. We’ll begin with the testing for L1 and using the monotone
convergence theorem, before moving on to the dominated convergence theorem.

Example 4.7.2 We aim show that f(x) = x−α is in L1 on [1,∞) for α > 1.
For each n ∈ N define fn(x) = x−α

1[1,n](x). Then (fn(x)) increases to f(x) as n → ∞. We
have ∫ ∞

1
fn(x)dx =

∫ n

1
x−αdx =

1

α− 1
(1− n1−α).

By the monotone convergence theorem,∫ ∞

1
x−αdx =

1

α− 1
lim
n→∞

(1− n1−α) =
1

α− 1
.

Example 4.7.3 We aim to show that f(x) = xαe−x is in L1 on [0,∞) for α > 0.
The key idea here is that e−x tends to zero very quickly as x → ∞, and we can use this fast

convergence to overpower the ‘opposing’ fact that xα → ∞. We’ll use this fact in the following
form. Choose M such that M > 1+α and note that M > 0. We have limx→∞ xMe−x = 0, hence
given any ε > 0 there exists R > 0 so that

xMe−x ≤ ε for all x > R.

For our purposes, it will be enough to take ε = 1.
We now split up into x > R, which we can control using the above, and x ≤ R. Write

xαe−x = xαe−x
1[0,R](x) + xαe−x

1(R,∞)(x).
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By part (b) of Exercise 4.4 the sum of two L1 functions is in L1, so we’ll aim to prove that both
terms on the right hand side are in L1. The first term on the right clearly is, because it is bounded
on [0, R] and zero elsewhere. For the second term we use that fact that for all x > R,

xαe−x = xMe−xxα−M ≤ εxα−M = xα−M .

We choose M such that α−M < 1, hence the right hand side of the above is in L1 by Example
4.7.2. Hence also xαe−x

1(R,∞)(x) is in L1 by Lemma 4.6.1.

Example 4.7.4 We want to calculate

lim
n→∞

∫ 1

0

nx2

nx+ 5
dx.

We’ll work in the measure space ([0, 1],B([0, 1]), λ) and consider the sequence of functions (fn)

where fn(x) = nx2

nx+5 for all x ∈ [0, 1], n ∈ N. Each fn is continuous, hence also measurable by
Lemma 3.2.1. It is straightforward to check that limn→∞ fn(x) = x for all x ∈ [0, 1] and that
|fn(x)| ≤ 1 for all n ∈ N, x ∈ [0, 1]. So in this case, we can take K = 1, and apply the DCT with
dominating function g = 1 to deduce that f(x) = x is in L1, and

lim
n→∞

∫
[0,1]

nx2

nx+ 5
dx =

∫
[0,1]

x dx.

We finish by evaluating
∫
[0,1] x dx =

[
x2

2

]1
0
= 1

2 .

Example 4.7.5 Summation of series is a special case of Lebesgue integration. Suppose that we
are interested in

∑∞
n=1 an, where an ≥ 0 for all n ∈ N. We consider the sequence (an) as a

function a : N → [0,∞). We work with the measure space (N,P(N),m) where m is counting
measure. Then every sequence (an) gives rise to a non-negative measurable function a and

∞∑
n=1

an =

∫
N
a(n) dm(n),

which is for you to show in Problem 4.10. The same formula holds for general (an) ⊆ R provided
that

∑
n |an| <∞ i.e. that a ∈ L1(N).

In this context the monotone and dominated converge theorems provide tools for working with
sequences of series. For example, suppose that for each m ∈ N we have a sequence (am(n))n∈N,
given by

am(n) =
1

n3
+

1

1 +m2n2
.

We can’t easily compute the value of
∑

n∈N am(n) for any given m. But we can note that
am(n) → 1

n3 as m → ∞, for all n, and that |am(n)| ≤ g(n) = 1
n3 + 1

n2 . We know from analysis
that

∑
n

1
n3 and

∑
n

1
n2 are both finite, so g ∈ L1(N,P(N),m) – which in this setting is just the

claim that
∑

n g(n) <∞. So the Dominated Convergence Theorem applies, and we obtain

lim
m→∞

∑
n∈N

(
1

n3
+

1

1 +m2n2

)
=
∑
n∈N

1

n3
.
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4.8 Lebesgue integration of complex valued functions (∆)

The definition of the Lebesgue integral can be extended to complex valued functions. Let (S,Σ,m)

be a measure space and f : S → C. We can always write f = f1 + if2, where the real and
imaginary parts are fi : S → R (i = 1, 2). If both f1 and f2 are measurable then we say that f
is measurable1. If both f1 and f2 have integrals according to Definition 4.5.1 then we define∫

S
f dm =

∫
S
f1 dm+ i

∫
S
f2 dm.

Recall that for z = x + iy ∈ C, where x and y are the real and imaginary parts of f , we define
|z| = (x2 + y2)1/2. Correspondingly, we make the pointwise definition that when f : S → C,
|f | = (f1 + f2)

1/2. Note that |f | : S → R. This allows us to define a complex version of L1, given
by

L1
C =

{
f : S → C ; f is measurable and

∫
S
|f | dm <∞

}
. (4.23)

When we need to specify that we mean the complex/real versions of L1 we will write L1
C and L1

R.
When it is clear which one we mean we will simply write L1. The extension of Lemma 4.5.2 is as
follows.

Lemma 4.8.1 Let f : S → C be measurable, with real part f1 : S → R and imaginary part
f2 : S → R. Then the following are equivalent:

1. f ∈ L1
C,

2. |f | ∈ L1
R,

3. f1 ∈ L1
R and f2 ∈ L1

R.

Proof: Parts 1 and 2 are equivalent by (4.16) and (4.23). Parts 2 and 3 are equivalent by
Lemma 4.5.2. �

All of our results so far may be applied to the real and imaginary parts of a complex valued
function f : S → C, or to its absolutely value |f |. It is often more convenient when we can apply
them directly, so let us make some notes on this.

• There is no ‘less than or equal to’ for complex numbers. This means that some results have
no natural equivalents in C, essentially anything involving ≤, min, max, inf, sup, lim inf or
lim sup. For example, there is no monotonicity of integrals and no monotone convergence
theorem.

• Several results continue to work without any modification, with the understanding that we
must interpret | · | as the complex modulus and use L1

C in place of L1
R. Most importantly,

Lemma 4.6.1 and the dominated convergence theorem continue to hold, as do all of the
properties in Theorem 4.5.3 except monotonicity.

In such cases, the results for C can be proved by applying the result for R to both real and
imaginary parts.

1(?) Following on from Remark 3.3.4, it can be shown that this definition is equivalent to asking that f : S → C be
measurable with respect to B(C), where B(C) is generated by the open sets of the metric space (C, d) where d(z, w) = |z−w|.
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• Theorem 4.4.1 (integration as a measure) has no equivalent in C, because measures must
have real values2.

2(?) In fact, there is a theory of complex and even vector valued measures, but it is outside of what we can cover.
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4.9 Multiple integrals and function spaces (?)

This section is included for interest. It is marked with a (?) and it is off-syllabus. It includes two
separate topics.

4.9.1 Fubini’s Theorem (?)

Fubini and Tonelli’s theorems let us deal with expressions involving multiple integrals, for example
of the form

∫
S1

∫
S2
f(x, y) dx dy. They give different sets of conditions under which we can change

the order of integration. Loosely, Tonelli’s theorem is an analogue of the MCT and Fubini’s
theorem is an analogue of the DCT. Before introducing them we need to handle some measure
theoretic details.

For i = 1, 2 let (Si,Σi,mi) be measure spaces and recall the product measure space (S1 ×
S2,Σ1 ⊗ Σ2,m1 × m2) introduced in Section 1.9. If f : S1 × S2 → R is measurable then the
coordinate projections x 7→ f(x, y) and y 7→ f(x, y) are measurable for almost all x ∈ S1 and
y ∈ S2. Moreover, if f ∈ L1(S1 × S2) then these coordinate projections are respectively in L(S1)

and L1(S2), again for almost all x ∈ S1 and y ∈ S2, and the same is true of the functions
x →

∫
S2
f(x, y)m2(dy) and y →

∫
S2
f(x, y)m2(dx). We won’t include a proof of these claims

here. They put us a in a position to state the key result of this section.

Theorem 4.9.1 Let f : S1 × S2 → R be measurable. Suppose that at least one of the following
conditions holds.

1. Fubini’s Theorem: f ∈ L1(S1 × S2).

2. Tonelli’s Theorem: f ≥ 0.

Then ∫
S1×S2

f d(m1 ×m2) =

∫
S1

(∫
S2

f(x, y) dm2(y)

)
dm1(x)

=

∫
S2

(∫
S1

f(x, y) dm1(x)

)
dm2(y).

In the case of Fubini’s theorem
∫
S1×S2

f d(m1×m2) is a real number, whilst in the case of Tonelli’s
theorem it is in [0,∞]. These results are named after the Italian mathematicians Guido Fubini
(1879-1943) and Leonida Tonelli (1885-1946). They are very important results, equal in stature
to the MCT and DCT, but we omit a full treatment of them from our course in order to progress
on to thinking about probability.

4.9.2 Function Spaces (?)

This section is aimed at those taking courses in functional analysis. An important application of
Lebesgue integration is to the construction of Banach spaces Lp(S,Σ,m) of equivalence classes
of real-valued functions, where the equivalence relation f a.e.

= g is used on Lp(S,Σ,m), and which
satisfy the requirement

||f ||p =
(∫

S
|f |p dm

) 1

p

<∞,
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where 1 ≤ p <∞. The function || · ||p is a norm on Lp(S,Σ,m) if p ∈ [1,∞), but it is not a norm
for p < 1. This is the reason why, in Section 7.2, we will only define Lp convergence for p ≥ 1.

When p = 2 we obtain a Hilbert space with inner product:

〈f, g〉 =
∫
S
fg dm.

There is also a Banach space L∞(S,Σ,m) where

||f ||∞ = inf{M ≥ 0; |f(x)| ≤M a.e.}.

Variants of all of these spaces exist with C in place of R, using Lebesgue integration over C as
defined in Section 4.8. These spaces play important roles in functional analysis.
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4.10 Riemann integration (?)

In this section, our aim is to show that if a bounded function f : [a, b] → R is Riemann integrable,
then it is measurable and Lebesgue integrable. Moreover, in this case the Riemann and Lebesgue
integrals of f are equal. We state this result formally as Theorem 4.10.3. In this section we will
prefer to say ‘f is Lebesgue integral’ rather than f ∈ L1, simply because it makes for better
grammar when we compare Riemann and Lebesgue integrability within the same sentence.

We begin by briefly revising the Riemann integral. Note that this whole section is marked
with a (?), meaning that it is off-syllabus. It will be discussed very briefly in lectures.

4.10.1 The Riemann integral (?)

A partition P of [a, b] is a set of points {x0, x1, . . . , xn} with a = x0 < x1 < · · · < xn−1 < xn = b.
Define mj = infxj−1≤x≤xj

f(x) and Mj = supxj−1≤x≤xj
f(x). We underestimate by defining

L(f,P) =

n∑
j=1

mj(xj − xj−1),

and overestimate by defining

U(f,P) =

n∑
j=1

Mj(xj − xj−1),

A partition P ′ is said to be a refinement of P if P ⊂ P ′. We then have

L(f,P) ≤ L(f,P ′), U(f,P ′) ≤ U(f,P). (4.24)

A sequence of partitions (Pn) is said to be increasing if Pn+1 is a refinement of Pn for all
n ∈ N.

Now define the lower integral La,bf = supP L(f,P), and the upper integral Ua,bf = infP U(f,P).
We say that f is Riemann integrable over [a, b] if La,bf = Ua,bf , and we then write the common
value as

∫ b
a f(x)dx. In particular, every continuous function on [a, b] is Riemann integrable. The

next result is very useful:

Theorem 4.10.1 The bounded function f is Riemann integrable on [a, b] if and only if for every
ε > 0 there exists a partition P for which

U(f,P)− L(f,P) < ε. (4.25)

If (4.25) holds for some P , it also holds for all refinements of P . A useful corollary is:

Corollary 4.10.2 If the bounded function f is Riemann integrable on [a, b], then there exists an
increasing sequence (Pn) of partitions of [a, b] for which

lim
n→∞

U(f,Pn) = lim
n→∞

L(f,Pn) =

∫ b

a
f(x)dx

Proof: This follows from Theorem (4.10.1) by successively choosing ε = 1, 12 ,
1
3 , . . . ,

1
n , . . . . If

the sequence (Pn) is not increasing, then just replace Pn with Pn ∪ Pn−1 and observe that this
can only improve the inequality (4.25). �
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We can integrate many more functions using Lebesgue integration than we could using Rie-
mann integration. For example, with Riemann integration we could not conclude that

∫
[a,b] 1R\Q(x)dx =

(b− a), but with Lebesgue integration we can.

4.10.2 The connection (?)

Theorem 4.10.3 If f : [a, b] → R is Riemann integrable, then it is Lebesgue integrable, and the
two integrals coincide.

Proof: We use the notation λ for Lebsgue measure in this section. We also write M =

supx∈[a,b] |f(x)| and m = infx∈[a,b] |f(x)|.
Let P be a partition as above and define simple functions,

gP =

n∑
j=1

mj1(xj−1,xj ], hP =

n∑
j=1

Mj1(xj−1,xj ].

Consider the sequences (gn) and (hn) which correspond to the partitions of Corollary 4.10.2 and
note that

Ln(f) =

∫
[a,b]

gndλ, Unf =

∫
[a,b]

hndλ,

where Un(f) = U(f,Pn) and Ln(f) = L(f,Pn). Clearly we also have for each n ∈ N,

gn ≤ f ≤ hn. (4.26)

Since (gn) is increasing (by (4.24)) and bounded above by M , it converges pointwise to a measur-
able function g. Similarly (hn) is decreasing and bounded below by m, so it converges pointwise
to a measurable function h. By (4.26) we have

g ≤ f ≤ h. (4.27)

Again since maxn∈N{|gn|, |hn|} ≤M , we can use dominated convergence to deduce that g and
h are both integrable on [a, b] and by Corollary 4.10.2,∫

[a,b]
gdλ = lim

n→∞
Ln(f) =

∫ b

a
f(x)dx = lim

n→∞
Un(f) =

∫
[a,b]

hdλ.

Hence we have ∫
[a,b]

(h− g)dλ = 0,

and so by Corollary 3.3.1, h(x) = g(x) (a.e.). Then by (4.27) f = g (a.e.) and so f is measurable3

and also integrable. So
∫
[a,b] fdλ =

∫
[a,b] gdλ, and hence we have∫
[a,b]

fdλ =

∫ b

a
f(x)dx.

�

3I’m glossing over a subtlety here. It is not true in general, that a function that is almost everywhere equal to a measurable
function is measurable. It works in this case due to a special property of the Borel σ-field known as ‘completeness’.
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4.10.3 Discussion (?)

An important caveat is that Theorem 4.10.3 only applies to bounded closed intervals. On un-
bounded intervals, there are examples of functions are Riemann integrable4 but not Lebesgue
integrable. One such example is

∫∞
0

sinx
x dx. The function sinx

x oscillates above and below 0 as
x→ ∞, and the Riemann integral

∫∞
0

sinx
x dx = lim

X→∞

∫ X
0

sinx
x dx only exists because these oscilla-

tions cancel each other out. In Lebesgue integration this isn’t allowed to happen, and sinx
x fails to

be Lebesgue integrable because
∫∞
0 | sinx

x | dx = ∞. In fact,
∫∞
0 ( sinx

x )− dx =
∫∞
0 ( sinx

x )+ dx = ∞,
so
∫∞
0 | sinx

x | dx is undefined for the Lebesgue integral.
Let’s discuss these ideas in the context of infinite series which, as we showed in Example 4.7.5,

are a special case of the Lebesgue integral. That is,∫
N
an d#(n) =

∞∑
n=1

an

where a : N → R is a sequence, and # is the counting measure on N. Note that (an) is integrable
if and only if

∑
n |an| < ∞, which is usually referred to as ‘absolute convergence’ in the context

of infinite series. The key is that when infinite series are absolutely convergent they are much
better behaved, as the following result shows. A ‘re-ordering’ of a series simply means arranging
its terms in a different order.

Theorem 4.10.4 Let (an) be a real sequence.

1. Suppose
∑∞

n=1 |an| = ∞ and an → 0. Then, for any α ∈ R, there is a re-ordering bn = ap(n)
such that

∑n
i=1 bn → α.

2. Suppose
∑

n |an| < ∞. Then, for any re-ordering bn = ap(n), we have
∑∞

n=1 an =
∑

n bn ∈
R.

Imagine if we allowed something similar to case 1 was allowed to happen in integration, and let
us think about integration over R. It would mean that re-ordering the x-axis values (e.g. swap
[0, 1) with [1, 2) and so on) could change the value of

∫
R f(x) dx! This would be nonsensical, and

mean that integration over R no longer had anything to do with ‘area under the curve’. So we
have to avoid it, and we do so by restricting to integrable functions. Only then can we find nice
conditions for ‘limit’ theorems like the dominated convergence theorem. Lebesgue integration
solves this problem; Riemann integration cannot.

4Strictly, we should say ‘improperly’ Riemann integrable.
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4.11 Exercises on Chapter 4
On integrals of simple functions and non-negative functions

4.1 Let f : R → R be defined as follows

f(x) =


2 if x ∈ [−2,−1]

−1 if x ∈ (−1, 1)

3 if x ∈ [1, 2)

−5 if x ∈ [2, 3).

(a) Write f explicitly as a simple function and calculate
∫
R f(x) dx.

(b) Write down f+ and f− and confirm that they are non-negative simple functions. Calcu-
late

∫
R f+(x) dx and

∫
R f−(x) dx and check that

∫
R f+(x) dx−

∫
R f−(x) dx =

∫
R f(x) dx.

4.2 Let (S,Σ,m) be a measure space, A ∈ Σ and f : S → R be a simple function. Show that
1Af is also a simple function.

4.3 Use Lemma 4.2.3 (Markov’s inequality) to prove the following version of Chebychev’s in-
equality. If f : S → R is a measurable function and c > 0 then

m
(
{x ∈ S; |f(x)| ≥ c}

)
≤ 1

c2

∫
S
f2 dm.

Formulate and prove a similar inequality where c2 is replaced by cp for p ≥ 1.

4.4 This question contributes to the proof of Theorem 4.5.3. Let f, g ∈ L1(S,Σ,m) and let
α ∈ R. Note that the integrals of f and g are defined by (4.15). Using the properties of
integrals of non-negative functions that were proved in Sections 4.2 and 4.3, show that:

(a)
∣∣∫

S f dm
∣∣ ≤ ∫S |f | dm

(b)
∫
S |f + g| dm ≤

∫
S |f | dm+

∫
S |g| dm

(c) α
∫
S f dm =

∫
S αf dm

Hint: First consider α ≥ 0, then α = −1 and then combine to handle α < 0.

(d) If f ≤ g then
∫
S f dm ≤

∫
S g dm.

In part (d) you may use linearity (of the full Lebesgue integral) because parts (b) and
(c) provide the missing pieces that complete the proof of linearity.

On L1 and the convergence theorems

4.5 Let (S,Σ,m) be a measure space and suppose that m is a finite measure. Suppose that
f : S → R is bounded. Show that f ∈ L1.

4.6 Determine if the function g : (0, 1) → R by g(x) = logx is in L1.

4.7 Consider the sequence (fn) on the measure space (R,B(R), λ) where fn = n1(0,1/n). Show
that (fn) converges pointwise to zero, but that

∫
R fn dλ = 1 for all n ∈ N.

Does either of the monotone or dominated convergence theorems apply to this situation?
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4.8 Show that if f ∈ L1
R then so is the mapping x→ cos(αx)f(x), where α ∈ R. Prove that

lim
n→∞

∫
R

cos(x/n)f(x)dx =

∫
R
f(x)dx.

4.9 Let (S,Σ,m) be a measure space and (An) be a sequence of disjoint sets with An ∈ Σ for
each n ∈ N. Set A =

⋃∞
n=1An and let f : S → R be measurable. Show that∫

A
|f | dm =

∞∑
n=1

∫
An

|f | dm.

Hint: Use the monotone convergence theorem.

4.10 Let (an)n∈N be a real valued sequence, viewed as a function a : N → R with an = a(n). We
work over the measure space (N,P(N),#), where # denotes counting measure.

(a) Suppose that an ≥ 0 and fix N ∈ N. Let a(N)
n = 1{n≤N}an. Show that a(N) is a simple

function, write down its integral, and use the monotone convergence theorem to deduce
that ∫

N
a d# =

∞∑
n=1

an. (4.28)

(b) Now consider a general a = (an)n∈N ⊆ R. Explain briefly why a ∈ L1(N) if and only if∑
n |an| <∞ and deduce that (4.28) holds in this case too.

4.11 Show that f a.e.
= g defines an equivalence relation on the set of all real-valued measurable

functions defined on (S,Σ,m).

4.12 (?) Prove the reverse Fatou lemma: if (fn) is a sequence of non-negative measurable functions
for which fn ≤ f for all n ∈ N, where f ∈ L1, then

lim sup
n→∞

∫
S
fn dm ≤

∫
S

lim sup
n→∞

fn dm.

Hint: Apply Lemma 4.6.3 to f − fn.

On integration of complex valued functions

4.13 (∆) Write down a version of the dominated convergence theorem applicable to functions
f : S → C. Prove it using the real case.

4.14 (∆) Let a ∈ R. Calculate the value of
∫ x
0 e

iay dy.

4.15 (∆) Of Exercises 4.5, 4.9, 4.10 and 4.11, which of these results have natural extensions to
complex valued functions? Justify your answers briefly.

You will need to solve those exercises first!
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Challenge questions

4.16 Let (S,Σ,m) be a measure space and f : [a, b]× S → R be a measurable function for which

(i) The mapping x→ f(t, x) is in L1 for all t ∈ [a, b],

(ii) The mapping t→ f(t, x) is continuous for all x ∈ S,

(iii) There exists g ∈ L1 such that |f(t, x)| ≤ g(x) for all t ∈ [a, b], x ∈ S.

Use the dominated convergence theorem to show that the mapping t →
∫
S f(t, x) dm(x) is

continuous at all t ∈ [a, b].

Hint: Use continuity in terms of sequences, that is show that limn→∞
∫
S f(tn, x) dm(x) =∫

S f(t, x) dm(x) for any sequence (tn) satisfying limn→∞ tn = t.

4.17 Let (S,Σ,m) be a measure space and f : [a, b]× S → R be a measurable function for which

(i) The mapping x→ f(t, x) is in L1 for all t ∈ [a, b],

(ii) The mapping t→ f(t, x) is differentiable for all x ∈ S,

(iii) There exists h ∈ L1 such that
∣∣∣∣∂f(t, x)∂t

∣∣∣∣ ≤ h(x) for all t ∈ [a, b], x ∈ S.

Show that the mapping t→
∫
S f(t, x) dm(x) is differentiable on (a, b) and that

∂

∂t

∫
S
f(t, x) dm(x) =

∫
S

∂f(t, x)

∂t
dm(x).

Hint: Use the mean value theorem.

4.18 Let

f(x) = −2xe−x2

fn(x) =

n∑
r=1

(
−2r2xe−r2x2

+ 2(r + 1)2xe−(r+1)2x2
)

for all x ∈ R.

(a) Show that f(x) = limn→∞ fn(x) for all x ∈ R.

(b) Let a > 0. Show that f and fn are Riemann integrable over [0, a] for all n ∈ N but that∫ a

0
f(x) dx 6= lim

n→∞

∫ a

0
fn(x) dx.

Neither the monotone or dominated convergence theorems can be used here (follow up ex-
ercise: explain why not). This example illustrates that things can go badly wrong without
them, even when fn(x) → f(x) for all x.
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Additional questions (?)

These questions explore the definition and properties of the Fourier transform. They are off
syllabus but you may find them interesting. They involve integration in C, as described in Section
4.8, and you will need extensions of several key results (e.g. linearity, dominated convergence) to
that setting.

4.19 Let f : R → R. If f ∈ L1(R,B(R), λ), where λ is Lebesgue measure, define its Fourier
transform f̂(y) for each y ∈ R, by

f̂(y) =

∫
R
e−ixyf(x)dx

=

∫
R

cos(xy)f(x)dx− i

∫
R

sin(xy)f(x)dx.

Prove that |f̂(y)| <∞ and so f̂ is a well-defined function from R to C. Show also that the
Fourier transformation Ff = f̂ is linear, i.e. for all f, g ∈ L1 and a, b ∈ R we have

̂af + bg = af̂ = bĝ.

4.20 Recall Dirichlet’s jump function 1Q. Does it make sense to write down the Fourier coefficients
an = 1

π

∫ π
−π 1Q(x) cos(nx)dx and bn = 1

π

∫ π
−π 1Q(x) sin(nx)dx as Lebesgue integrals? If so,

what values do they have? Can you associate a Fourier series to 1Q? If so, (and if it is
convergent) what does it converge to?

4.21 Fix a ∈ R and define the shifted function fa(x) = f(x − a). If f ∈ L1, show that fa ∈ L1,
and deduce that f̂a(y) = e−iayf̂(y) for all y ∈ R.

4.22 Show that the mapping y → f̂(y) is continuous from R to C.

4.23 Suppose that the mappings x → f(x) and x → xf(x) are both in L1. Show that y → f̂(y)

is differentiable and that for all y ∈ R,

(f̂)′(y) = −iĝ(y),

where g(x) = xf(x) for all x ∈ R.
Hint: Use the inequality |eib − 1| ≤ |b| for b ∈ R.

4.24 Assume that f, g ∈ L1(R,B(R), λ) and that g is bounded. Define the convolution f ∗ g of f
with g by

(f ∗ g)(x) =
∫
R
f(x− y)g(y)dy,

for all x ∈ R. Show that |(f ∗ g)(x)| <∞, and so f ∗ g is a well–defined function from R to
R. Show further that f ∗ g ∈ L1, and that the Fourier transform of the convolution is the
product of the Fourier transforms, i.e. that for all y ∈ R,

f̂ ∗ g(y) = f̂(y)ĝ(y).

Remark 4.11.1 Analogues of the results of Problems 4.19-4.24, with slight modifications, also
hold for the Laplace transform Lf(y) =

∫∞
0 e−yxf(x)dx, where y ≥ 0 and x 7→ e−yxf(x) is

assumed to be in L1((0,∞)).
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Chapter 5

Probability with Measure

In this chapter we will examine probability theory from the measure theoretic perspective. The
realisation that measure theory is the foundation of probability is due to the Russian mathemati-
cian A. N. Kolmogorov (1903-1987) who in 1933 published the hugely influential “Grundbegriffe
der Wahrscheinlichkeitsrechnung” (in English: Foundations of the Theory of Probability). Since
that time, measure theory has underpinned all mathematically rigorous work in probability theory
and has been a vital tool in enabling the theory to develop both conceptually and in applications.

We have already noted that a probability is a measure, random variables are measurable
functions and expectation is a Lebesgue integral – but it is not fair to claim that “probability
theory” can be reduced to a subset of “measure theory”. This is because in probability we model
chance and unpredictability, which brings in a set of intuitions and ideas that go well beyond
those of weights and measures.

The Polish mathematician Mark Kac (1914-1984) famously described probability theory as
“measure theory with a soul.” A less eloquent observation is that the notation tends to be much
easier to handle in probability. We introduced probability measures as an example in Section
1.3.1, but let us give a formal definition here.

Definition 5.0.1 A measure m is said to be a probability measure if it has total mass 1.

A measure space (S,Σ,m) is said to be a probability space if m is a probability measure.
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5.1 Probability

In Chapters 5-6 we will work over general probability spaces of the form (Ω,F ,P). An event is a
measurable set A ∈ F . We have P[Ω] = 1 so

P[Ω] = 1 and 0 ≤ P[A] ≤ 1 for all A ∈ F .

Intuitively, P[A] is the probability that the event A ∈ F takes place. We will generally assign
a special status to probability measures and expectations by writing their arguments in square
brackets e.g. P[A] instead of P(A). This just a convention – there is no difference in mathematical
meaning.

In probability we often use ‘complement’ notation, that is Ac = Ω \A. The standard formulae
P[Ac] = 1−P[A] and P[A∪B] = P[A]+P[B]−P[A∪B] are simply restatements of equations (1.3)
and (1.4) in probabilistic notation. We sometimes write P[A and B] = P[A∩B] and P[A or B] =

P[A ∩B].
Let us first update the results of Section 1.7 into the language of probability. Recall that a

sequence of sets (An) with An ∈ F for all n ∈ N is increasing if An ⊆ An+1 for all n ∈ N, and
decreasing if An ⊇ An+1 for all n ∈ N.

Lemma 5.1.1 Let An, Bn ∈ F .

1. Suppose (An) is increasing and A =
⋃

nAn. Then P[A] = limn→∞ P[An].

2. Suppose (Bn) is decreasing and B =
⋂

nBn. Then P[B] = limn→∞ P[Bn].

Proof: This is just Lemma 1.7.1 rewritten in the notation of probability. Note that the
condition of part 2 holds automatically here, because in probability all events (i.e. measurable
sets) have finite measure. �

The intuition for the above theorem should be clear. The set An gets bigger as n → ∞ and,
in doing so, gets ever closer to A; the same is true of their probabilities. Similarly for Bn, which
gets smaller and closer to B. This result is a probabilistic analogue of the well known fact that
monotone increasing (resp. decreasing) sequences of real numbers converge to the respective sups
and infs.

Definition 5.1.2 A random variable X is a measurable function X : Ω → R, where we use the
measure spaces (Ω,F) and (R,B(R)).

If A ∈ B(R), it is standard to use the notation {X ∈ A} to denote the event X−1(A). This
event is an element of F , by Definition 5.1.2, which in turn means that the probability P[X ∈ A]

is defined. Writing X ∈ A allows us to think of X as an object that takes a random value, and
this random value might (or might not) fall into the set A ⊆ R. We can thus connect our intuition
for probability to the formal machinery of measure theory.

The law or distribution of X is given by pX(B) = P[X−1(B)] for B ∈ B(R). Thus

pX(B) = P[X ∈ B] = P[X−1(B)] = P[{ω ∈ Ω;X(ω) ∈ B}].

This equation is the fundamental connection between probability and measure theory. As the
next lemma shows, random variables are just another way to think about measures, designed to
make it easy for us to think about ‘objects that take a random value’.
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Lemma 5.1.3 Let X : Ω → R be a random variable. The law of X is a probability measure on
(R,B(R)).

Proof: We have pX(R) = P[X ∈ R] = 1 and pX(∅) = P[X ∈ ∅] = 0, so the total mass is
1 and (M1) holds. It remains to check (M2). Let (An)n∈N be a sequence of disjoint Borel sets
and set A = ∪nAn. Define Bn = ∪n

i=1An, which makes (Bn) an increasing sequence of subsets
of R such that ∪nBn = ∪nAn. Hence {X ∈ Bn} is an increasing sequence of subsets of Ω, with
∪n{X ∈ Bn} = {X ∈ ∪nBn} = {X ∈ ∪nAn}. From Lemma 5.1.1 we have

pX(Bn) = P[X ∈ Bn] → P[X ∈ A] = pX(A). (5.1)

Also,

pX(Bn) = P[X ∈ Bn] =

n∑
i=1

P[X ∈ Ai] =

n∑
i=1

pX(Ai). (5.2)

Combining (5.1) and (5.2) gives
∑∞

i=1 pX(Ai) = pX(A), which proves (M2). �

Definition 5.1.4 The expectation of X is the Lebesgue integral

E[X] =

∫
Ω
X(ω) dP(ω).

According to Definition 4.5.1 this is possibly undefined, and when it is defined it is an extended
real number. Two cases cases are worth pointing out:

• X ≥ 0, in which case Definition 4.2.1 defines E[X] ∈ [0,∞].

• X ∈ L1, which occurs precisely when E[X] ∈ R.

Note also that for all A ∈ F
E[1A] = P[A]

by Definition 4.1.1 because 1A : Ω → R is a simple function.
By Theorem 3.1.5, essentially anything we can think of doing with random variables will

just give us back more random variables. In particular, any Borel measurable function f from
R to R enables us to construct a new random variable f(X), which is defined pointwise via
f(X)(ω) = f(X(ω)) for all ω ∈ Ω. For example we may take f(x) = xn for any n ∈ N, giving
rise to the random variable Xn. If E[Xn] exists then it is known as the nth moment of X.

We often write µX = E[X], when it is defined. If X has a finite second moment then we also
write var(X) = E[(X − µ)2], called the variance of X, which is always defined in this case as a
consequence of Problem 5.12. When it is clear which random variable we mean, we might write
simply µ and σ in place of µX , σX .

We will study convergence of random variables in Section 7.2. For now, note that in probability
we use the term almost surely in place of the measure theoretic almost everywhere. The meaning
is the same, for example X a.s.

= Y means that P[X = Y ] = 1, and Xn
a.s.→ X means that P[Xn →

X] = 1.
The monotone and dominated convergence theorems, Markov’s inequality, all the properties

of integrals, and so on, can all be re-written in the language of probability. This is for you to do,
with several examples in Exercise 5.1.

(∆) Those of you taking MAS61022 can now begin your independent reading of Chapter 6,
after solving Exercises 5.1 and 5.2. Chapter 6 does not depend on the rest of Chapter 5.
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5.2 The cumulative distribution function

Let X : Ω → R be a random variable. Its cumulative distribution function or cdf is the mapping
FX : R → [0, 1] defined for each x ∈ R by

FX(x) = P[X ≤ x].

When X is clear from the context we might write F instead of FX . Note that if x ≤ y then
{X ≤ x} ⊆ {X ≤ y}, which by monotonicity of measures implies that FX(x) ≤ FX(y). That is,
the function FX is monotone increasing. It is straightforward to check that for x ≤ y we have

P[X > x] = 1− FX(x) (5.3)
P[x < X ≤ y] = FX(y)− FX(x) (5.4)

and this is left for you in Exercise 5.4 part (a).
Our next result gathers together some analytic properties of FX . Recall that if f : R → R, the

left limit at x is limy↑x f(y), and the right limit at x is limy↓x f(y). In general left and right limits
might not exist, but they always do if the function f is monotonic increasing (or decreasing).
When the limits do exist, limy↑x f(x) = limn→∞ f(x− an) and limy↑x f(x) = limn→∞ f(x+ an)

where an ≥ 0 and an → 0 as n→ ∞.

Lemma 5.2.1 Let X be a random variable having cdf F .

1. P[X = x] = F (x)− limy↑x F (y)

2. The map x→ F (x) is right continuous: F (x) = limy↓x F (y) for all x ∈ R.

3. lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

Proof: We prove the first two parts here. The third part is left for you in Exercise 5.4 part
(b).

For the first part, let x ∈ R and let (an) be a monotone sequence of positive numbers that
decreases to zero. For each n ∈ N define Bn = {x−an < X ≤ x}. Then An ∈ F and An+1 ⊆ An,
with

⋂
nBn = {X = x}. By Lemma 5.1.1 and (5.4) we have

P[X = x] = P

[⋂
n

Bn

]
= lim

n→∞
P[Bn] = F (x)− lim

n→∞
F (x− an),

and the result follows.
For the second part, again let x ∈ R and let (an) be a monotone sequence of positive numbers

that decreases to zero. For each n ∈ N define An = {X > x+an}. Then An ∈ F and An ⊆ An+1,
with

⋃
nAn = {X > x}. By Lemma 5.1.1 and (5.3) we have

1− F (x) = P

[⋃
n

An

]
= lim

n→∞
P[An] = 1− lim

n→∞
F (x+ an),

and the result follows. �

Remark 5.2.2 By combining the first two parts of Lemma 5.2.1, we have that P[X = x0] = 0 if
and only if FX(x) is continuous at x = x0.

Remark 5.2.3 (?) It can be shown that a function F : R → R is the cdf of some random variable
X if and only if it is monotone increasing and satisfies properties 2 and 3 of Lemma 5.2.1.
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5.3 Discrete and continuous random variables

You will probably recall that many useful random variables are found in two special cases. For-
mally, we say that a random variable X is a:

1. continuous random variable if its cdf FX is continuous at every point x ∈ R;

2. discrete random variable if FX has jump discontinuities at a countable set of points and is
constant between these jumps.

Note that if FX is continuous at x then P[X = x] = 0 by Remark 5.2.2. In particular, this applies
to all x ∈ R for continuous random variables.

Many random random variables are neither discrete nor continuous. They occur in rather
mundane ways. For example, suppose that we toss a fair coin, on heads we set X = 1 and on
tails we set X = U where U is a uniform random variable on [0, 1]. The c.d.f. of X is then

FX(x) =


0 for x < 0

x
2 for x ∈ [0, 1)

1 for x > 1.

Thus X is neither discrete nor continuous. Random variables of this nature after often said to have
a mixed type, particularly in statistics, because we have used a combination of discrete random
variables (the coin toss) and continuous random variables to construct them.

We now point out a technicality that is often forgotten in less rigorous courses: a continuous
random variable does not need to have a probability density function! Strictly speaking, those
that do have a special name; we say X is an

3. absolutely continuous random variable if there exists a measurable function fX : R → [0,∞)

such that FX(x) =
∫ x
−∞ fX(y)dy for all x ∈ R.

The function fX is called the probability density function or p.d.f. of X. Since P[X ∈ R] = 1 we
have

∫∞
−∞ fX(y)dy = 1.

Lemma 5.3.1 Every absolutely continuous random variable is a continuous random variable.

Proof: Note that ∫ x

−∞
fX(y) dy =

∫
R
1(y≤x)fX(y) dy.

We want to prove this is a continuous function of x, for which we’ll use the dominated convergence
theorem and the definition of continuity in terms of sequences. Let (xn) ⊆ R be any sequence such
that xn → x. Note that |1(y≤xn)fX(y)| ≤ |fX(y)| with

∫
R |fX(y)| dy = P[X ∈ R] = 1 < ∞. If

y 6= x then we have 1(y≤xn) → 1(y≤x) which means that 1(y≤xn)fX(y) → 1(y≤x)fX(y) for almost
all y ∈ R. Hence by the dominated convergence theorem we have

∫ xn

−∞ fX(y) dy →
∫ x
−∞ fX(y) dy

as n→ ∞, as required. �

It is rare to come across examples of continuous random variables that are not absolutely
continuous, but they do exist. For practical purposes most useful continuous random variables are
absolutely continuous; examples that you may have encountered previously include the uniform,
exponential, normal, Student t, gamma and beta distributions. Typical examples of discrete
random variables are the binomial, geometric and Poisson distributions.
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5.4 Independence

In this subsection we consider the meaning of independence for infinite sequences of events and
random variables. A useful heuristic is ‘independence means multiply’. Recall that two events
A1, A2 ∈ F are independent if

P[A1 ∩A2] = P[A1]P[A2].

For three events we would use P[A1 ∩A2 ∩A3] = P[A1]P[A2]P[A3] and so on.
For many applications, we want to discuss independence of infinitely many events, or to be

precise a sequence (An) of events with An ∈ F for all n ∈ N. The definition of independence is
extended from the finite case by considering all finite subsets of the sequence. Formally:

Definition 5.4.1 We say that the events in the sequence (An) are independent if the finite set
{Ai1 , Ai2 , . . . , Aim} is independent for all finite subsets {i1, i2, . . . , im} of the natural numbers, i.e.

P[Ai1 ∩Ai2 ∩ · · · , Aim ] = P[Ai1 ]P[Ai2 ] · · ·P[Aim ].

Two random variables X and Y are said to be independent if P[X ∈ A, Y ∈ B] = P[X ∈
A]P[Y ∈ B] for all A,B ∈ B(R). This idea is extended to three or more random variables in the
same way as above. For an infinite sequence of random variables (Xn), we say that the Xn are
independent if every finite subset Xi1 , Xi2 , . . . , Xim of random variables is independent, i.e.

P[Xi1 ∈ Ai1 , Xi2 ∈ Ai2 , . . . , Xim ∈ Aim ] = P[Xi1 ∈ Ai1 ]P[Xi2 ∈ Ai2 ] · · ·P[Xim ∈ Aim ]

for all Ai1 , Ai2 , . . . , Aim ∈ B(R) and for all finite {i1, i2, . . . , im} ⊆ N.
We often want to consider random variables in Rd, where d ∈ N. Let us consider the case

d = 2. A random variable in R2 Z = (X,Y ) is a measurable function from (Ω,F) to (R2,B(R2))

where B(R2) is the product σ-field introduced in Section 1.9. The law of Z is the function pZ(A) =
P[Z ∈ A] where A ∈ B(R2). The joint law of X and Y is pZ(A × B) = P[X ∈ A, Y ∈ B] for
A,B ∈ B(R), and the marginal laws of X and Y are pX(A) = P[X ∈ A] and pY (B) = P[Y ∈ B].
From the definitions above, we have that X and Y are independent if and only if

pZ(A×B) = pX(A)pY (B),

i.e. if the joint law factorises as the product of the two marginals. The same ideas extend to R3

with e.g. W = (X,Y, Z) and so on.

Theorem 5.4.2 Let X and Y be random variables.

1. If X and Y are independent and f, g : R → R are measurable functions then f(X) and g(Y )

are independent.

2. If X,Y ∈ L1 with XY ∈ L1 then E[XY ] = E[X]E[Y ].

3. The following two conditions are equivalent:

(a) X and Y are independent;

(b) E[f(X)g(Y )] = E[f(X)]E[g(Y )] for all bounded measurable functions f, g : R → R.
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Proof: The first part is left for you in Exercise 5.8.
(?) The proof of the second and third parts uses the result of a tricky exercise and also Fubini’s

theorem, so we will view them as off-syllabus but we will cover them within lectures. For the
second part,

E[XY ] =

∫
R2

xy pZ(dx, dy) =

(∫
R
x pX(dx)

)(∫
R
y pY (dy)

)
= E[X]E[Y ]

Here, the first equality is the two-dimensional version of Problem 5.14, and we have used Fubini’s
theorem (from Section 4.9.1) in the second equality to write the integral over R2 as a repeated
integral.

For the final part, recall that bounded random variables are in L1, so combining parts 1 and
2 gives that (a)⇒(b). To see that (b)⇒(a), take measurable sets A,B ∈ B(R) and set f = 1A

and g = 1B. Then we have E[f(X)g(Y )] = P[X ∈ A, Y ∈ B] and E[f(X)] = P[X ∈ A],
E[g(Y )] = P[Y ∈ B], so (b) gives P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B]. �

Regarding part 2 of Theorem 5.4.2, note that dependent random variables X and Y can also
satisfy E[XY ] = E[X]E[Y ]. See Exercise 5.9 for an example of this.
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5.5 Exercises on Chapter 5
On probability as measure

5.1 Write down probabilistic versions of the following results, using the notation of probability
theory that was introduced in Section 5.1. You should use probability in place of measure,
random variables in place of measurable functions, expectation in place of integration, etc.

(a) The monotone and dominated convergence theorems (Theorems 4.3.1 and 4.6.2).
(b) Markov’s and Chebyshev’s inequalities (Lemma 4.2.3 and Exercise 4.3).
(c) Theorem 4.4.1.
(d) (?) Fatou’s lemma (Lemma 4.6.3).

5.2 Using the version of Chebyshev’s inequality that you found in Exercise 5.1, show that if X
is a random variable satisfying var(X) <∞ then

P[|X − E[X]| ≥ c] ≤ var(X)

c2
.

Within probability, this is the most common form in which to apply Chebyshev’s inequality.

5.3 Let a, b ∈ R with a < b and let U be a continuous uniform random variable on [a, b], which
means that the p.d.f. of U is the function f(u) = 1(a,b)(x)

1
b−a . Let A ∈ B([a, b]). Find

P[U ∈ A] in terms of the Lebesgue measure of A.

5.4 Let X : Ω → R be a random variable with cumulative distribution function F .

(a) Deduce that P[X > x] = 1− F (x) and P[x < X ≤ y] = F (y)− F (x) for all x < y.
(b) Prove the last part of Lemma 5.2.1: show that F (x) → 0 as x → −∞ and F (x) → 1

as x→ ∞.
Hint: Use the same method as for the first two parts of the lemma.

5.5 Let X be a random variable. Show that there are at most countably many x ∈ R such that
P[X = x] > 0.
Hint: What happens to FX(x) at x such that P[X = x] > 0?

5.6 Let (Ω,F ,m) be a measure space, where m(Ω) <∞. From Problem 1.5, recall that P[A] =
m(A)
m(S) defines a probability measure on (S,Σ). Show that E[X] = 1

m(S)

∫
S X dm for all

X ∈ L1(Ω,F ,m).
Hint: Try simple functions first.

On independence

5.7 (a) Let (An) be a sequence of independent events. Show that

P

[⋂
n∈N

An

]
=

∞∏
n=1

P[An]. (5.5)

(b) Recall that we define independence of a sequence of events (An) in terms of finite
subsequences (e.g. as in Section 5.4). An ‘obvious’ alternative definition might to be
use (5.5) instead. Why is this not a sensible idea?
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5.8 (a) Let A and B be independent events. Show that their complements Ac and Bc are also
independent.

(b) Let X and Y be independent random variables and f, g : R → R be Borel measurable.
Deduce that f(X) and g(Y ) are also independent.

5.9 (a) Let U be a random variable such that P[U = −1] = P[U = 1] = 1
2 and let V be a random

variable such that P[V = 0] = P[V = 1] = 1
2 , independent of U . Let X = UV and

Y = U(1− V ). Show that E[XY ] = E[X]E[Y ] but that X and Y are not independent.
(b) Let X,Y, Z be random variables, where X and Y are independent of each other with

P[X = 1] = P[X = −1] = P[Y = 1] = −P[Y = −1] = 1
2 , and Z = XY . Show that any

pair within {X,Y, Z} are independent of each other, but that {X,Y, Z} is not a set of
independent random variables.

On properties of random variables

5.10 Let M ∈ [0,∞). Suppose that (Xn) is a sequence of random variables such that for each n
we have |Xn| ≤M , and suppose that Xn

a.s.→ X. Show that E[Xn] → E[X].

5.11 (a) Let X be a random variable that takes values in N∪{0}. Explain why X =
∑∞

i=1 1{X≥i}
and hence show that

E[X] =

∞∑
i=1

P[X ≥ i].

(b) Let Y be a random variable taking values in [0,∞). Use part (a) to deduce that∑∞
k=1 P[Y ≥ k] ≤ E[Y ] ≤ 1 +

∑∞
k=1 P[Y ≥ k].

5.12 (a) Suppose that X and Y are random variables and both X2 and Y 2 are in L1. Prove the
Cauchy-Schwarz inequality:

|E[XY ]| ≤
(
E[X2]

1

2

)(
E[Y 2]

1

2

)
.

Hint: Consider g(t) = E[(X + tY )2] as a quadratic function of t ∈ R. Note that a
quadratic function ax2 + bx+ c with at most one real root must satisfy b2 − 4ac ≤ 0.

(b) Deduce that if X2 ∈ L1 then also X ∈ L1, and in fact |E[X]|2 ≤ E[X2].
(c) Let X be any random variable with a finite mean E[X] = µ. Show that E[X2] < ∞ if

and only if var(X) <∞.

5.13 A random variable is said to have an ath exponential moment if E[ea|X|] <∞, where a > 0.

(a) Let X be a non-negative random variable and a > 0. Show that E[e−aX ] ≤ 1.
(b) Let X be a random variable with an exponential moment. Show that E[|X|n] <∞ for

all n ∈ N.

5.14 Let X be a real-valued random variable with law pX defined on a probability space (Ω,F ,P).
Show that for all bounded measurable functions f : R → R,∫

Ω
f(X(ω)) dP(ω) =

∫
R
f(x) dpX(x).

What can you say about these integrals when f is non-negative but not necessarily bounded?
Hint: Begin with f an indicator function, then extend to simple, bounded non-negative and
general bounded measurable functions.
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Challenge questions

5.15 (a) Let ε > 0. Let (En) be a sequence of independent events such that P[En] ≥ ε for all
n ∈ N. Show that P[∪n∈NEn] = 1.

(b) Let (Ω,F ,P) be a probability space and let ε > 0. Suppose that (En)n∈N is a sequence
of independent events, with P[En] ∈ (ε, 1− ε) for all n ∈ N. Show that P[ω] = 0 for all
ω ∈ Ω and, hence, deduce that Ω is uncountable.
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Chapter 6

Inequalities for Random Variables
(∆)

We’ve seen several examples of useful inequalities in Chapters 4 and 5, including Markov’s and
Chebyshev’s inequalities (Lemma 4.2.3 and Exercise 5.2), Fatou’s lemma (Lemma 4.6.3) and the
Cauchy-Schwarz inequality (Exercise 5.12). These inequalities can all be written in terms of
general integrals, as well as in terms of random variables and expectations. In this chapter we
will include some further examples of inequalities that are useful in probability theory.

We will look only at inequalities that apply to general random variables. It is worth noting
that beyond what is included here there are several more specialized types of inequality (such as
those that apply only to martingales, or to Markov chains, or to some particular distributions)
that are also well known in probability theory.
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6.1 Chernoff bounds (∆)

Chernoff bounds are based on applying Markov’s inequality to the exponential function etX ,
where X is a random variable, then choosing t ∈ R to make the resulting bound be as strong as
possible. Perhaps surprisingly, it is known that that this method gives near optimal bounds in
many situations.

Lemma 6.1.1 (Generic Chernoff Bound) Let X be a random variable. Then

1. For all t > 0 we have P[X ≥ c] ≤ e−tcE[etX ].

2. For all t < 0 we have P[X ≤ c] ≤ e−tcE[etX ].

Proof: Note that etX ≥ 0 so E[etX ] is well defined as a non-negative extended real number.
We prove the two claims in turn. For the first, for t > 0, from Markov’s inequality (Lemma 4.2.3)
we have

P[X ≥ c] = P[etX ≥ etc] ≤ 1

etc
E[etX ]

as required. For the second, note that for t < 0 we have P[X ≤ c] = P[etX ≥ etc] (using t < 0

reverses the inequality) and then proceed as before. �

The function t 7→ E[etX ] is known as the moment generating function or m.g.f. of the random
variable X. Its value is an extended real number and it is possible that E[etX ] = ∞ for all t 6= 0.
However, in many cases the moment generating function is finite for t in (at least) some interval
(−ε, ε) where ε > 0. That is often enough to derive a Chernoff bound.

Example 6.1.2 Let X have a Binomial(n, p) distribution. We will take p = 1
2 , so E[X] = n

2 ,
var(X) = n

4 , and E[etX ] = (12 + 1
2e

t)n. We will derive a Chernoff bound for P[X ≥ 3n
4 ], but first

let us try Markov’s and Chebyshev’s inequalities. Markov’s inequality (Lemma 4.2.3) gives us

P
[
X ≥ 3n

4

]
≤ 1

(3n/4)

n

2
=

4

6
=

2

3
,

which provides very little information. Chebyshev’s inequality (Exercise 5.2) gives

P
[
X ≥ 3n

4

]
= P

[
X − n

2
≥ n

4

]
≤ P

[
|X − E[X]| ≥ n

4

]
≤ 1

(n/4)2
var(X) =

4

n
.

This is significantly better and tends to zero as n→ ∞. Lastly, Chernoff’s bound gives us that

P
[
X ≥ 3n

4

]
≤ e−3nt/4

(
1

2
+

1

2
et
)n

(6.1)

for all t ≥ 0. Choosing t to minimize the right hand side (which can be done via differentiating,
finding turning points, and checking for minima) gives that the maximum occurs when et = 3.
Putting this value for et into the above equation and simplifying results in

P
[
X ≥ 3n

4

]
≤ 3−3n/4(2)n =

(
2

33/4

)n

≈ (0.88)n.

This bound converges to zero much faster than the bound in (6.1).
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6.2 The Paley-Zygmund inequality (∆)

Recall that Markov’s and Chebyshev’s inequalities controlled how large P[X ≥ c] could become,
using the moments of the random variable X. The Paley-Zygmund inequality is similar in style,
but it seeks to control how large X can become relative to E[X].

Lemma 6.2.1 (Paley-Zymund Inequality) Let X be a non-negative random variable and sup-
pose that 0 < E[X2] <∞. Then for any θ ∈ [0, 1],

P[X > θE[X]] ≥ (1− θ)2
E[X]2

E[X2]
.

Proof: Note that X = X1{X≤θE[X]} +X1X>θE[X] and take expectations to obtain

E[X] = E
[
X1{X≤θE[X]}

]
+ E

[
X1{X>θE[X]}

]
. (6.2)

We will bound the two terms on the right hand side of the above. If 1{X≤θE[X]} is non-zero then
X ≤ θE[X], so also X1{X≤θE[X]} ≤ θE[X]. Hence we have E[X1X≤θE[X]] ≤ θE[X]. For the
second term, we apply the Cauchy-Schwarz inequality (Exercise 5.12) and obtain that

E
[
X1{X>θE[X]}

]
≤
(
E[X2]E[12{X>θE[X]}]

)1/2
.

Indicator functions are either zero or one, hence 12A = 1A, and by (4.2) satisfy E[1A] = P[A]. We
thus obtain that above equation is bounded above by (E[X2]P[X > θE[X]])1/2. Putting all this
into (6.2) we obtain

E[X] ≤ θE[X] +
(
E[X2]P[X > θE[X]]

)1/2
which rearranges to the required result. �

The most common application of the Paley-Zymund inequality is to set θ = 0 and obtain

P[X > 0] ≥ E[X]2

E[X2]
. (6.3)

In combination with upper bounds on E[X] and lower bounds on E[X2], equation (6.3) is often
used to show that X is not identically zero. This technique is particularly useful when the random
variable X is known to be a limit of some sequence (Xn), and bounds on E[X] and E[X2] can
be obtained from corresponding bounds on E[Xn] and E[X2

n] via the monotone and dominated
convergence theorems.

More generally (6.3) simply provides a lower bound on the probability that some random
variable is non-zero. It is often called the second moment method.

Example 6.2.2 Consider a graph with n vertices. For each (unordered) pair of distinct vertices
(v1, v2), the edge from v1 to v2 is present in the graph with probability p, independent of all other
pairs of vertices. This graph is known as the Erdős-Renyi graph, often denoted by G(n, p). We
are interested in whether G(n, p) contains isolated vertices, which are vertices that have no edges
connected to them, as n→ ∞.

Let Ei be the event that vertex i is isolated, and let Yn =
∑n

i=1 1Ei
be the number of isolated

vertices. The probability of each vertex being isolated is P[Ei] = (1 − p)n−1, so the expected
number of isolated vertices is E[Yn] =

∑n
i=1 P[Ei] = n(1− p)n−1.
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A pair of distinct vertices, that is i 6= j, is part of 2n − 3 edges (and not 2n − 2, because
they are both part of the edge between them), so P[Ei ∩Ej ] = (1− p)2n−3. We can calculate the
second moment too, with the help of Exercise 2.5, as

E[Y 2
n ] =

n∑
i,j=1

P[Ei ∩ Ej ]

=

n∑
i=1

P[Ei] +

n∑
i,j=1

i 6=j

P[Ei ∩ Ej ]

= n(1− p)n−1 + n(n− 1)(1− p)2n−3

Note that since Y takes integer values, P[Y > 0] = P[Y ≥ 1]. The Paley-Zygmund inequality
gives that

P[Y ≥ 1] ≥ n2(1− p)2n−2

n(1− p)n−1 + n(n− 1)(1− p)2n−3
=

1
1
n(1− p)−n−3 + n−1

n (1− p)−1
.

Allowing p to depend on n, it follows that if 1
n(1−p)n → 0, or equivalently n(1 − p)n → ∞, as

n → ∞ then we must have P[Y ≥ 1] → 1 as n → ∞. If that condition holds, then for large n it
is very likely that G(n, p) contains at least one isolated vertex.
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6.3 Jensen’s inequality (∆)

A function g : R → R is convex if it satisfies

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y) (6.4)

for all x, y ∈ R and t ∈ [0, 1]. Equation (6.4) is best understood with a picture.

Convex functions are often described as having the shape of a smile. The key point is that the
red dots, corresponding to the left hand side of (6.4), sit below the red line, corresponding to the
right hand side of (6.4). Here we have shown (6.4) for x = −2 and y = 3, on the convex function
f(x) = 1 + x2 + 1

20 max(0, x3). The tangent line at −3 is shown in green. Note that f sits above
its own tangent lines.

Jensen’s inequality relates expectation with convex functions. It is a tool that requires a
specific situation to apply, but when it does apply it is often the only tool available.

Lemma 6.3.1 (Jensen’s Inequality) Let X ∈ L1 and let g : R → R be a convex measurable
function. Then g(E[X]) ≤ E[g(X)].

We will give a proof of Lemma 6.3.1 under the additional assumption that g is differentiable.
This is not a very big restriction – in fact, convex functions are necessarily differentiable at all
but countably many x ∈ R (we won’t prove that). However, restricting to differentiable g allows
us to give a much more intuitive proof than is possible in the general case. The following lemma
explains why, and we’ll give the proof of Jensen’s inequality below. It says that a differentiable
convex function sits above all of its tangent lines, as you can see in the example of the tangent at
x = −3 pictured in the graph above.

Lemma 6.3.2 Let g : R → R.

1. If g is differentiable then g is convex if and only if g′′(x) ≥ 0 for all x.

2. If g is convex and differentiable then for all x, y ∈ R we have (y − x)g′(x) ≤ g(y)− g(x).
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Proof: We’ll omit a proof of the first claim. It should help you understand (and check)
convexity, but the proof doesn’t provide us with any useful intuition. In the picture below (6.4)
you can see an example where g′′(x) > 0 for all x.

For the second claim, we can rewrite (6.4) as (t+ 1− t)g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y),
which rearranges to

t
[
g
(
tx+ (1− t)y

)
− g(x)

]
≤ (1− t)

[
g(y)− g

(
tx+ (1− t)y

)]
.

Let us first consider when y > x. In this case, for t 6= 1, dividing through by (1− t)(y − x) leads
to

t
g
(
tx+ (1− t)y

)
− g(x)

(1− t)(y − x)
≤
g(y)− g

(
tx+ (1− t)y

)
(1− t)(y − x)

. (6.5)

The point is that tx+ (1− t)y − x = (1− t)(y − x), so letting t ↑ 1 leads to

g′(x) ≤ g(y)− g(x)

y − x
. (6.6)

The result follows after multiplying both sides by y − x.
When x < y the same calculation leads to the same result, but the direction of the inequality

in (6.5) and (6.6) is reversed, then reverses back again when we multiply both sides by y−x. The
case x = y is trivial. �

Proof of Lemma 6.3.1 for differentiable g: By part 2 of Lemma 6.3.2 we have (y −
x)g′(x) ≤ g(y)− g(x) for all x, y ∈ R. Therefore we may put E[X] in place of x and X in place
of y, leading to

(X − E[X])g′(E[X]) ≤ g(X)− g(E[X]).

Taking expectations, using linearity and monotonicity,

(E[X]− E[X])g′(E[X]) ≤ E[g(X)]− g(E[X]).

The left hand side is zero, and the result follows. �

Example 6.3.3 Setting g(x) = x2 in Jensen’s inequality gives E[X]2 ≤ E[X2]. We derived this
inequality already in Exercise 5.12 as a consequence of the Cauchy-Schwarz inequality. Setting
g(x) = |x|p for p ≥ 1 gives that E[|X|p] ≤ E[|X|]p, which we will make use of in the proof of
Lemma 7.2.1. Note that for p ∈ [1, 2), the function x 7→ |x|p is convex but is not differentiable at
x = 0.

Remark 6.3.4 Jensen’s inequality also holds if the convex function g is only defined on some
interval I of R, but I is large enough that P[X ∈ I] = 1. The proof is the same as above, except
that the first inequality in the proof only holds almost surely. Lemma 6.3.2 still holds, but with
x and y restricted to I.

Jensen’s inequality is surprisingly far reaching in its consequences. For example it provides
the key ingredient used to prove most of the basic inequalities of functional analysis e.g. Hölders
inequality, Minkowski’s inequality, Young’s inequality, and so on. The road towards those in-
equalities is fairly long and begins with Exercise 6.5, but we won’t include those inequalities in
this course.
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6.4 Exercises on Chapter 6 (∆)

6.1 Let Xn have a Poisson distribution with mean nλ > 0. Show that E[etXn ] = enλ(e
t−1).

Hence construct a Chernoff bound for P[Xn > nλ2], where n ∈ N.

6.2 Let (En)n∈N be a sequence of events and let Xn =
∑n

i=1 1Ei
. Suppose

∑∞
i=1 P[Ei] = ∞ and

that P[Ei ∩ Ej ] ≤ P[Ei]P[Ej ] for all i 6= j. Show that P[Xn ≥ 1] → 1 as n→ ∞.

6.3 In each case, determine whether the two quantities given satisfy an equality of the form
a ≤ b, b ≤ a, or if no such inequality holds in general.

(a) E[X4] and E[X]4, where X is a random variable.

(b) E[X1/4] and E[X]1/4, where X is a non-negative random variable.

(c) E[eX ] and eE[X], where X is a bounded random variable.

(d) E[cos(X)] and cos(E[X]), where X is a random variable.

6.4 Let {x1, . . . , xn} ⊆ (0,∞). The mean average of these values is x1+...xn

n , which is more
precisely known as the arithmetic mean. In some situations it is advantageous to instead use
the geometric mean, n

√
x1x2 . . . xn.

By applying Jensen’s inequality to a random variable with the discrete uniform distribution
on {x1, . . . , xm} and the function g(x) = − logx, deduce that

n
√
x1x2 . . . xn ≤ x1 + . . . xn

n
.

This equation is known as the AM-GM inequality.

6.5 Let 1 ≤ p ≤ q and let X be a random variable. Use Jensen’s inequality to show that if
E[|X|q] <∞ then E[|X|p] <∞.

Challenge questions

6.6 Let X be a non-negative random variable with E[X2] ∈ (0,∞). Show that E[X] > 0 and
that

P[X = 0] ≤ min
{
E[X2]

E[X]2
− 1, 1− E[X]2

E[X2]

}
.
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Chapter 7

Sequences of Random Variables

In this section we think about sequences of random variables, and about taking limits of random
variables. As with real numbers, sequences and limits are our main tool for justifying the use of
approximations. Approximations allow us to better understand complicated models, by giving
us a way to replace complicated random objects with simpler ones (whilst still maintaining some
degree of accuracy). As such, this theory underpins much of stochastic modelling.

7.1 The Borel-Cantelli lemmas

The Borel-Cantelli lemmas are a tool for understanding the tail behaviour of a sequence (En) of
events. The key definitions are

{En i.o.} = {En, infinitely often} =
⋂
m

⋃
n≥m

En = {ω : ω ∈ En for infinitely many n}

{En e.v.} = {En, eventually} =
⋃
m

⋂
n≥m

En = {ω : ω ∈ En for all sufficiently large n}.

The set {En i.o.} is the event that infinitely many of the individual events En occur. The set
{En e.v.} is the event that, for some (random) N , all the events En for which n ≥ N occur.

For example, we might take an infinite sequence of coin tosses and choose En to be the event
that the nth toss is a head. Then {En i.o.} is the event that infinitely many heads occur, and
{En e.v.} is the event that, after some point, all remaining tosses show heads.

Note that by straightforward set algebra,

Ω \ {En i.o.} = {Ω \ En e.v.}. (7.1)

In our coin tossing example, Ω \ En is the event that the nth toss is a tail. So (7.1) says that
‘there are not infinitely many heads’ if and only if ‘eventually, we see only tails’.

The Borel-Cantelli lemmas, respectively, give conditions under which the probability of {En i.o.}
is either 0 or 1.

Lemma 7.1.1 (First Borel-Cantelli Lemma) Let (En)n∈N be a sequence of events and sup-
pose

∑∞
n=1 P[En] <∞. Then P[En i.o.] = 0.

Proof: We have

P

⋂
N

⋃
n≥N

En

 = lim
N→∞

P

 ⋃
n≥N

EN

 ≤ lim
N→∞

∞∑
n=N

P[En] = 0,
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Here, the first step follows by applying Lemma 5.1.1 to the decreasing sequence of events (BN )

where BN =
⋃

n≥N En. The second stop follows by Lemma 1.7.2 and the fact that limits preserve
weak inequalities. The final step follows because

∑∞
n=1 P[En] <∞. �

For example, suppose that (Xn) are random variables that take the values 0 and 1, and
that P[Xn = 1] = 1

n2 for all n. Then
∑

n P[Xn = 1] =
∑

n
1
n2 < ∞ so, by Lemma 7.1.1,

P[Xn = 1 i.o.] = 0, which by (7.1) means that P[Xn = 0 e.v.] = 1. So, almost surely, beyond
some (randomly located) point in our sequence (Xn), we will see only zeros. Note that we did
not require the (Xn) to be independent.

Lemma 7.1.2 (Second Borel-Cantelli Lemma) Let (En)n∈N be a sequence of independent
events and suppose that

∑∞
n=1 P[En] = ∞. Then P[En i.o.] = 1.

Proof: Write Ec
n = Ω\En. We will show that P[Ec

n e.v.] = 0, which by (7.1) implies our stated
result. Note that

P[Ec
n e.v.] = P

⋃
N

⋂
n≥N

Ec
n

 ≤
∞∑

N=1

P

 ⋂
n≥N

Ec
n

 (7.2)

by Lemma 1.7.2. Moreover, since the (En) are independent, so are the (Ec
n), so

P

 ⋂
n≥N

Ec
n

 =

∞∏
n=N

P[Ec
n] =

∞∏
n=N

(1− P[En]) ≤
∞∏

n=N

e−P[En] = exp

(
−

∞∑
n=N

P[En]

)
= 0.

Here, the first step follows by Exercise 5.7. The second step is immediate and the third step uses
that 1 − x ≤ e−x for x ∈ [0, 1]. The fourth step is immediate and the final step holds because∑

n P[En] = ∞. By (7.2) we thus have P[Ec
n e.v.] = 0. �

For example, suppose that (Xn) are i.i.d. random variables such that P[Xn = 1] = 1
2 and

P[Xn = −1] = 1
2 . Then

∑
n P[Xn = 1] = ∞ and, by Lemma 7.1.2, P[Xn = 1 i.o.] = 1. By

symmetry, we have also P [Xn = 0 i.o.] = 1. So, if we look along our sequence, almost surely we
will see infinitely many 1s and infinitely many 0s.

Since both the Borel-Cantelli lemmas come down to summing a series, a useful fact to remember
from real analysis is that, for p ∈ R,

∞∑
n=1

n−p <∞ ⇔ p > 1.

Recall that this fact follows from the integral test for convergence of series.
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7.2 Convergence of random variables

Let (Xn) be a sequence of random variables, all of which are defined on the same probability
space (Ω,F ,P). There are various different ways in which we can examine the convergence of this
sequence to a random variable X (which is also defined on (Ω,F ,P). They are called modes of
convergence.

When we talk about convergence of real numbers an → a we only have one mode of conver-
gence, which we might think of as convergence of the value of an to the value of a. Random
variables are much more complicated objects; they take many different values with different prob-
abilities. For this reason, there are multiple different modes of convergence of random variables.

We have already mentioned almost sure convergence of random variables in Section 5.1. We
recall this and introduce three new modes of convergence here. We say that (Xn) converges to X

• in distribution if whenever P[X = x] = 0 we have P[Xn ≤ x] → P[X ≤ x].

• in probability if given any a > 0, we have P[|Xn −X| ≥ a] → 0 as n→ ∞,

• almost surely if P[Xn → X, as n→ ∞] = 1,

• in Lp if E[|Xn −X|p] → 0 as n→ ∞.

When (Xn) converges to X almost surely we sometimes write Xn → X a.s. as n → ∞. We may
also write the type of convergence above the arrow e.g. Xn

L2

→ X or Xn
a.s.→ X.

For Lp convergence we are usually only interested in the cases p = 1 and p = 2. The case p = 2

is sometimes known as convergence in mean square. For reasons that are explained in Section
4.9.2, convergence in Lp is only defined for p ∈ [1,∞).

Happily, there are some relationships between these different modes of convergence.

Lemma 7.2.1 Let Xn, X be random variables.

1. If Xn
P→ X then Xn

d→ X.

2. If Xn
a.s.→ X then Xn

P→ X.

3. If Xn
Lp

→ X then Xn
P→ X.

4. Let 1 ≤ p < q. If Xn
Lq

→ X then Xn
Lp

→ X.

No other relationships exist in general, other than those implied by the above results.

Proof: The last part follows from the counterexamples in Exercises 7.3-7.5. We’ll give proofs
of parts 1-4 here.

Part 1. Let x ∈ R be such that P[X = x] = 0 and let ε > 0. We have

P[X ≤ x] = P[X ≤ x, |Xn −X| < ε] + P[X ≤ x, |Xn −X| ≥ ε]

≤ P[Xn ≤ x+ ε] + P[|Xn −X| ≥ ε]. (7.3)

Putting x− ε in place of x we obtain

P[X ≤ x− ε] ≤ P[Xn ≤ x] + P[|Xn −X ≥ ε]. (7.4)
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Combining (7.3) and (7.4) leads to

P[X ≤ x− ε]− P[|Xn −X| ≥ ε] ≤ P[Xn ≤ x] ≤ P[X ≤ x+ ε] + P[|Xn −X| ≥ ε].

Letting n→ ∞, and using that Xn
P→ X, we obtain

P[X ≤ x− ε] ≤ lim inf
n

P[Xn = x] ≤ lim sup
n

P[Xn ≤ x] ≤ P[X ≤ x+ ε].

By Remark 5.2.2 and the fact that P[X = x] = 0 we have that y 7→ P[X ≤ y] is continuous at
y = x. Hence, letting ε → 0, both P[X ≤ x + ε] and P[X ≤ x − ε] converge to P[X ≤ x]. We
don’t yet know if the term P[Xn ≤ x] converges as n → ∞, so we need to take lim inf on the
left hand side and lim sup on the right hand side. Exercise 2.6 tells us that lim inf and lim sup
preserve weak inequalities, and Lemma 2.2.2 tells us that they are equal to the limit, if the limit
exists. We thus have

P[X ≤ x] ≤ lim inf
n

P[Xn = x] ≤ lim sup
n

P[Xn ≤ x] ≤ P[X ≤ x],

which by Lemma 2.2.2 again gives that P[Xn ≤ x] → P[X ≤ x].
Part 2. Let ε > 0 be arbitrary and let An =

⋃∞
m=n{|Xm − X| ≥ ε}. Then (An) is a

decreasing sequence of events. Let A =
⋂∞

n=1An. If ω ∈ A then Xn(ω) cannot converge to
X(ω) as n → ∞ and so P[A] = 0, because Xn → X almost surely. By Lemma 5.1.1 part (2),
limn→∞ P[An] = P[A] = 0. But then by monotonicity,

P[|Xn −X| ≥ ε] ≤ P[An] → 0 as n→ ∞.

Part 4. (∆) We’ll prove part 4 next, because it will be helpful in part 3 below. This part is
marked with a (∆) because we need an inequality that comes from Chapter 6. It is true that

|E[X]|p ≤ E[|X|p] (7.5)

for all p ≥ 1 and all random variables X. For general p, this is a special case of Jensen’s inequality,
which is part of the independent reading in Section 6.3, marked with a (∆). However, the p = 2

case is a consequence of the Cauchy-Schwartz inequality and has already appeared in Exercise
5.12. The p = 1 case is simply |E[X]| ≤ E[|X|], which is the absolute value property from
Theorem 4.5.3 written in the notation of probability.

Putting |Xn −X|p into (7.5), and then putting q/p ≥ 1 in place of p, we obtain that E[|Xn −
X|p]q/p ≤ (E[|Xn −X|p(q/p)]). Thus E[|Xn −X|p] ≤ (E[|Xn −X|q])p/q. The result follows.

Part 3. Thanks to part 4, it suffices to prove that L1 convergence implies convergence in
probability. From Markov’s inequality (Lemma 4.2.3, rewritten in probability notation in Exercise
5.1) for any a > 0 we have

P[|Xn −X| ≥ a] ≤ E[|Xn −X|]
a

.

If Xn
L1

→ X then the right hand side tends to zero as n→ ∞, hence so does the left. �

Remark 7.2.2 The following diagram records which modes of convergence imply which other
modes of convergence.
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In all other cases (i.e. that are not automatically implied by the above), convergence in one mode
does not imply convergence in another.

Recall that for real numbers, if an → a and an → b then a = b, which is known as uniqueness of
limits. For random variables, the situation is a little more complicated: if Xn

P→ X and Xn
P→ Y

then X = Y almost surely. By Lemma 7.2.1, this result also applies to Lp

→ and a.s.→ . However, if
we have only Xn

d→ X and Xn
d→ Y then we can only conclude that X and Y have the same

distribution, that is P[X ≤ x] = P[Y ≤ x] for all x. Proving these facts is Exercise 7.6.
Establishing convergence in distribution, probability and Lp usually comes down to calculating

(or estimating) the important quantities involved: P[X ≤ x], P[|Xn −X| ≤ a] and E[|Xn −X|p],
and then thinking about their limits as n → ∞. There are several examples of this type within
the exercises. Almost sure convergence is harder to work with, but here we can often use the
Borel-Cantelli lemmas.

Example 7.2.3 Let (Xn) be a sequence of i.i.d. random variables, each with the uniform distri-
bution on [0, 1]. Then P[Xn ≤ 1

3 ] = P[Xn ≥ 2
3 ] =

1
3 , so (using independence) by two applications

of the second Borel-Cantelli lemma we have P[Xn ≤ 1
3 i.o.] = P[Xn ≥ 2

3 i.o.] = 1. Hence, with
probability 1, the sequence Xn will oscillate infinitely often between [0, 13 ] and [23 , 1], in which case
it cannot converge. Thus (Xn) does not converge almost surely (to any limit) in this case.

Alternatively, consider a sequence (Yn) with P[Yn = 1] = 1
n2 and P[Yn = 0] = 1 − 1

n2 . Since∑ 1
n2 <∞, the first Borel-Cantelli lemma tells us that P[Yn = 1 i.o.] = 0. Hence P[Yn = 0 e.v.] =

1, which implies that P[Yn → 0] = 1, or in other words that Yn
a.s.→ 0.

Lemma 7.2.4 If Xn → X in probability as n → ∞ then there is a subsequence of (Xn) that
converges to X almost surely.

Proof: If (Xn) converges in probability to X, for all c > 0, given any ε > 0, there exists
N(c) ∈ N so that for all n ≥ N(c), P[|Xn −X| > c] < ε.

In order to find our subsequence:
– First choose, c = 1 and ε = 1/2, then for n ≥ N(1), P[|Xn −X| > 1] < 1/2.

– Next choose c = 1/2 and ε = 1/4, then for n ≥ N(2), P[|Xn −X| > 1/2] < 1/4.

– In general, choose c = 1/r and ε = 1/2r, then for n ≥ N(r), P[|Xn −X| > 1/r] < 1/2r.

Set kr = max{N(1), N(2), . . . , N(r), r} for r ∈ N. to obtain a subsequence (Xkr
) so that for

all r ∈ N,
P[|Xkr

−X| > 1/r] < 1/2r.

Since
∑ 1

2r <∞, by the first Borel-Cantelli lemma (Lemma 7.1.1) we have

P[|Xkr
−X| > 1/r i.o.] = 0,
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and so
P[|Xkr

−X| ≤ 1/r e.v.] = 1.

Hence, almost surely, there exists some R ∈ N such that for all r ≥ R we have |Xkr
−X| < 1/r,

which implies that |Xkr
−X| → 0. Hence Xkr

→ X almost surely. �

Remark 7.2.5 A subtle point is that the subsequence of (Xn) constructed by Lemma 7.2.4 is a
deterministic subsequence, in the sense that r 7→ kr is a deterministic function. Of course, Xkr

is
a random variable for each r.
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7.3 Laws of large numbers

Let (Xn) be a sequence of random variables all defined on the same probability space. We say
that the sequence (Xn) is i.i.d., short for independent and identically distributed, if it has the
following properties:

• they are independent;

• they are identically distributed, which means that for all A ∈ B(R),

P[X1 ∈ A] = P[X2 ∈ A] = · · · = P[Xn ∈ A] = · · ·

or equivalently that pXn
= pXm

for all n 6= m.

Sequences of this type are very important. From a practical point of view they correspond to a
random trial repeated multiple times, which is a common occurrence in experimental science, but
also in statistics (think of e.g. survey responses). They are also theoretically important, because
the large amount of independence involved makes these sequences easier to study. There are
many examples of limit theorems in probability that were proved first for i.i.d. sequences and
later extended to more complicated situations. We will study two examples of this in Sections
7.3-7.5.

In this section we are interested in the empirical arithmetic mean

Xn =
X1 +X2 + · · ·+Xn

n
, (7.6)

which in statistics is often known as the sample mean. The standard notation Xn is rather lazy,
strictly ( · ) is a function whose arguments are the sequence (X1, . . . , Xn) and the natural number
n, with value given by (7.6).

If Xn ∈ L1 for some (and hence all) n ∈ N, with µ = E[Xn], then by linearity Xn ∈ L1 and
E[Xn] = µ. It is natural to expect that for the large n the value of Xn is typically close to µ,
because some of the Xi will fall above µ, others below, and to some extent they will balance each
other out. The following two famous results make this idea precise.

Theorem 7.3.1 (Weak Law of Large Numbers) Let (Xn) be a sequence of i.i.d. random
variables with E[Xn] = µ for all n ∈ N. Suppose that E[X2

n] < ∞ for all n ∈ N. Then
Xn → µ in probability as n→ ∞.

Proof: By the Cauchy-Schwarz inequality (Exercise 5.12) we have E[|XnXm|] ≤ (E[X2
n]E[X2

m])1/2 <

∞, so XnXm ∈ L1. Also by this exercise we have var(Xn) <∞, so let us write σ2 = var(Xn).
Since the (Xn) are independent by Theorem 5.4.2 we have E[XnXm] = E[Xn]E[Xm] = 0, so

cov(Xn, Xm) = E[XnXm]− E[Xn]E[Xm] = 0. We may therefore calculate

var(Xn) =
1

n2

 n∑
i=1

var(Xi) +
∑
i 6=j

cov(Xi, Xj)

 =
nσ2

n2
+ 0 =

σ2

n
.

Hence, by Chebychev’s inequality (Exercise 5.2) for all a > 0 we have that P[|Xn − µ| > a] ≤
var(Xn)

a2 = σ2

na2 which tends to zero as n→ ∞. �
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Theorem 7.3.2 (Strong Law of Large Numbers) Let (Xn) be a sequence of i.i.d. random
variables Xn ∈ L1 and with E[Xn] = µ for all n ∈ N. Then Xn → µ almost surely as n→ ∞.

By Lemma 7.2.1 the strong law implies the weak law, but the strong law is much harder to
prove. We won’t give a full proof in this course. Instead, we will give a proof in the special case
that E[X4

n] <∞.
Proof of Theorem 7.3.2, assuming that E[X4

n] < ∞: Without loss of generality we may
assume that µ = 0. The general case can be obtained from this special case by considering
X ′

n = Xn − µ.
Let Sn = X1+X2+· · ·+Xn so that Sn = nXn for all n ∈ N. Consider E[S4

n]. It contains many
terms of the form E[XjXkXlXm]. By the same argument as we used in the proof of Theorem
7.3.1, based on the Cauchy-Schwarz inequality, XjXkXlXm ∈ L1 for all j, k, l,m. If j, k, l and m
are all distinct then by Theorem 5.4.2 we have E[XjXkXlXm] = E[Xj ]E[Xk]E[Xl]E[Xm], which
is zero because E[Xj ] = E[Xk] = E[Xl] = E[Xm] = 0. A similar argument disposes of terms of
the form E[XjX

3
k ] and E[XjXkX

2
l ], where j, k, l are distinct.

The only terms with non-vanishing expectation are n terms of the form X4
i and

(
n
2

)(
4
2

)
=

3n(n − 1) terms of the form X2
iX

2
j with i 6= j. By part 1 of Theorem 5.4.2, X2

i and X2
j are

independent for i 6= j and so by part 2 Theorem 5.4.2

E[X2
iX

2
j ] = E[X2

i ]E[X2
j ] = var(X2

i ) var(X2
j ) = σ4.

Putting all this together and writing b = E[X4
n] and c = E[X2

iX
2
j ],

E[S4
n] =

n∑
i=1

E[X4
i ] +

∑
i 6=j

E[X2
iX

2
j ]

= nb+ 3n(n− 1)c ≤ Kn2,

where K = b+ 3c. For all a > 0, by Markov’s inequality (Lemma 4.2.3)

P[|Xn| > a] = P[S4
n > a4n4] ≤ E[S4

n]

a4n4
≤ Kn2

a4n4
=

K

a4n2
.

Recall that
∑∞

n=1
1
n2 < ∞. Hence, by the first Borel-Cantelli lemma, P[|Xn| > a i.o.] = 0 and so

P[|Xn| ≤ a e.v.] = 1. It follows that Xn → 0 a.s. as required. �

Remark 7.3.3 (?) The proof, in the general case without Assumption 4.1, uses a ‘truncation
argument’ based on Yn = Xn1{Xn≤n}. Note that Yn ≤ n for all n and so E[Y k

n ] ≤ nk for all k.
If Xn ≥ 0 for all n, E[Yn] → µ by monotone convergence. Roughly speaking the argument is to
prove a SLLN for the Yn, then transfer this to the Xns. It requires much more work.
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7.4 Characteristic functions (∆)

In this section we introduce the main tool that we will need to prove the central limit theorem. It
relies on Lebesgue integration in C, which we studied in Section 4.8. In this section we will also
use complex versions of exercises that were earlier set for real valued functions. In such cases the
complex version follows by applying the real version to real and imaginary parts.

Definition 7.4.1 Let X be a random variable defined on a probability space (Ω,F ,P). The
characteristic function φX : R → C of X and is defined, for each u ∈ R, by

φX(u) = E
[
eiuX

]
=

∫
R
eiuy dpX(y). (7.7)

The integral formula for E[eiuX] on the right hand side of (7.7) follows by Exercise 5.14. Note
also that y → eiuy is measurable since eiuy = cos(uy) + i sin(uy), and in L1 by Exercise 4.5 since
|eiuy| ≤ 1 for all y ∈ R and pX is a finite measure.

Example 7.4.2 Suppose that X ∼ N(µ, σ2), that is X has a normal distribution (sometimes
known as a Gaussian) with mean µ and variance σ2. In Problem 7.9 you can show for yourself
that in this case φX(u) = exp

(
iµu− 1

2σ
2u2
)

for all u ∈ R.

Equation (7.7) states that the characteristic function of X is the Fourier transform of the
law pX of the random variable X. In elementary probability theory courses we often meet the
Laplace transform E[euX ] of X, which is called the moment generating function of X. The moment
generating function has the disadvantage that it only exists when |u| is small enough, because the
function y 7→ euy may not be L1. How small |u| is required to be depends on X, but unfortunately
there are random variables for which E[euX ] is undefined for all u 6= 0. In such cases the moment
generating function is useless. The characteristic function has the important advantage that it is
always defined for all u ∈ R.

Here is a useful property of characteristic functions, which is another instance of the ‘indepen-
dence means multiply’ philosophy that we developed in Section 5.4.

Lemma 7.4.3 If X and Y are independent random variables then for all u ∈ R,

φX+Y (u) = φX(u)φY (u).

Proof: We have φX+Y (u) = E
[
eiu(X+Y )

]
= E

[
eiuXeiuY

]
= E

[
eiuX

]
E
[
eiuY

]
= φX(u)φY (u),

where the key step follows by the complex version of Theorem 5.4.2. �

We’ll end this section with two important properties of characteristic functions, neither of
which will be proved within this course. The first says that characteristics are unique to random
variables, in the sense that any random variables with same characteristic function also have the
same law. The second relates characteristic functions to convergence in distribution.

Theorem 7.4.4 If X and Y are two random variables for which φX(u) = φY (u) for all u ∈ R
then pX = pY .

Theorem 7.4.5 Let Xn, X be random variables with laws pXn
and pX (respectively), and char-

acteristic functions φn and φ. The following statements are equivalent:

1. Xn
d→ X,

2. for all u ∈ R we have φn(u) → φ(u).
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7.4.1 Approximating characteristic functions with polynomials (∆)

We now an inequality that we will be used in our proof of the central limit theorem. Let x ∈ R
and let Rn(x) be the remainder term in the Taylor series expansion of eix,

Rn(x) = eix −
n∑

k=0

(ix)k

k!
.

We start with an upper bound on Rn(x), which we then convert into a bound on the distance
between a characteristic function and an approximating polynomial.

Lemma 7.4.6 For all n ∈ N ∪ {0} and x ∈ R,

|Rn(x)| ≤ min
{
2|x|n

n!
,
|x|n+1

(n+ 1)!

}
.

Proof: A simple calculation based on Exercise 4.14 shows that

R0(x) = eix − 1 =

{∫ x
0 ie

iy dy if x > 0,

−
∫ 0
x ie

iy dy if x < 0.

Using that |ieiy| ≤ 1 and the absolute values property of integrals (from the complex version of
Theorem 4.5.3) gives that |R0(x)| ≤ |x|. We have also that

|R0(x)| =
∣∣∣∣∫ x

0
eiy dy

∣∣∣∣ =
((∫ x

0
cos y dy

)2

+

(∫ x

0
sin y dy

)2
)1/2

.

Using Theorem 4.9.1 can write
(∫ x

0 cos y dy
)2

=
∫ x
0

∫ x
0 cos y cosu du dy and similarly for sin, with

the result that |R0(x)| =
( ∫ x

0

∫ x
0 cos(u− y) du dy

)1/2. Computing this integral leads to

|R0(x)| =
(
2(1− cosx)

)1/2
,

which is bounded above by
(
2(1 − (−1))

)1/2
= 2. Putting all this together, we have |R0(x)| ≤

min{2, |x|}.
Another calculation, again using Exercise 4.14, shows that

Rn(x) =

{∫ x
0 iRn−1(y) dy if x > 0,

−
∫ 0
x iRn−1(y) dy if x < 0.

Using this relationship, the result can be shown via induction (which is left for you to check),
starting from the base case n = 0 above. �

Lemma 7.4.7 Let X be a random variable such that E[|X|n] < ∞ and E[X] = 0. Let φ be the
characteristic function of X. Then∣∣∣∣∣φ(y)−

n∑
k=0

(iy)kE[Xk]

k!

∣∣∣∣∣ ≤ E
[
min

{
2|yX|n

n!
,
|yX|n+1

(n+ 1)!

}]
.

for all n ∈ N ∪ {0}.
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Proof: We have

|E[Rn(yX)]| ≤ E[|Rn(yX)|] ≤ E
[
min

{
2|yX|2

n!
,
|yX|n+1

(n+ 1)!

}]
.

The first step uses the absolute value property of integrals, and the second step uses Lemma
7.4.6 (with x = yX) and monotonicity. The required result follows after noting that by linearity
E[Rn(yX)] = φ(y) −

∑n
k=0

(iy)kE[Xk]
k! . We may use linearity here because, by Exercise 6.5, if

E[|X|n] <∞ then E[|X|k] <∞ for all 1 ≤ k ≤ n. �
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7.5 The central limit theorem (∆)

The law of large numbers in Section 7.3 told us that if (Xn) was an i.i.d. sequence of L1 random
variables then the sample mean Xn because close to µ = E[Xn], for large n. The central limit
theorem, which we study in this section, examines how close they become.

Let Sn =
∑n

i=1Xn, and let us write

Yn =
Xn − µ

σ/
√
n

(7.8)

where µ = E[Xn] and σ = var(Xn), both assumed to be finite. We saw in Section 7.3 that
E[Xn] = µ, var(Xn) = σ2/n, which means that E[Yn] = 0 and var(Yn) = 1 for all n ∈ N. For this
reason (7.8) is often known as a standardization of Xn. If Xn = µ then Yn = 0. More generally,
how far away Yn is from zero corresponds to how far Xn is away from µ.

Its difficult to underestimate the importance of the next result. It shows that if the Xn

have finite variance then Yn
d→ N(0, 1), where N(0, 1) denotes the standard normal distribution,

regardless of the distribution of the i.i.d. random variables Xn. This is extraordinarily useful
from an experimental point of view, because it tells you something that you should expect to
see happen in every experiment – provided you can take repeated independent samples and they
have finite variance. It allows statistical tests to be constructed without knowing the precise
distribution of the random quantities involved, and that allows experimental science to quantify
how likely a particular experiment (repeated sufficiently many times) is to have observed some
important fact and not just random chance. In uncertain situations, the scientific basis for how
well we understand the world around us comes primarily from the central limit theorem. We will
discuss its history in Section 7.5.1.

Theorem 7.5.1 (Central Limit Theorem) Let (Xn) be a sequence of i.i.d. random variables
each having finite mean µ and finite variance σ2. Let Yn be given by (7.8). Then Yn converges in
distribution to the N(0, 1) distribution, as n→ ∞.

Our proof will be based on Lemma 7.4.7 and the following lemma, which is a slight extension
of the famous result that limn→∞(1 + x

n)
n → ex.

Lemma 7.5.2 Let y ∈ R and let αn be a sequence of real or complex numbers such that limn αn =

0. Then for all y ∈ R, as n→ ∞ we have(
1 +

y + αn

n

)n

→ ey (7.9)

The proof of Lemma 7.5.2 is an exercise in real analysis, which is included as Problem 7.11. We
are now ready to prove the central limit theorem.
Proof of Theorem 7.5.1: Without loss of generality we assume that µ = 0 and σ = 1.
We can recover the general result from this special case by replacing Xn by (Xn − µ)/σ. Hence
E[X1] = µ = 0 and E[X2

1 ] = 1. We have also that var(X1) and E[X1
1 ] are finite.

Our strategy is to show that the characteristic function of φ converges to the characteristic
function of the N(0, 1) distribution, and then apply Theorem 7.4.5. Let ψ be the common char-
acteristic function of the Xn, given by ψ(u) = E[eiuX1 ] for all u ∈ R. Let φn be the characteristic
function of Yn for each n ∈ N. Using independence and Lemma 7.4.3 we have that

φn(u) = E
[
ei

u√
n
(X1+X2+···+Xn)

]
= ψ(u/

√
n)n. (7.10)
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Applying Lemma 7.4.7 to ψ, for all y ∈ R we have∣∣ψ(y)− (1 + iyE[X1]− y2E[X2
1 ]
)∣∣ ≤ E

[
min

{
|yX1|2,

|yX1|3

6

}]
.

Setting y = u/
√
n, using that E[X1] = 0 and E[X2

1 ] = 1,∣∣∣∣ψ(u/√n)− (1− u2

2n

)∣∣∣∣ ≤ E
[
min

{
u2|X1|2

n
,
|X1|3

6n3/2

}]
.

Let us write θn(u) = E
[
min

{
u2|X1|2

n , |X1|3
6n3/2

}]
. Putting the above into (7.10), we obtain(

1− u2/2

n
− θn(u)

)n

≤ φn(u) ≤
(
1− u2/2

n
+ θn(u)

)n

and thus (
1 +

−u2/2− nθn(u)

n

)n

≤ φn(u) ≤
(
1 +

−u2/2 + nθn(u)

n

)n

. (7.11)

We have nθn(u) = E
[
min

{
u2|X1|2, |X1|3

6n2/2

}]
. Note that min

{
u2|X1|2, |X1|3

6n2/2

}
∈ L1 by Lemma

4.6.1 because |X1|2 ∈ L1, and that min
{
u2|X1|2, |X1|3

6n2/2

}
→ 0 pointwise as n → ∞. By the

dominated convergence theorem nθn(u) → 0 as n → ∞. From (7.11) and Lemma 7.5.2 we
thus have φn(u) → e−

u2

2 for all u ∈ R. In Exercise 7.9 we showed that e−
u2

2 is the characteristic
function of theN(0, 1) distribution. Hence from Theorem 7.4.5 we have Yn

d→ N(0, 1), as required.
�

7.5.1 Further discussion (?)

The central limit theorem is arguably the single most important result in probability and statistics.
It is likely to be one of the earliest things you learned about, even though we could not give a
rigorous proof until now.

The picture we know today was pieced together gradually by many different people. The
sheer number of mathematicians that were involved in efforts to prove central limit theorems,
particularly in the late 19th and early 20th century, makes a concise description of its history all
but impossible. The modern statement of Theorem 7.5.1 is not attributed to any single author.
The term ‘central limit’ is generally thought to have been introduced by Hungarian mathematian
George Pólya in 1920.

One of the first examples is the case of tosses of a fair coin (taking e.g. taking +1 for heads
and −1 for tails), studied by de Moivre in 1733 and later extended by Laplace – see Exercise 7.10
for this case. Around 1890, Chebyshev was the first mathematician to consider formulating the
central limit theorem in terms of a sequence of independent random variables. Before that point,
the results were formulated in terms of the convergence of particular probabilities. As we noted
at the start of Chapter 5, the foundation of probability theory in terms of Lebesgue measure was
also not established at that time. In fact, early proofs of what became the central limit theorem
were based on extremely difficult calculations. Substantial effort was made to find less convoluted
proofs, eventually leading to the argument given in these notes.

The version given in Theorem 7.5.1 has been extensively generalised during the 20th century.
For example, conditions are known under which the central limit theorem holds for dependent
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sequences of random variables, for martingales, for stochastic processes with independent in-
crements, and for cases where the normalization differs from that of subtracting the mean and
dividing by the standard deviation.

We will discuss only a few such results here. If the i.i.d. sequence (Xn) is such that µ = 0 and
E[|Xn|3] = ρ3 <∞, the Berry-Esseen theorem gives a useful bound for the difference between the
cdf of the normalised sum and the cdf Φ of the standard normal. To be precise we have that for
all x ∈ R, n ∈ N: ∣∣∣∣P( Sn

σ
√
n
≤ x

)
− Φ(x)

∣∣∣∣ ≤ C
ρ√
nσ3

,

where C > 0.
We can also relax the requirement that the sequence (Xn) be independent. Consider the

triangular array (Xnk, k = 1, . . . , n, n ∈ N) of random variables which we may list as follows:

X11

X21 X22

X31 X32 X33
...

...
...

Xn1 Xn2 Xn3 . . . Xnn
...

...
...

...
...

We assume that each row comprises independent random variables, but we allow random variables
within each row to have dependences. Assume further that E[Xnk] = 0 and σ2nk = E[X2

nk] < ∞
for all k, n. Define the row sums Sn = Xn1 + Xn2 + · · · + Xnn for all n ∈ N and define τn =

var(Sn) =
∑n

k=1 σ
2
nk. Lindeburgh’s central limit theorem states that if we have the asymptotic

tail condition

lim
n→∞

n∑
k=1

1

τ2n

∫
|Xnk|≥ετn

X2
nk(ω) dP(ω) = 0,

for all ε > 0 then Sn

τn
converges in distribution to a standard normal as n→ ∞.

The highlights of this chapter have been the proofs of the law of large numbers and central
limit theorem. There is a third result that is often grouped together with the other two as one of
the key results about sums of i.i.d. random variables. It is called the law of the iterated logarithm
and it gives bounds on the fluctuations of Sn for an i.i.d sequence with µ = 0 and σ = 1. The
result is quite remarkable. It states that almost surely,

lim inf
n→∞

Sn√
2n log log(n)

= −1, lim sup
n→∞

Sn√
2n log log(n)

= 1.

This means that (with probability one) if c > 1 then only finitely many of the events Sn >

c
√

2n log log(n) occur but if c < 1 then infinitely many of such events occur. Similarly, the other
way up, at −1. This gives a very precise description of the long-term behaviour of Sn.
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7.6 Exercises on Chapter 7
On the Borel-Cantelli lemmas

7.1 Let k ∈ N. Prove that in a sequence of independent coin tosses, infinitely many runs of k
consecutive heads will occur.

7.2 Let (Ω,F ,P) be a probability space. Let (An) be a sequence of events.

(a) Show that {An e.v.} ⊆ {An i.o.}.

(b) Show that {An i.o.}c = {Ac
n e.v.} and deduce that P[An i.o.] = 1− P[Ac

n e.v.].

(c) Show that

P[An e.v.] ≤ lim inf
n→∞

P[An] ≤ lim sup
n→∞

P[An] ≤ P [An i.o.] .

On convergence of random variables and laws of large numbers

7.3 Let (Xn) be a sequence of i.i.d. random variables such that P[Xn = 1] = P[Xn = 0] = 1
2 .

Show that Xn
d→ X1 as n→ ∞, but that this convergence does not hold in probability.

7.4 (a) Let (Xn) be a sequence of random variables such that P[Xn = n] = 1
n2 and P[Xn =

0] = 1− 1
n2 . Show that Xn

a.s→ 0 and Xn
L1

→ 0.

(b) Let (Xn) be a sequence of independent random variables such that P[Xn = n] = 1
n and

P[Xn = 0] = 1− 1
n . Show that Xn does not converge to zero almost surely or in L1.

(c) Let (Xn) be a sequence of random variables such that P[Xn = n2] = 1
n2 and P[Xn =

0] = 1− 1
n2 . Show that Xn

a.s.→ 0, and that Xn does not converge to zero in L1.

(d) Let (Xn) be a sequence of independent random variables such that P[Xn =
√
n] = 1

n

and P[Xn = 0] = 1− 1
n . Show that Xn

L1

→ 0, and that Xn does not converge to almost
surely to zero.

(e) Deduce that Xn
P→ 0 in all of the above cases.

7.5 Show that the following sequence (Xn) and candidate limit X of random variables converges
in probability but not almost surely.

Take Ω = [0, 1],F = B([0, 1]) and P to be Lebesgue measure. Take X = 0 and define Xn =

1An
where A1 = [0, 1/2], A2 = [1/2, 1], A3 = [0, 1/4], A4 = [1/4, 1/2], A5 = [1/2, 3/4], A6 =

[3/4, 1], A7 = [0, 1/8], A8 = [1/8, 1/4] etc.

7.6 Let (Xn) be a sequence of random variables, and let X and Y be random variables.

(a) Show that if Xn
d→ X and Xn

d→ Y then X and Y have the same distribution function
i.e. FX = FY .
Hint: If two right-continuous functions are equal almost everywhere, they are equal
everywhere.

(b) Show that if Xn
P→ X and Xn

P→ Y then X = Y almost surely.
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7.7 Examine the proof of the weak law of large numbers (Theorem 7.3.1) carefully. Show that the
conclusion continues to hold if the requirement that the random variables (Xn) are i.i.d. is
replaced by the weaker condition that they are identically distributed and uncorrelated, that
is E[XmXn] = E[Xm]E[Xn] whenever m 6= n.

7.8 (a) Let X be a random variable and suppose that X ≥ 0. Show that for any a ∈ (0, 1] we
have E[min(1, X)] ≤ a+ P[X ≥ a].

(b) Let (Xn) be a sequence of random variables. Suppose that Xn ≥ 0 for all n ∈ N. Show
that as n→ ∞,

Xn
P→ 0 if and only if E[min(1, Xn)] → 0.

Hint: Recall Markov’s inequality (Lemma 4.2.3).

On characteristic functions and central limit theorem (∆)

7.9 (a) Let X be a random variable with the N(0, 1) distribution. Let φ be the characteristic
function of X. Show that φ′(u) = −uφY (u) and hence show that φ(x) = e−x2/2.
Hint: Use the result of Exercise 4.17 to show that the real and imaginary parts of
y → φ(u) are differentiable.

(b) Extend part (a) to cover X ∼ N(µ, σ2).

7.10 The first central limit theorem to be established was due to de Moivre and Laplace. In this
case each Xn takes only two values, P[Xn = 1] = p and P[Xn = −1] = 1−p, where p ∈ [0, 1].
Write down the theorem in this special case, in terms of Sn = X1 + X2 + · · · + Xn, and
explain how it can be used to justify binomial approximations to the normal distribution.

7.11 The following result, which you do not need to prove, comes from real analysis.
Dini’s Theorem. Let a < b. For each n ∈ N let fn : [a, b] → R be a continuous function and
suppose that fn ≤ fn+1 for all n. If the pointwise limit fn → f exists, and if f : [a, b] → R
is continuous, then fn → f uniformly.
Let fn(x) = (1 + x

n)
n. Use the AM-GM inequality from Exercise 6.4 to show that fn(x) ≤

fn+1(x) for x ≥ 0 and all n ∈ N. Hence, use Dini’s theorem to prove Lemma 7.5.2.

Challenge questions

7.12 (a) Let (Xn) be a sequence of random variables and let c ∈ R be deterministic. Suppose
that Xn

d→ c. Show that Xn
P→ c.

(b) Let (Xn) be a sequence of independent random variables and suppose that Xn
P→ X.

Show that there exists deterministic c ∈ R such that P[X = c] = 1.

7.13 A sequence (Xn) of random variables is said to converge completely to the random variable
X if ∑

n

P[|Xn −X| ≥ ε] <∞ for all ε > 0.

(a) Show that for sequences of independent random variables, complete convergence is
equivalent to almost sure convergence.

(b) Find a sequence of (dependent) random variables (Xn) that converges almost surely
but not completely.
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Appendix A

Advice for revision/exams

There are two different exam papers, one for MAS31002 and one for MAS61022. For both exams the rubric reads
Candidates should attempt ALL questions. The maximum marks for the various parts of the questions
are indicated. The paper will be marked out of 50.

Within these notes, material marked with a (δ) is examinable only for MAS61022, and is non-examinable for
MAS31002. Material marked with a (?) is non-examinable for everyone.

• You will be asked to solve problems based on the material in these notes. There will be a broad range of
difficulty amongst the questions. Some will be variations of questions in the assignments/notes, others will
also try to test your ingenuity.

• You may be asked to state important definitions and results (e.g. more than one past exam has asked for
definition of a measure).

• You will not be expected to reproduce long proofs from memory. You are expected to have followed the
techniques within the proofs when they are present, and to be able to use these techniques in your own
problem solving.

• There are marks for attempting a suitable method, and for justifying rigorous mathematical deductions, as
well as for reaching a correct conclusion.

• If you apply an important result that has a name e.g. ‘the Dominated Convergence Theorem’ you should
mention that name, or something similar e.g. ‘by dominated convergence’ or ‘by the DCT’.

Revision activities
The most important activities:

1. Check and mark your solutions to assignment questions.
2. Learn the key definitions, results, and examples.
3. Do the past exam papers, and mark your own solutions.

Other very helpful activities:
4. Work through, and check your solutions, to non-challenge questions in the notes.

Of course, you should have been working on these questions throughout the year, which is why they are lower
priority now. You do not need to look at the challenge questions as part of your revision – these are intended
only to offer a serious, time consuming challenge to strong students.

In all cases, you are welcome to come and discuss any questions/comments/typos. Please use office hours or
email to arrange a convenient time.
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Appendix B

Solutions to exercises

Chapter 1
1.1 For example, {3} ∪ {4} = {3, 4}, which is not an element of A, but σ-fields are closed under taking (finite

and countable) unions.
1.2 (a) To show Σ1 ∩ Σ2 is a σ-field we must verify (S1) to (S3).

(S1) Since S ∈ Σ1 and S ∈ Σ2, S ∈ Σ1 ∩ Σ2.
(S2) Suppose (An) is a sequence of sets in Σ1∩Σ2. Then An ∈ Σ1 for all n ∈ N and so

⋃∞
n=1 An ∈ Σ1.

But also An ∈ Σ2 for all n ∈ N and so
⋃∞

n=1 An ∈ Σ2. Hence
⋃∞

n=1 An ∈ Σ1 ∩ Σ2.
(S3) If A ∈ Σ1 ∩ Σ2, A

c ∈ Σ1 and Ac ∈ Σ2. Hence Ac ∈ Σ1 ∩ Σ2.
(b) Σ1∪Σ2 is not in general a σ-field, because if A ∈ Σ1 and B ∈ Σ2 there is no reason why A∪B ∈ Σ1∪Σ2.

For example let S = {1, 2, 3},Σ1 = {∅, {1}, {2, 3}, S},Σ2 = {∅, {2}, {1, 3}, S}, A = {1}, B = {2}. Then
A ∪B = {1, 2} is neither in Σ1 nor Σ2.

1.3 We check S1-S3. Note that we need to show that ΣX is a σ-field on X (and not a σ-field on S).
(S1) Taking A = ∅ ∈ Σ we have ∅ ∩X = ∅ ∈ ΣX . Taking A = S ∈ Σ, we have S ∩X = X ∈ ΣX .
(S2) If A ∈ ΣX then A ∈ Σ, and X \ (X ∩A) = X \A = X ∩ (S \A) ∈ ΣX because S \A ∈ Σ.
(S3) If An ∩ X ∈ ΣX for all n ∈ N then An ∈ Σ, and

⋃∞
n=1 An ∩ X = X ∩

(⋃∞
n=1 An

)
∈ ΣX because⋃∞

n=1 An ∈ Σ.
1.4 (a) We can write A∪B = (A \B)∪ (B \A)∪ (A∩B) as a disjoint union (draw a diagram!). Hence using

finite additivity of measures we obtain

m(A ∪B) = m(A \B) +m(B \A) +m(A ∩B).

Hence

m(A ∪B) +m(A ∩B) = m(A \B) +m(B \A) + 2m(A ∩B)

= [m(A \B) +m(A ∩B)] + [m(B \A) +m(A ∩B)]

= m(A) +m(B),

where we use the fact that A is the disjoint union of A \ B and A ∩ B, and the analogous result for
B \A.
Note that the possibility that m(A ∩ B) = ∞ is allowed for within this proof, because we have not
used subtraction and therefore the undefined quantity ∞−∞ does not arise.

(b) m(A ∪ B) ≤ m(A ∪ B) +m(A ∩ B) = m(A) +m(B) follows immediately from (a) as m(A ∩ B) ≥ 0.
The general case is proved by induction. We’ve just established n = 2. Now suppose the result holds
for some n. Then

m

(
n+1⋃
i=1

Ai

)
= m

(
n⋃

i=1

Ai ∪An+1

)
≤ m

(
n⋃

i=1

Ai

)
+m(An+1)

≤
n∑

i=1

m(Ai) +m(An+1) =

n+1∑
i=1

m(Ai).

The first inequality is justified by the n = 2 case, and the second is justified by the inductive hypothesis.
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1.5 (a) We have that (km)(∅) = km(∅) = 0 because m(∅) = 0.
If (An)n∈N is a sequence of disjoint measurable sets then

∞∑
n=1

(km)(An) = k
∞∑

n=1

m(An) = km

(
∞⋃

n=1

An

)
= (km)

(
∞⋃

n=1

An

)
.

Note that in the second equality above we have used that m is σ-additive. Hence km is σ-additive.
Thus km is a measure.
If m is a finite measure, then by taking k = 1

m(S)
it follows immediately that P(·) = m(·)

m(S)
is a measure.

Noting that P(S) = m(S)
m(S)

= 1, P is a probability measure.

(b) We have mB(∅) = m(∅ ∩B) = m(∅) = 0.
If (An)n∈N is a sequence of disjoint measurable sets then (An∩B)n∈N are also disjoint and measurable,
hence

∞∑
n=1

mB(An) =

∞∑
n=1

m(An ∩B) = m

(
∞⋃

n=1

An ∩B

)
= m

((
∞⋃

n=1

An

)
∩B

)
= mB

(
∞⋃

n=1

An

)
.

Here to deduce the second equality we use the σ-additivity of m.
Thus mB is a measure.

(c) Applying part (a) to mB , it is immediate that PB is a probability measure.
If m itself is a probability measure, say we write m = P, then PB(A) is the conditional probability of
the event A given that the event B occurs.

1.6 By definition (a, b) ∈ B(R). We’ve shown in the notes that {a}, {b} ∈ B(R) and so by S(ii), [a, b] =
{a} ∪ (a, b) ∪ {b} ∈ B(R).

1.7 (a) (i) We have that A ∩ Ac = ∅ and A ∪ Ac = S, so m(A) +m(Ac) = m(S) = M . Because m(S) < ∞
we have also that m(A) < ∞, hence we may subtract m(A) and obtain m(Ac) = M −m(A).

(ii) Let (An) be a decreasing sequence of sets. Then Bn = S \ An defines an increasing sequence of
sets, so by the first part of Lemma 1.7.1 we have m(Bn) → m(B) where B = ∪jBj .
By part (a) we have

m(Bn) = m(S \An) = m(S)−m(An)

m(B) = m(∪jS \An) = m(S \ ∩jAj) = m(S)−m(∩jAj)

Thus m(S) − m(An) → m(S) − m(∩jAj). Since m(S) < ∞ we may subtract it, and after
multiplying by −1 we obtain that m(An) → m(∩jAj).

(iii) Problem 1.5(b).
More precisely, in the notation of Lemma 1.7.1 part 2, we apply 1.5(b) to show that mA1(B) =
m(B ∩A1) is a measure on (S,Σ), so (S,Σ,mA1) is a finite measure space. We can then use part
(ii) to deduce mA1(An) → mA1(A). Since An ⊆ A1 for all n we obtain m(An) → m(A).

(b) Let S = R, Σ = B(R) and m = λ be Lebesgue measure on R. Set An = (−∞,−n]. Note that
∩nAn = ∅ so λ(∩nAn) = 0. However, m(An) = ∞ for all n, so m(An) 9 m(∩nAn) in this case.

1.8 We have m(S \ En) = 0 for all n ∈ N. Hence by set algebra and the union bound (Lemma 1.7.2)

m

(
S \

(
∞⋂

n=1

En

))
= m

(
∞⋃

n=1

S \ En

)
≤

∞∑
n=1

m(S \ En) = 0

as required.
1.8 The sets S \En are null sets, so by Lemma 1.8.1 we have that

⋃∞
n=1 S \En is null. By set algebra we have

S \
⋂∞

n=1 En =
⋃∞

n=1 S \ En, hence
⋂∞

n=1 En =
⋃∞

n=1 has full measure.
1.9 There are

(
n
r

)
subsets of size r for 0 ≤ r ≤ n and so the total number of subsets is

∑n
r=0

(
n
r

)
= (1+1)2 = 2n.

Here we used the binomial theorem (x+ y)n =
∑n

r=0

(
n
r

)
xryn−r.

1.10 (a) Note that each element of Π is a subset of S. Hence Π itself is a subset of the power set P(S) of S.
Since S is a finite set, P(S) is also a finite set, hence Π is also finite.
Part (b) requires you to keep a very clear head. To solve a question like this you have to explore what
you have deduced from what else, with lots of thinking ‘if I knew this then I would also know that’
and then trying to fit a bigger picture together, connecting your start point to your desired end point.
Analysis can often be like this.
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(b) (i) Suppose Πi ∩Πj 6= ∅. Note that Πi ∩Πj is a subset of both Πi and Πj .
By definition of Π, any subset of Πi is either equal to Πi or is equal to ∅. Since we assume that
Πi ∩Πj 6= ∅, we therefore have Πi = Πi ∩Πj . Similarly, Πj = Πi ∩Πj .
Hence Πi = Πj , but this contradicts the fact that the Πi are distinct from each other. Thus we
have a contradiction and in fact we must have Πi ∩Πj = ∅.

(ii) By definition of Π we have ∪k
i=1Πi ⊆ S. Suppose ∪k

i=1Πi 6= S. Then C = S \ ∪k
i=1Πi is a

non-empty set in Σ.
Since C is disjoint from all the Πi, we must have C /∈ Π. Noting that C ∈ Σ, by definition of Π
this implies that there is some1 B1 ⊂ C such that B1 6= ∅.
We have that B1 is disjoint from all the Πi, so we must have B1 /∈ Π. Thus by the same reasoning
(as we gave for C) there exists B2 ⊂ B1 such that B2 6= ∅. Iterating, we construct an infinite
decreasing sequence of sets C ⊃ B1 ⊃ B2 ⊃ B3 . . . each strictly smaller than the previous one,
none of which are empty. However, this is impossible because C ⊆ S is a finite set.

(iii) Let i ∈ I. So Πi ∩A 6= ∅. Noting that Πi ∩A ⊆ Πi, by definition of Π we must have Πi ∩A = Πi.
That is, Πi ⊆ A. Since we have this for all i ∈ I, we have ∪i∈IΠi ⊆ A.
Now suppose that A \ ∪i∈IΠi 6= ∅. Since by (ii) we have S = ∪k

i=1Πi, and the union is disjoint
by (i), this means that there is some Πj with j /∈ I such that A ∩Πj 6= ∅. However A ∩Πj ⊆ Πj

so by definition of Π we must have Πj ∩A = Πj . That is Πj ⊆ A, but then we would have j ∈ I,
which is a contraction.
Thus A \ ∪i∈IΠi must be empty, and we conclude that A = ∪i∈IΠi.

1.11 (a) Recall that Cn is the union of 2n disjoint closed intervals, each with length 3−n, and that C = ∩nCn,
with notation as in Example 1.1.1.
Suppose, for a contradiction, that (a, b) ⊆ C with a < b. Then (a, b) ⊆ Cn for all n. Choose n such
that ( 2

3
)−n < 1

2
(b− a). Let us write the 2n disjoint closed intervals making up Cn as I1, . . . , I2n . The

point c = a+b
2

must fall into precisely one of these intervals, say Ij . Since Ij has length ( 2
3
)−n, which

is less than 1
2
(b− a), we must have Ij ⊆ (a, b) (draw a picture!). However, Cn+1 does not contain all

of Ij , because the middle part of Ij will be removed – so we cannot have (a, b) ⊆ Cn+1. Thus we have
reached a contradiction.

(b) For a counterexample, consider a variant of the construction of the Cantor set, where instead of
removing the middle thirds at stage n, we instead remove the middle 1−e−1/n2

(from each component
of Cn). Then, by the same argument as in the proof of Lemma 1.5.4, we would have

λ(C) = lim
n

λ(Cn) = lim
n→∞

e−1e−1/4e−1/9 . . . e−1/n2

= lim
n→∞

exp

(
−

n∑
1

1

i2

)
= exp

(
−

∞∑
1

1

n2

)
.

We have that λ(C) is positive because
∑∞

1
1
n2 < ∞.

A similar argument as in part (a) applies here, and shows that C does not contain any open intervals.
The length of each interval within Cn+1 is less than half the length of the intervals in Cn (because
each interval of Cn has a middle part removed to become two intervals in Cn+1). Thus, by a trivial
induction, each of the 2n disjoint closed intervals in Cn has length ≤ ( 1

2
)n. You can check that we

can apply the same argument as in (v), but replacing ( 2
3
)n with ( 1

2
)n.

Chapter 2
2.1 We will prove the forwards implication first. If (an) is bounded the there exists M ∈ R with |an| ≤ M for all

n ∈ N. Hence | supk≥n ak| ≤ M and | infk≥n ak| ≤ M for all n ∈ N, which (using that limits preserve weak
inequalities) implies that | lim supn an| ≤ M and | lim infn an| ≤ M . In particular, both are real valued.
For the reverse implication, suppose that both lim infn an and lim supn an are elements of R. Hence, the
sequences bn = supk≥n ak and cn = infk≥n ak are bounded (because sequences that converge in R are
necessarily bounded). In particular, b1 = supk≥1 ak and c1 = infk≥a ak are elements of R, which implies
that the sequence (an) is bounded.

2.2 If x < 0 then fn(x) = 0 for all n. If x > 0 then for n large enough that 1
n
< x we have fn(x) = 0. Hence

fn(x) → 0 for all x 6= 0, which means fn → 0 almost everywhere.
(Note that fn(0) = n, which does not tend to zero.)

1X ⊂ Y means that X ⊆ Y and X 6= Y i.e. X is strictly smaller than the set Y
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2.3 We have that fn(x) → f(x) for all x ∈ S \A, and gn(x) → g(x) for all x ∈ S \B, where m(A) = m(B) = 0.
Hence m(A∪B) ≤ m(A)+m(B) = 0, so m(A∪B) = 0. For all x ∈ S \ (A∪B) we have fn(x) → f(x) and
gn(x) → g(x), hence for such x we have (fn + gn)(x) → (f + g)(x) and (fngn)(x) → (fg)(x). Therefore
fn + gn → f + g and fngn → fg, both almost everywhere.

2.4 (a) For N ∈ N we have
∑N

n=1 an +
∑N

n=1 bn =
∑N

n=1(an + bn). Since an, bn ≥ 0, all of these terms are
monotone increasing in N , and therefore have limits (in R) by Lemma 2.1.1 as N → ∞. The result
follows by uniqueness of limits.

(b) We check (M1) and (M2). For (M1), we have that (m1 +m2)(∅) = m1(∅) +m2(∅) = 0 + 0 = 0.
For (M2), if (An)n∈N is a sequence of disjoint measurable sets then by part (a) we have

∞∑
n=1

(m1 +m2)(An) =

∞∑
n=1

m1(An) +m2(An)

=

∞∑
n=1

m1(An) +

∞∑
j=1

m2(An)

= m1

(
∞⋃

n=1

An

)
+m2

(
∞⋃
j=1

An

)

= (m1 +m2)

(
∞⋃

n=1

An

)
.

Thus m1 +m2 is a measure.
(c) Combining part (b) of this question with the result of Exercise 1.5 part (a), we can show (by a

trivial induction) that if m1,m2 . . . ,mn are measures and c1, c2, . . . , cn are non-negative numbers
then c1m1 + c2m2 + · · · + cnmn is a measure. Apply this with mj = δxj (1 ≤ j ≤ n) to obtain the
result.
To get a probability measure we need

∑n
j=1 cj = 1. Then, as δx is a probability measure for all x, we

have m(S) =
∑n

j=1 cjδxj (S) =
∑n

j=1 cj = 1.

2.5 (a) (i) If x ∈ A and x ∈ B, the equation becomes 1 = 1 + 1− 1 = 1,
If x ∈ A and x /∈ B, the equation becomes 1 = 1 + 0− 0 = 1,
If x /∈ A and x ∈ B, the equation becomes 1 = 0 + 1− 0 = 1,
If x /∈ A and x /∈ B, the equation becomes 0 = 0 + 0− 0 = 0, so we have equality in all cases.

(ii) Since A = B ∪ (A \B) and B ∩ (A \B) = ∅, we can apply (i) to obtain that 1A = 1B + 1A\B .
(iii) Note that both sides are non-zero if and only if both x ∈ A and x ∈ B, in which case both sides

are equal to 1.
(b) The function

∑∞
1 1An is defined as a pointwise limit as N → ∞ of the partial sums

∑N
1 1An , which

are themselves defined pointwise.
For the last part, if x /∈ A then x /∈ An for all n ∈ N and so lhs = rhs = 0. If x ∈ A then x ∈ An for
one and only one n ∈ N and so lhs = rhs = 1.

2.6 (a) (i) For all n ∈ N we have supk≥n(ak + bk) ≤ supk≥n ak + supk≥n bk. Taking limits on both sides
gives lim supn(a+ n+ bn) ≤ lim supn an + lim supn bn.

(ii) Note that
(
supk≥n ak

) (
supk≥n bk

)
≤ supk≥n(akbk) and take limits on both sides.

(iii) Note that supk≥n cak = c supk≥n ak because c ≥ 0, and take limits on both sides.
(iv) Note that supk≥n ak ≤ supk≥n bk, and take limits on both sides.

(b) (i) Putting (−an) and (−bn) in place of (an) and (bn) in part (a)(i), Lemma 2.2.3 gives that
(− lim infn an)+(− lim infn bn) ≤ − lim infn(a+n+bn), which gives lim infn(an+bn) ≤ lim infn an+
lim infn bn.

(ii) Note that (infk≥n ak) (inf k ≥ nbk) ≥ supk≥n(akbk) and take limits on both sides as in (a)(ii).
(iii) Putting (−an) in place of (an) in part (a)(iii), Lemma 2.2.3 gives that − lim infn can = c(− lim infn an),

hence lim infn can = c lim infn an.
(iv) Note that infk≥n ak ≤ infk≥n bk, and take limits on both sides as in (a)(iv), to obtain lim infn an ≤

lim infn bn.
2.7 It is clear that e−nx2

→ 0 as n → ∞ for all x 6= 0, and that e−n02 = e0 = 1 for all n. Hence fn → 1{0}
pointwise.
If the convergence was uniform then, from real analysis, for any sequence an → a we would have that
fn(an) → f(a) as n → ∞. However, if we take an = 1√

n
then fn(an) = e−1, which does not converge to

f(limn an) = f(0) = 1.
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2.8 (a) It is clear that d(x, y) = d(y, x) and that d(x, x) = 0. If x 6= y then d(x, y) > 0, because arctan is
strictly increasing on [−∞,∞]. For the triangle law we use the triangle law for R to deduce that

d(x, z) = | arctan(x)−arctan(z)| ≤ | arctan(x)−arctan(y)|+| arctan(y)−arctan(z)| = d(x, y)+d(y, z).

There is nothing special about arctan here. Any function that is a strictly increasing map from R to a
bounded subset of R will do.

(b) Recall that a metric space is compact if and only if it sequentially compact. Let (an) be a sequence in
R. If (an) within R and (an) is bounded, then (an) has a subsequence convergent to some a ∈ R (by
the Heine-Borel theorem). Alternatively, if (an) is unbounded then there it contains a subsequence
(arn) such that |arn | → ∞. In particular there must be a subsequence that converges to +∞ or to
−∞. Thus R is sequentially compact, and thus compact.

(c) If (an) converges then any subsequence of (an) converges to the same limit. Hence (i) ⇒ (ii).
For the reverse implication, let (an) be a sequence in R and assume (ii). Recall that a metric space
is sequentially compact if and only if it is compact, hence R is sequentially compact. We will argue
by contradiction: suppose that (an) does not converge to a. Then there exists ε > 0 and an infinite
subsequence (arn) of (an) such that |arn −a| ≥ ε for all n ∈ N. By sequential compactness (arn) has a
convergent subsequence. By (ii), this convergent subsequence converges to a, which is a contradiction.
Hence in fact an → a.

2.9 It suffices to show that lim infn an = inf L . The corresponding result for lim sup follows by multiplying
both sides by −1 and using Lemma 2.2.3.
Let (arn) be a convergent subsequence of an. Note that this implies rn ≥ n. It follows immediately that
infk≥n ak ≤ infk≥n ark . Hence also lim infn an ≤ lim infn arn . By Lemma 2.2.2 we have lim infn arn =
limn an. Since (arn) was an arbitrary convergent subsequence we thus have lim infn an ≤ inf L .
To complete the proof we need to show the reverse inequality. We will argue by contradiction. Suppose
that lim infn an < inf L . Let us write a = lim infn an. Let ε > 0 be such that a+ ε < inf L . By definition
of lim inf, there exists N ∈ N such that for all n ≥ N we have infk≥n ak ≤ a + ε. Hence we can define a
subsequence (arn) of (an) by setting

r1 = inf{k ≥ N ; ak ≤ a+ ε},
rn+1 = inf{k > rn ; an ≤ a+ ε}.

We have arn ≤ a + ε for all n, and by part (c) of Exercise 2.8 the sequence (arn) has a convergent
subsequence. The limit of this subsequence must be less that or equal to a + ε, which implies that L ≤
a+ ε < L . This is a contradiction, which completes the proof.

Chapter 3
3.1 Note that there are very many different ways to solve the various parts of this question, using the results

in Sections 3.1 and 3.2.

(a) We have f−1([c,∞)) = ∅ if α < c and f−1([c,∞)) = R if c ≤ α. In both cases, f−1([c,∞)) is Borel.
(b) We can write g(x) = 1[0,∞)(x)e

x. Indicator functions of measurable sets are measurable, and x 7→
ex is continuous, hence measurable. Products of measurable functions are measurable, hence g is
measurable.

(c) x 7→ sin(cosx) is a continuous function, because the composition of continuous functions is also
continuous. Hence h is measurable.

(d) The function sin is continuous, hence measurable. A similar method to (b) shows that x2
1[0,∞)(x) is

measurable. The composition of a Borel measurable functions is measurable, hence i is measurable.

3.2 If f is measurable then f−1((a, b)) ∈ Σ, as (a, b) ∈ B(R).
For the reverse implication, we have that f−1((a, b)) ∈ Σ for all −∞ ≤ a < b ≤ ∞. Take b = ∞ and we
have f−1((a,∞)) ∈ Σ for all a ∈ R. From this, Lemma 3.1.4 gives that f is measurable.

3.3 Note that |f | = max(0, f)+max(0,−f). Theorem 3.1.5 implies that all parts of this formula are operations
that preserve measurability, hence |f | is measurable.

3.4 (a) For any a > 0, we have

h−1((a,∞)) = {x ∈ R ; f(x+ y) > (a,∞)} = {z − y ∈ R ; f(z) > a} = (f−1((a,∞)))−y.
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Here we use the notation Ay = {a + y ; a ∈ A} from Section 1.4. Using that Ay ∈ B(R) whenever
A ∈ B(R), we have that h−1((a,∞)) ∈ B(R), and hence h is measurable.
Alternative: Write h = f ◦τy where τy(x) = x+y. The mapping τy is continuous and hence measurable
and so h is measurable by Lemma 3.2.1.

(b) If f is differentiable then it is continuous, hence also measurable by Lemma 3.2.1.
For each x ∈ R we have f ′(x) = limh→0

f(x+h)−f(x)
h

. Note that x → f(x+h) is measurable by part (a),
so x → f(x+h)−f(x)

h
is measurable by Theorem 3.1.5. Hence f ′ is also measurable, again by Theorem

3.1.5.
(c) Recall that we have shown all intervals (i.e. sets of the form (a, b), [a, b) and so on) are Borel sets. We

use the description of intervals given in the hint.
Suppose f is monotone increasing. Fix c ∈ R and consider I = f−1((c,∞)). We want to show that I
is an interval. Let a, b ∈ I, so that we have f(a), f(b) > c, and let a < d < b. We have a ≤ d so, by
monotonicity of f we have f(a) ≤ f(d). Thus f(d) > c, so d ∈ I. Hence I is an interval, so I ∈ B(R).
We thus have that f−1((c,∞)) ∈ Σ for all c ∈ R, so f is measurable by Lemma 3.1.4.

3.5 We need to show that if f and g are simple functions and α, β ∈ R, then αf + βg is also a simple function.
This follows from the same calculation as leads to equation (??), which is the first step in the proof of
Lemma 4.1.2.

3.6 (a) For any a ∈ R, we have (f + α)−1((a,∞)) = {x ∈ R ; f(x) + α > a} = {x ∈ R ; f(x) > a − α} =
f−1((a− α,∞)). Hence (f + α)−1((a,∞)) ∈ Σ by measurability of f , which by Lemma 3.1.4 implies
that f is measurable.

(b) First note that if α = 0 then (αf)(x) = 0 for all x, so in this case f is measure by 3.1 part (a).
Consider when α > 0. For any a ∈ R, we have (αf)−1((a,∞)) = {x ∈ R ; αf(x) > a} = {x ∈
R ; f(x) > a/α} = f−1((a/α,∞)). For k < 0, similarly (αf)−1((a,∞)) = (αf)−1((a,∞)) = {x ∈
R ; αf(x) > a} = {x ∈ R ; f(x) < a/α} = f−1((−∞, a/α)). In both cases there are measurable sets,
so Lemma 3.1.4 gives that αf is measurable.

(c) Note that (G ◦ f)−1(A) = f−1(G−1(A)). For A ∈ B(R), measurability of G implies that G−1(A) ∈
B(R), and measurabilty of f thus implies that f−1(G−1(A)) ∈ Σ. Hence G ◦ f is measurable.

3.7 (a) Let x ∈ O1 ∪ O2. Consider if x ∈ O1, then there is an open interval I1 containing x. Thus I1 is an
open interval within O1 ∪ O2 containing x. We can do the same for x ∈ O2, then with x ∈ I2 ⊆ O2,
hence O1 ∪O2 is open.
Now let x ∈ O1 ∩ O2. Then for each i = 1, 2 we have an open interval Ii ⊆ Oi containing x. Let us
write I1 = (a1, b1), I2 = (a2, b2), and c1 = max(a1, b1), c2 = min(a2, b2). Then (c1, c2) = I1 ∩ I2, and
since x ∈ I1 ∩ I2 we have x ∈ (c1, c2). In particular this means c1 < c2, so I1 ∩ I2 is an open interval.
Also I1 ∩ I2 ⊆ O1 ∩O2, so O1 ∩O2 is open.

(b) 1. This is true. We can use exactly the same method as in part (a): let x ∈ ∪nOn, and the assume
x ∈ O1 (or use Oi in place of O1), then we have an open interval I1 ⊆ O1 containing x, then
I1 ⊆ ∪nOn, and we are done.

2. This is false. A counterexample is given by On = (−1
n
, 1 + 1

n
), for which ∩nOn = [0, 1].

(c) Let (Cn)n∈N be a sequence of closed sets. Then R \ Cn is open, for each n. Using set operations we
have

R \ (C1 ∪ C2) = (R \ C1) ∩ (R \ C2)

R \ (C1 ∩ C2) = (R \ C1) ∪ (R \ C2)

R \

(⋃
n

Cn

)
=
⋂
n

(R \ Cn)

R \

(⋂
n

Cn

)
=
⋃
n

(R \ Cn)

The first two equations combined with part (a) tell us that both the results of part (a) carry over to
closed sets: both C1 ∩ C2 and C1 ∪ C2 are closed.
From the fourth equation, since R \Cn is open (for all n), using (b)(i) we see that R \

(⋃
n Cn

)
is also

open, hence
⋂

n Cn is closed.
However, we can’t do the same for the third equation, because (b)(ii) was false. Instead, we can
take complements of our counterexample in (b)(ii) to find a counterexample here, giving Cn = R \
(−1

n
, 1+ 1

n
) = (−∞, −1

n
]∪ [1+ 1

n
,∞). Then ∪nCn = (−∞, 0)∪ (1,∞) which is not closed (because its

complement [0, 1] is not open).
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3.8 (a) It is sufficient to consider the case x = a. Then for any ε > 0 and arbitrary δ, f(a−δ) = 0 < f(a)+ε =
1 + ε and f(a+ δ) = f(a) < f(a) + ε = 1 + ε.

(b) Its sufficient to consider the case x = n for some integer n. Again for any ε > 0 and arbitrary
δ, f(n− δ) = n− 1 < f(n) + ε = n+ ε and f(n+ δ) = n < f(n) + ε = n+ ε.

(c) Let U = f−1((−∞, a)). We will show that U is open. Then it is a Borel set and f is measurable. Fix
x ∈ U and let ε = a− f(x). Then there exists δ > 0 so that |x− y| < δ ⇒ f(y) < f(x) + ε = a and so
y ∈ U . We have shown that for each x ∈ U there exists an open interval (of radius δ) so that if y is
in this interval then y ∈ U . Hence U is open.

Chapter 4
4.1 (a) f = 21[−2,−1] − 1(−1,1) + 31[1,2) − 51[2,3)∫

R f dm = 2((−1)− (−2))− 1(1− (−1)) + 3(2− 1)− 5(3− 2) = −2

(b) f+ = 21[−2,−1] + 31[1,2) and f− = 1(−1,1) + 51[2,3)∫
R f+ dm = 2((−1)− (−2)) + 3(2− 1) = 5 and

∫
R f− dm = 1(1− (−1)) + 5(3− 2) = 7

4.2 Let us write f =
∑n

i=1 ci1Ai , where the Ai are disjoint measurable sets. Then

1Af =

n∑
i=1

ci1Ai1A =

n∑
i=1

ci1Ai∩A,

where we have used 1A1B = 1A∩B (which might be obvious, but it is also from Exercise 2.5).
Note that if i 6= j then (Ai ∩ A) ∩ (Aj ∩ A) = A ∩ (Ai ∩ Aj) = A ∩ ∅ = ∅, so the A ∩ Ai are disjoint sets.
Hence 1Af is a simple function.

4.3 Note that f2 is a non-negative function. Applying Lemma 4.2.3 to f2 gives

m({x ∈ S ; |f(x)| ≥ c}) = m({x ∈ S ; |f(x)2| ≥ c2}) ≤ 1

c2

∫
S

f2 dm.

Similarly, applying it to |f |p gives m({x ∈ S ; |f(x)| ≥ c}) ≤ 1
cp

∫
S
|f |p dm. Note that in general we need to

use |f | instead of f to ensure non-negativity.
4.4 (a) Noting f+ and f− are both non-negative, with non-negative integrals, we have∣∣∣∣∫

S

f dm

∣∣∣∣ = ∣∣∣∣∫
S

f+ dm−
∫
S

f− dm

∣∣∣∣ ≤ ∫
S

f+ dm+

∫
S

f− dm =

∫
S

|f | dm.

(b) By the triangle inequality we have |f(x)+ g(x)| ≤ |f(x)|+ |g(x)|. Thus by monotonicity and linearity
for integrals of non-negative functions (Lemmas 4.2.2 and Lemma 4.3.2) we have∫

S

|f + g| dm ≤
∫
S

|f |+ |g| dm =

∫
S

|f | dm+

∫
S

|g| dm.

(c) Using linearity for integrals of non-negative functions (Lemma 4.3.2), if c ≥ 0 then∫
S

cf dm =

∫
S

cf+ dm−
∫
S

cf− dm = c

∫
S

f+ dm− c

∫
S

f− dm = c

∫
S

f dm.

If c = −1 then (−f)+ = f− and (−f)− = f+, so∫
S

(−f) dm =

∫
S

f− dm−
∫
S

f+ dm = −
(∫

S

f+ dm−
∫
S

f− dm

)
= −

∫
S

f dm.

Finally for general c < 0 write c = (−1)× d where d > 0 and use the two cases we’ve just proved.
(d) If f ≤ g then g − f ≥ 0 so by monotonicty for integrals of non-negative functions (Lemma 4.2.2),∫

S
(g − f)dm ≥ 0. By linearity (c.f. the hint) this is equivalent to

∫
S
gdm−

∫
S
f dm ≥ 0, which gives∫

S
g dm ≥

∫
S
fdm as required.

4.5 Suppose that |f | ≤ C where C ∈ [0,∞). By monotoncity and linearity (from Lemmas 4.2.2 and 4.3.2) we
have

∫
S
|f | dm ≤

∫
S
C dm = C

∫
S
1 dm = Cm(S) < ∞. Hence f ∈ L1.

Note that we do not use Theorem 4.5.3 here because, at the point where we need monotonicty and linearity,
we do not yet know that f ∈ L1.
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4.6 By Riemann integration, we have∫ 1

1/n

logx dx = [x logx− x]11/n = (−1)−
(
1

n
log 1

n
− 1

n

)
=

1 + logn
n

− 1.

Noting that logx ∈ (−∞, 0) for x ∈ (0, 1), multiplying the above by −1 gives∫ 1

1/n

| logx| dx = 1− 1 + logn
n

.

We have that gn(x) = | logx|1x∈(1/n,1) is a monotone increasing sequence of non-negative functions, with
pointwise convergence to g(x) = | logx| for x ∈ (0, 1). Hence, by the monotone convergence theorem,∫ 1

0

| logx| dx = lim
n→∞

(
1− 1 + logn

n

)
= 1.

Thus logx is in L1 on (0, 1).
4.7 Let x ∈ R be arbitrary. Then we can find n0 ∈ N so that 1

n0
< |x| and then for all n ≥ n0, fn(x) =

n1(0,1/n)(x) = 0. So we have proved that limn→ fn(x) = 0. But for all n ∈ N∫
R
|fn(x)− 0|dx = n

∫
R
1(0,1/n)(x)dx = n

1

n
= 1,

and so we cannot find any function in the sequence that gets arbitrarily close to 0 in the L1 sense.
The MCT does not apply here because (fn) is not monotone. The DCT does not apply because, if it did,
then the DCT would give

∫
R fn →

∫
R f = 0 which is not true! We conclude that there is no dominating

integrable function for (fn), because all the other conditions for the DCT do hold.
(?) Extension: Fatou’s lemma does apply, and would give

∫
R lim infn fn =

∫
R 0 ≤ lim infn

∫
R fn = lim infn 1 =

1 which we already knew because we could calculate the integrals explicitly in this case.
4.8 Since | cos(·)| ≤ 1 we have | cos(αx)f(x)| ≤ |f(x)| for all x ∈ R. Lemma 4.6.1 thus gives that this function

is in L1.
Let fn(x) = cos(x/n)f(x). Note that limn→∞ cos(x/n) = cos(0) = 1 for all x ∈ R. Hence fn → f pointwise.
Moreover, f ∈ L1 is a dominating function for the sequence (fn), so we may use the dominated convergence
theorem to deduce that

lim
n→∞

∫
R

cos(x/n)f(x)dx =

∫
R

lim
n→∞

cos(x/n)f(x)dx =

∫
R
f(x)dx.

4.9 Let g = |f |1A and gn = |f |1⋃n
i=1 Ai

. Thus 0 ≤ gn ≤ gn+1 and gn → g pointwise. From the monotone
convergence theorem we have

∫
S
gn dm →

∫
S
g dm. Note that

∫
S
g dm =

∫
A
|f | dm. Since the Ai are disjoint

we have 1⋃n
i=1 Ai

=
∑n

i=1 1Ai . Hence by linearity we have gn = |f |
∑n

i=1 1Ai =
∑n

i=1 |f |1Ai , so∫
S

gn dm =

n∑
i=1

∫
S

|f |1Ai dm =

n∑
i=1

∫
Ai

f dm.

Fitting all this together, we have shown that

lim
n→∞

n∑
i=1

∫
Ai

|f | dm =

∫
A

|f | dm.

4.10 (a) We can write

a(N)
n =

N∑
i=1

ai1{i}(n).

Noting that {i} is measurable and ai ∈ R, this is a simple function. Since #({i}) = 1, using (4.3) we
have ∫

N
a(N) d# =

N∑
i=1

ai.

We have a(N) → a pointwise as N → ∞, and 0 ≤ a(N) ≤ a(N+1), so by the monotone convergence
theorem ∫

N
a d# = lim

N→∞

∫
N
a(N) d# =

∞∑
i=1

ai,

as required.
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(b) We have that a ∈ L1 if and only if |a| ∈ L1, which from part (a) occurs if and only if
∑

n |an| < ∞.
That is, a ∈ L1 if and only if it is absolutely convergent.
Lastly, writing a = a+ − a− we have∫

N
a d# =

∫
N
a+ d# −

∫
N

a− d#

=

∞∑
n=1

max(an, 0)−
∞∑

n=1

max(−an, 0)

=

∞∑
n=1

max(an, 0)− max(−an, 0)

=
∞∑

n=1

an.

Here, the third line follows from the second using absolute convergence, which allows us to rearrange
infinite series.

4.11 Reflexivity is obvious as f(x) = f(x) for all x ∈ S. So is symmetry, because f(x)
a.e.
= g(x) if and only if

g(x)
a.e.
= f(x). For transitivity, let A = {x ∈ S; f(x) 6= g(x)}, B = {x ∈ S; g(x) 6= h(x)} and C = {x ∈

S; f(x) 6= h(x)}. Then C ⊆ A ∪ B and so m(C) ≤ m(A) +m(B) = 0. Thus if f a.e.
= g and g

a.e.
= h we have

f
a.e.
= h.

4.12 Note that f − fn ≥ 0 for all n ∈ N, so by Fatou’s lemma

lim inf
n→∞

∫
S

(f − fn) dm ≥
∫
S

lim inf
n→∞

(f − fn) dm.

Rearranging both sides,∫
S

f dm+ lim inf
n→∞

∫
S

(−fn) dm ≥
∫
S

f dm+

∫
S

lim inf
n→∞

(−fn) dm,

lim inf
n→∞

−
(∫

S

fn dm

)
≥
∫
S

lim inf
n→∞

(−fn) dm.

Multiplying both sides by −1 reverses the inequality to yield

− lim inf
n→∞

−
(∫

S

fn dm

)
≤
∫
S

(
− lim inf

n→∞
(−fn)

)
dm.

Hence by Lemma 2.2.3 we have

lim sup
n→∞

∫
S

fn dm ≤
∫
S

lim sup
n→∞

fn dm.

4.13 Dominated convergence theorem, complex version. Let fn, f be functions from S to C. Suppose that
fn is measurable and:

1. There is a function g ∈ L1
C such that |fn| ≤ |g| almost everywhere.

2. fn → f almost everywhere.

Then f ∈ L1
C and ∫

S

fndm →
∫
S

fdm

as n → ∞.
To prove this, note that fn → f implies that <(fn) → <(f) and =(fn) → =(f), all almost everywhere
(in C or R as appropriate). The function |g| : S → R satisfies

∫
S
|g| dm < ∞ because g ∈ L1

C. We have
|<(fn)| ≤ |f | ≤ |g| and |=(fn)| ≤ |f | ≤ |g|, hence |g| serves as a dominating function to apply the DCT to
real and imaginary parts of f . The result then follows by linearity.

4.14 We have ∫ x

0

ieiay dy = i

∫ x

0

cos(ay) dy −
∫ x

0

sin(ay) dy

= i
1

a
(sin(ax)− 0)− 1

a
(− cos(ax)− (−1))

=
1

a

(
eiax − 1

)
.
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4.15 All of them do, where we treat | · | as the complex modulus and replace functions with C valued equivalents.
Details are left for you.

4.16 Define fn(x) = f(tn, x) for each n ∈ N, x ∈ S. Then |fn(x)| ≤ g(x) for all x ∈ S. Since g ∈ L1, by
dominated convergence

lim
n→∞

∫
S

f(tn, x)dm(x) =

∫
S

lim
n→∞

fn(x)dm(x)

=

∫
S

lim
n→∞

f(tn, x)dm(x)

=

∫
S

f(t, x)dm(x),

where we used the continuity assumption (ii) in the last step.

4.17 Let (hn) be an arbitrary sequence such that hn → 0 and define an,t(x) =
f(tn+h,x)−f(t,x)

hn
.

Since ∂f
∂t

exists we have an,t(x) → ∂f
∂t

(x, t) as n → ∞ for all x. By the mean value theorem there exists
θn ∈ [0, 1] such that an,t(x) = ∂f

∂t
(t + θnh, x), hence |fn(x)| ≤ h(x). Thus by dominated convergence∫

S
an,t(x) dm(x) →

∫
S

∂f
∂t

(t, x) dm(x).
By linearity of the integral we have

∂

∂t

∫
S

f(t, x) dm(x) = lim
n→∞

1

hn

(∫
S

f(t+ hn, x) dm(x)−
∫
S

f(t, x) dm(x)

)
= lim

n→∞

∫
S

an,t(x) dm(x)

and the result follows.
4.18 (a) For each x ∈ R, n ∈ N, the expression for fn(x) is a telescopic sum. If you begin to write it out, you

see that terms cancel in pairs and you obtain

fn(x) = −2xe−x2

+ 2(n+ 1)2xe−(n+1)2x2

.

Using the fact that limN→∞ N2e−yN2

= 0, for all y ∈ R we find that

lim
n→∞

fn(x) = f(x) = −2xe−x2

.

(b) The functions f and fn are continuous and so Riemann integrable over the closed interval [0, a]. We
can calculate (which is left for you) that

∫ a

0
f(x)dx = −2

∫ a

0
xe−x2

dx = e−a2

− 1. But on the other
hand ∫ a

0

fn(x) dx =
n∑

r=1

∫ a

0

(
−2r2xe−r2x2

+ 2(r + 1)2xe−(r+1)2x2
)
dx

=

n∑
r=1

(
e−r2a − e−(r+1)2a

)
= e−a2

− e−(n+1)2a → e−a2

as n → ∞.

So we conclude that
∫ a

0
f(x) dx 6= limn→∞

∫ a

0
fn(x) dx.

4.19 Using the fact that |e−ixy| ≤ 1, by Lemma 4.2.2 extended to the complex case we have that

|f̂(y)| ≤
∫
R
|e−ixy| |f(x)| dx ≤

∫
R
|f(x)| dx < ∞.

For the linearity, we have

̂af + bg(y) =

∫
R
e−ixy(af(x) + bg(x)) dx

= a

∫
R
e−ixyf(x) dx+ b

∫
R
e−ixyg(x) dx

= af̂(y) + bĝ(y).
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4.20 x → 1Q(x) cos(nx) is L1 as |1Q(x) cos(nx)| ≤ | cos(nx)| for all x ∈ R and x → cos(nx) is L1 . Similarly
x → 1Q(x) sin(nx) is L1. So the Fourier coefficients an and bn are well-defined as Lebesgue integrals. As
| cos(nx)| ≤ 1, we have an = 0 for all n ∈ Z+ since,

|an| ≤
1

π

∫ π

−π

1Q(x)| cos(nx)| dx

≤ 1

π

∫ π

−π

1Q(x) dx = 0.

By a similar argument, bn = 0 for all n ∈ N. So it is possible to associate a Fourier series to 1Q, but this
Fourier series will be identically zero.
This illustrates that pointwise convergence is not the right tool for examining convergence of Fourier series!

4.21 Note that fa is measurable by Problem 3.4(a). To show that fa ∈ L∞, we use∫
R
|fa(x)| dx =

∫
R
|f(x− a)| dx =

∫
R
|f(x)| dx < ∞.

Then
f̂a(y) =

∫
R
e−ixyf(x− a)dx,

and the result follows on making a change of variable u = x− a.
4.22 Let y ∈ R and (yn) be an arbitrary sequence converging to y as n → ∞. We need to show that the sequence

(f(yn)) converges to f(y). We have

|f̂(yn)− f̂(y)| =
∣∣∣∣∫

R
e−ixynf(x)dx−

∫
R
e−ixyf(x) dx

∣∣∣∣
≤
∫
R
|e−ixyn − e−ixy|.|f(x)| dx.

Now |e−ixyn−e−ixy| ≤ |e−ixyn |+|e−ixy| = 2 and the function x → 2f(x) is L1. Also the mapping y → e−ixy

is continuous, and so limn→∞ |e−ixyn − e−ixy| = 0. The result follows from these two facts, and the use of
Lebesgue’s dominated convergence theorem.

4.23 To prove that y → f̂(y) is differentiable, we need to show that
limh→0(f̂(y + h)− f̂(y))/h exists for each y ∈ R. We have

f̂(y + h)− f̂(y)

h
=

1

h

∫
R
(e−ix(y+h) − e−ixy)f(x) dx

=

∫
R
e−ixy

(
e−ihx − 1

h

)
f(x) dx.

Since |e−ixy| ≤ 1, and using the hint with b = hx, we get∣∣∣∣∣ f̂(y + h)− f̂(y)

h

∣∣∣∣∣ ≤
∫
R

∣∣∣∣e−ihx − 1

h

∣∣∣∣ |f(x)| dx ≤
∫
R
|x||f(x)| dx < ∞.

Then we can use Lebesgue’s dominated convergence theorem to get

lim
h→0

f̂(y + h)− f̂(y)

h
=

∫
R
e−ixy lim

h→0

(
e−ihx − 1

h

)
f(x) dx

= −i

∫
R
e−ixyxf(x) dx = −iĝ(y),

and the result is proved. In the last step we used

lim
h→0

e−ihx − 1

h
=

d

dy
e−ixy

∣∣∣∣
y=0

= −ix.

4.24 First observe that by the hint and Problem 3.4 part (a), the mapping (x, y) → f(x− y)g(y) is measurable.
Let K = supx∈R |g(x)| < ∞, since g is bounded. Then since f ∈ L1 we have

|(f ∗ g)(x)| ≤
∫
R
|f(x− y)| |g(y)|dy ≤ K

∫
R
|f(x− y)|dy = K

∫
R
|f(y) |dy < ∞.
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We also have by Fubini’s theorem∫
R

∫
R
|(f(x− y)g(y)|dydx ≤

∫
R

(∫
R
|f(x− y)| |g(y)| dy

)
dx

=

∫
R

(∫
R
|f(x− y)|dx

)
|g(y)| dy

=

∫
R
|f(x)| dx

∫
R
|g(y)| dy < ∞,

from which it follows that f ∗ g ∈ L1.
By a similar argument using Fubini’s theorem, we have that

f̂ ∗ g(y) =
∫
R
e−ixy

∫
R
f(x− z)g(z) dz dx

=

∫
R

(∫
R
e−iy(u+z)f(u)du

)
g(z) dz

=

∫
R
e−iyuf(u)du.

∫
R
e−iyzg(z) dz

= f̂(y)ĝ(y),

where we used that change of variable x = u+ z.

Chapter 5
5.1 Monotone Convergence Theorem. Let (Xn) be an increasing sequence of non-negative random variables

that converges almost surely to a random variable X. Then E[Xn] → E[X].
Dominated Convergence Theorem. Let (Xn) be a sequence of random variables that converges pointwise
to a random variable X. Suppose that there exists a random variable Y ∈ L1 such that |Xn| ≤ Y almost
surely, for all n ∈ N. Then X ∈ L1 and E[Xn] → E[X].
Markov’s Inequality. Let X be a non-negative random variable and let c > 0. Then P[X ≥ c] ≤ 1

c
E[X].

Chebyshev’s Inequality. Let X be a non-negative random variable and let c > 0. Then P[X ≥ c] ≤ 1
c2
E[X2].

Theorem 4.4.1. Let X be a non-negative random variable on the probability space (Ω,F ,P). Then ν : F →
[0,∞] by ν(A) = E[1AX] is a measure.
Fatou’s Lemma. Let (Xn) be a sequence of non-negative random variables. Then E[lim infn Xn] ≤
lim infn E(Xn).

5.2 Put |X−E[X]| in place of X in the version of Chebyshev’s inequality in Exercise 5.1, to obtain P[|X−E[X]| ≥
c] ≤ 1

c
E
[
(X − E[X])2

]
= var(X)

c
.

5.3 P[U ∈ A] =
∫
A

1
b−a

dx = λ(A)
b−a

, where λ denotes Lebesgue measure.
5.4 (a) P[X > x] = 1− P[X ≤ x] = F (x) and P[x < X ≤ y] = P[X ≤ y]− P[X ≤ x] = F (y)− F (x).

(b) Let (an) be an increasing sequence that tends to ∞. Define An = {ω ∈ Ω;X(ω) ≤ an}. Then (An)
increases to Ω and by Lemma 5.1.1,

lim
x→∞

F (x) = lim
n→∞

P[An] = P[Ω] = 1.

Similarly, let Bn = {ω ∈ Ω;X(ω) ≤ −an}. Then (Bn) decreases to ∅ and by Lemma 5.1.1,

lim
x→−∞

F (x) = lim
n→∞

P[Bn] = P[∅] = 0.

5.5 From Lemma 5.2.1 we have that x 7→ FX(x) = P[X ≤ x] is right-continuous and monotone increasing. At
each x such that P[X = x] > 0 the function x 7→ FX(x) has an upwards jump. The region it jumps through
is Qx = (FX(x−), FX(x)), which is non-empty open interval, and in particular contains a rational number
qx (in fact, infinitely many rationals, but one will do).
Hence, for each x with P[X = x] we have a rational number qx, and because F is increasing we have qx 6= qy
whenever x 6= y. Therefore x 7→ qx is an injective map from {x ∈ R ; P[X = x] > 0} to Q. Since Q is
countable, so is {x ∈ R ; P[X = x] > 0}.
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5.6 Recall that E[X] =
∫
Ω
X dP. If X : Ω → R is a simple function given by X(ω) =

∑n
i=1 ci1Ai then

1

m(Ω)

∫
Ω

X dm =
1

m(Ω)

n∑
i=1

cim(Ai) =

n∑
i=1

ci
m(Ai)

m(Ω)
=

n∑
i=1

ciP[Ai] = E[X].

For non-negative measurable X : Ω → R, by Theorem 3.5.2 take a sequence of non-negative increasing
simple functions Xn : Ω → R such that Xn(ω) → X(ω) for all ω ∈ Ω. From what we have already proved,
we have 1

m(Ω)

∫
Ω
Xn dm = E[Xn] for all n ∈ N. Letting n → ∞, the monotone convergence theorem gives

that 1
m(Ω)

∫
S
X dm = E[X].

Lastly, if X ∈ L1 then we may write X = X+ − X−, where X+, X− : S → R are non-negative and
measurable. From what we have already proved we have

1

m(Ω)

∫
Ω

X dm =
1

m(Ω)

∫
Ω

X+ dm − 1

m(Ω)

∫
Ω

X− dm = E[X+]− E[X−] = E[X].

as required.
5.7 (a) Define Bn = ∩n

i=1Ai. Then (Bn) is a decreasing sequence of sets and, since P is a finite measure,
by Lemm a5.1.1 we have P[Bn] → P[∩∞

i=1Bi] as n → ∞. Since ∩∞
i=1Ai = ∩∞

i=1Bi we thus have
P[∩∞

i=1Ai] = limn→∞ P[∩n
i=1Ai]. Using independence on the right hand side, we obtain

P[∩∞
i=1Ai] = lim

n→∞
P[A1]P[A2] . . .P[An] =

∞∏
i=1

P[Ai]

as required. Note that the limit on the right hand side exists because P[A1]P[A2] . . .P[An] is decreasing
as n increases.

(b) There are many ways to answer this question, but they all focus around the possibility that
∏∞

n=1 P[An]
might be zero, in which case (5.5) might not give us any information.
For example: if 0 < P[An] < 1 − κ for infinitely many n, where κ > 0 does not depend on n, then∏∞

n=1 P[An] = 0 so P
[⋂∞

n=1 An

]
=
∏∞

n=1 P[An] would hold in, for example, the case where all the
(An) were disjoint. Disjoints events with non-zero probability are always dependent (note that if one
occurs then all the others do not!) so clearly this ‘alternative’ definition is not what we want.

5.8 (a) We have P[A ∩B] = P[A] ∩ P[B]. Noting that Ac ∩Bc = (A ∪B)c, we have

P[Ac ∩Bc] = P[(A ∪B)c] = 1− P[A ∪B]

= 1− P[A]− P[B] + P[A ∩B]

= 1− P[A]− P[B]− P[A]P[B]

= (1− P[A])(1− P[B])

= P[Ac]P[Bc].

Hence Ac and Bc are independent.
(b) If A,B ∈ B(R) and f, g are Borel measurable, then f−1(A), g−1(B) ∈ B(R) and so

P[f(X) ∈ A, g(Y ) ∈ B] = P[X ∈ f−1(A), Y ∈ g−1(B)]

= P[X ∈ f−1(A))P(Y ∈ g−1(B)]

= P[f(X) ∈ A)P(g(Y ) ∈ B).

5.9 (a) We have XY = U2V (1 − V ) = 0 because V (1 − V ) = 0, hence E[XY ] = 0. Note that E[U ] = 0.
By independence of U and V , E[X] = E[U ]E[V ] = 0 and E[Y ] = E[U ]E[1 − V ] = 0. Hence E[XY ] =
E[X]E[Y ].
To see that X and Y are not independent, note that {X = 0} = {V = 0} and {Y = 0} = {V = 1}.
Thus P[X = Y = 0] = 0 but that P[X = 0] = P[Y = 0] 1

2
, so P[X = Y = 0] 6= P[X = 0]P[Y = 0].

(b) It is clear that X and Y are independent. Considering X and Z, for any a, b ∈ {−1, 1} we have
P[X = a, Z = b] = P[X = a,XY = b] = 1

2
. The same calculation applies to X and Y . We thus have

pairwise independence.
However, P[X = Y = Z = 1] = P[X = Y = 1] = P[X = Y = 1] = P[X = 1]P[Y = 1] = 1

2
1
2
= 1

4
and

P[X = 1]P[Y = 1]P[Z = 1] = 1
2

1
2

1
2
= 1

8
. Hence {X,Y, Z} is not a set of independent random variables.

5.10 The constant M provides a dominating function for (Xn) and we have E[M ] = M < ∞, so (the constant
function) M is in L1. By the dominated convergence theorem we have E[Xn] → E[X].
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5.11 (a) If X = k and k ∈ N then
∞∑

n=1

1{X≥n} =

∞∑
n=1

1{k≥n} = k = X

because the first k terms of the sum are 1 and the rest are 0. Since X only takes values in N, we have

X =

∞∑
n=1

1{X≥n}.

By the monotone convergence theorem

E[X] = E

[
∞∑

n=1

1{X≥n}

]
=

∞∑
n=1

E[1{X≥n}] =

∞∑
n=1

P[X ≥ n].

(b) Let X1 = bY c and X2 = dY e, that is Y rounded up and down (respectively) to the nearest integer.
We can apply part (a) to both X1 and X2, since they take values in N ∪ {0}.
Note that for n ∈ N we have X1 ≥ n if and only if Y ≥ n. Hence

∞∑
n=1

P[Y ≥ n] =
∞∑

n=1

P[X1 ≥ n] = E[X1] ≤ E[Y ].

Here, the last line follows by monotonicity, since X1 ≤ Y .
For X2 we need to be slightly more careful. We have Y ≤ X2 ≤ Y +1, hence P[X2 ≥ k] ≤ P[Y +1 ≥ k].
Hence

E[Y ] ≤ E[X2] =

∞∑
n=1

P[X2 ≥ n] ≤
∞∑

n=1

P[Y + 1 ≥ n] = 1{Y ≥0} +

∞∑
n=1

P[Y ≥ n] = 1 +

∞∑
n=1

P[Y ≥ n].

5.12 (a) By linearity, the quadratic function g(t) = E[X2] + 2tE[XY ] + t2E[Y 2] ≥ 0 for all t ∈ R. A non-
negative quadratic function has at most one real root, and hence has a non-positive discriminant
(i.e. b2 − 4ac ≤ 0). Hence 4(E[XY ])2 − 4E[X2]E[Y 2] ≤ 0 and the result follows.

(b) Put Y = 1 in the Cauchy-Schwarz inequality from (a) to get E[|X|] ≤ E[X2]
1
2 < ∞. Thus X ∈ L1.

By Lemma 4.2.2 we have |E[X]| ≤ E[|X|]. Combining our two inequalities gives |E[X]|2 ≤ E[X2].
(c) If E[X2] < ∞ then by part (b) E[|X|] < ∞, so by linearity we have

var(X) = E[(X − µ)2] = E[X2]− 2µE[X] + µ2 = E[X2]− µ2.

Hence var(X) < ∞.
Conversely, suppose that var(X) < ∞, and note that by assumption we also have E[X] < ∞. We can
write X2 = (X−E[X])2+2XE[X]−E[X]2 and note that all terms here are in L1 by our assumptions,
thus

E[X2] = var(X) + 2E[X]E[X]− E[X]2 = var(X)− E[X]2.

Hence E[X2] is finite.
5.13 (a) Since e−ax ≤ 1 for all x ≥ 0 we have

E
[
e−aX

]
=

∫ ∞

0

e−axdpX(x) ≤
∫ ∞

0

dpX(x) = 1.

(b) Using the fact that ea|x| =
∑∞

n=0
an|x|n

n!
for all x ∈ R we see that for each n ∈ N, |x|n ≤ n!

an e
a|x| and

so by monotonicity
E [|X|n] ≤ n!

an
E
[
ea|X|

]
< ∞.

5.14 If f is an indicator function: f = 1A for some A ∈ B(R):∫
Ω

1A(X(ω))dP(ω) = P(X ∈ A) = pX(A) =

∫
R
1A(x)pX(dx),

126



©Nic Freeman, University of Sheffield, 2025.

and so the result holds in this case. It extends to simple functions by linearity. If f is non-negative and
bounded ∫

Ω

f(X(ω))dP(ω) = sup
{∫

Ω

g(ω)dP(ω); g simple on Ω, 0 ≤ g ≤ f ◦X
}

= sup
{∫

Ω

h(X(ω))dP(ω);h simple on R, 0 ≤ h ◦X ≤ f ◦X
}

= sup
{∫

R
h(x)pX(dx);h simple, 0 ≤ h ≤ f

}
=

∫
R
f(x)dpX(x).

In the general case write f = f+ − f− and similarly for X (details left for you).
If f is non-negative but not necessarily bounded, the result still holds but both

∫
Ω
f(X(ω) dP(ω) and∫

R f(x) dpX(x) may be (simultaneously) infinite.
5.15 (a) Since P[En] ≥ ε we have P[Ω \ En] ≤ 1− ε. Hence for all N ∈ N we have

P[∪nEn] ≥ P

[
N⋃

n=1

En

]
= 1− P

[
Ω \

N⋃
n=1

En

]
= 1− P

[
N⋂

n=1

Ω \ En

]
= 1−

N∏
n=1

P[Ω \ En] ≥ 1− (1− ε)N .

In the above the third step is obtained using independence of the (En). As the above equation holds
for all N ∈ N we obtain that P [∪nEn] = 1.

(b) Suppose that there exists ω ∈ Ω such that P[ω] > 0. Define a sequence of events (E′
n) by setting

E′
n = En if ω /∈ En and E′

n = Ω \ En if ω ∈ En. Clearly ω /∈ ∪n∈NE
′
n. By part (a) of exercise

5.8 the events (E′
n)n∈N are independent of one another. We have P[E′

n] ∈ (ε, 1 − ε) for all n ∈ N so
from exercise 5.15 we have that P[∪n∈NE

′
n] = 1. However ω /∈ ∪n∈NE

′
n and P[ω] > 0, so this is a

contradiction to P[Ω] = 1. Hence P[ω] = 0 for all ω ∈ Ω.
For the last part, if Ω was countable then we could write Ω = {ω1, ω2, . . .} and by definition of a
measure we would have 1 = P[Ω] =

∑
i∈N P[ωi]. Hence at least one ωi must satisfy P[ωi] > 0, but we

have already shown that this may not happen.

Chapter 6
6.1 Let us first calculate the moment generating function of the Poisson distribution (or you could look it up).

If X has the Poisson(λ) distribution the P[Xn = k] = λke−λ

k!
. Hence we have

E[etX ] =

∞∑
k=0

λke−λ

k!
etk = e−λ

∞∑
k=0

(etλ)k

k!
= e−λee

tλ = eλ(e
t−1).

Putting nλ as the parameter, we obtain E[etXn ] = enλ(et−1) as required.
To derive the Chernoff bound, note that by Markov’s inequality we have

P[Xn ≥ nλ2] = P[etXn ≤ etnλ2

] ≤ e−tnλ2

E[etXn ] = exp
(
nλ(et − 1− λt)

)
.

Differentiating the above with respect to t obtains nλ(et − λ) exp
(
nλ(et − 1− λt)

)
, which is minimized

when λ = et. We thus obtain the Chernoff bound

P[Xn ≥ nλ2] ≤ exp (nλ(λ− 1− λ logλ)) .

Note that λ − 1 − λ logλ ≤ 0 for λ > 0, with equality only when λ = 1, so this is a useful bound provided
λ ≥ 1.

6.2 By linearity we have E[Xn] =
∑n

i=1 P[Ei] and

E[X2
n] = E

 n∑
i=1

1
2
Ei

+
n∑

i=1

n∑
j=1
j 6=i

1Ei1Ej

 = E

 n∑
i=1

1Ei +
n∑

i=1

n∑
j=1
j 6=i

1Ei∩Ej

 =
n∑

i=1

P[Ei] +
n∑

i=1

n∑
j=1
j 6=i

P[Ei ∩ Ej ].

Hence,

E[Xn]
2

E[X2
n]

=

(∑n
i=1 P[Ei]

)2∑n
i=1 P[Ei] +

∑n
i=1

∑n
j=1
j 6=i

P[Ei ∩ Ej ]
=

1(∑n
i=1 P[Ei]

)−1
+

∑n
i=1

∑n
j=1
j 6=i

P[Ei∩Ej ](∑n
i=1 P[Ei]

)2
.
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Using that P[Ei ∩ Ej ] ≤ P[Ei]P[Ej ] we have∑n
i=1

∑n
j=1
j 6=i

P[Ei ∩ Ej ](∑n
i=1 P[Ei]

)2 ≤

∑n
i=1 P[Ei]

2 +
∑n

i=1

∑n
j=1
j 6=i

P[Ei]P[Ej ](∑n
i=1 P[Ei]

)2 = 1,

hence
E[Xn]

2

E[X2
n]

≥ 1(∑n
i=1 P[Ei]

)−1
+ 1

.

The right hand side of the above tends to 1 as n → ∞ because
∑∞

i=1 P[Ei] = ∞. From the Paley-Zygmund
inequality we have 1 ≥ P[Xn ≥ 1] ≥ E[X]2

E[X2]
, so by the sandwich rule P[Xn ≥ 1] → 1 as n → ∞.

6.3 Here we use Lemma 6.3.2 (and Remark 6.3.4) to check for convexity, by calculating the second derivative.
This part is left for you.

(a) The function x 7→ x4 is convex, so Jensen’s inequality gives E[X]4 ≤ E[X4].
(b) The function x 7→ x1/4 is not convex, but x 7→ −x1/4 is convex for x ≥ 0, so Jensen’s inequality gives

−E[X]1/4 ≤ E[−X1/4], that is E[X1/4] ≤ E[X]1/4.
(c) The function x 7→ ex is convex, so Jensen’s inequality gives eE[X] ≤ E[eX ].
(d) If we take the case P[X = 0] = P[X = π

2
] = 1

2
then we have E[cos(X)] = 1

2
(1) + 1

2
(0) = 1

4
and

cos(E[X]) = cos(π
4
) = 1√

2
. Hence E[cos(X)] < cos(E[X]).

If we take the case P[X = π] = P[X = π
2
] = 1

2
then we have E[cos(X)] = 1

2
(−1) + 1

2
(0) = − 1

4
and

cos(E[X]) = cos( 3π
4
) = − 1√

2
. Hence E[cos(X)] > cos(E[X]).

Therefore no inequality holds in general between E[cos(X)] and cos(E[X]).
The point here is that x 7→ cos(x) is convex on [π

2
, π] and x 7→ − cos(x) is convex on [0, π

2
], which

allows us to produce examples or random variables where the inequality goes both ways.

6.4 The function g(x) = − log(x) is convex for x > 0 by Lemma 6.3.2, because g′′(x) = 1
x2 ≥ 0. Applying

Jensen’s inequality to X, where X has the uniform distribution on {x1, . . . , xn}, we obtain

− log
(x1 + . . .+ xn

n

)
≤ − log(x1) + . . .+ log(xn)

n
.

Rearranging, we obtain 1
n

log(x1x2 . . . xn) = log( n
√
x1x2 . . . xn) ≤ log(x1+...+xn

n
). The required result follows

since x 7→ logx is monotone increasing.
6.5 Since p ≤ q the function g(x) = xq/p is convex for x ≥ 0, by Lemma 6.3.2 (you should check this). We

apply Jensen’s inequality to |X|p and g(x), which gives that

(E[|X|p])q/p ≤ E[(|X|p)q/p] = E[|X|q] < ∞.

Hence E[|X|p] < ∞.
6.6 We have X ≥ 0. By monotonicity this implies E[X] ≥ 0. If E[X] = 0 then it would follow from Lemma

4.2.5 that X
a.s.
= 0, which would imply E[X2] = 0. This is a contradiction, hence in fact E[X] > 0.

Rearranging the Paley-Zygmund inequality from (6.3) gives that P[X = 0] ≤ 1− E[X]2

E[X2]
.

To obtain the other case of the minimum, note that X = 0 implies that |X − E[X]| ≤ E[X], hence
P[X = 0] ≤ P[|X − E[X]| ≥ E[X]]. Using Chebyshev’s inequality from Exercise 5.2, with c = E[X] > 0, we
therefore have P[X = 0] ≤ var(X)

E[X]2
= E[X2]−E[X]2

E[X]2
= E[X]2

E[X]2
− 1.

Chapter 7
7.1 Let Em be the event that starting at the mth toss, k consecutive heads appear. Then P[Em] = 1/2k.

Set An = Em+kn and then the (An) are independent. Moreover,
∑∞

r=1 P[An] = ∞, so by the second
Borel-Cantelli lemma P[An i.o.] = 1.

7.2 (a) You might reasonably think that this is obvious - if (An) occurs eventually then it occurs for all n
after some N , and of course there are infinitely many such n so then (An) occurs infinitely often. Let’s
give a proof anyway.
Suppose ω ∈ {An e.v.} =

⋃
m

⋂
n≥m An. Then, for at least one value of m, we have ω ∈ An for all

n ≥ m. Take any k ∈ N and pick some n ≥ max(m, k). Then ω ∈
⋃

i≥k Ai, but this holds for all k,
which implies ω ∈

⋂
k

⋃
i≥k Ai = {Ai i.o.}.
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(b) By the laws of set algebra we have

Ω \ {An i.o.} = Ω \

⋂
m

⋃
n≥m

An

 =
⋃
m

Ω \

 ⋃
n≥m

An

 =
⋃
m

⋂
n≥m

Ω \An = {Ω \An e.v.}.

It follows immediately that 1− P[An i.o.] = P[Ac
n e.v.].

(c) Define Bm = ∩n≥mAn. Note that Bm is increasing. Note that P[Bm] ≤ P[Am] because Bm ⊆ Am.
Thus by Lemma 5.1.1 we have

P[An e.v.] = P[∪mBm] = lim
m→∞

P[Bm] = lim inf
m→∞

P[Bm] ≤ lim inf
m→∞

P[Am]. (B.1)

In the above, we must switch from lim to lim inf before using P[Bm] ≤ P[Am], because we cannot be
sure if limn P[An] exists (and in general it will not).
Using (b), we then have

P[An i.o.] = 1−P[Ac
n e.v.] ≥ 1−lim inf

m→∞
P[Ac

m] = 1−lim inf
m→∞

(1−P[Am]) = − lim inf
m→∞

−P[Am] = lim sup
m→∞

P[Am].

(B.2)
Note that lim infm→∞ P[Am] ≤ lim supm→∞ P[Am] holds automatically. Putting (B.2) and (B.2)
together completes the argument.

7.3 The sequence is assumed independent and identically distributed, which means that P[Xn ≤ x] = P[X1 ≤ x]

for all x, and in particular P[Xn ≤ x] → P[X1 ≤ x]. Thus Xn
d→ X in distribution.

Let a ∈ (0, 1]. Since Xn only takes the value 0 and 1, |Xn − X1| only takes the values 0 and 1. Thus
{|Xn −X| > a} = {|Xn −X| = 1} = {Xn = 1, X1 = 0} ∪ {Xn = 0, X1 = 1}. For n > 1, since Xn and X1

are independent we thus have

P[|Xn −X| > a] = P[Xn = 1, X1 = 0] + P[Xn = 0, X1 = 1] =
1

2

1

2
+

1

2

1

2
=

1

2

which does not tend to zero as n → ∞. Thus Xn does not converge to X in probability.
7.4 (a) We have

E[|Xn − 0|] = E[Xn] = n
1

n2
+ 0

(
1− 1

n2

)
=

1

n2
→ 0

so Xn
L1

→ 0. Since
∑

1
n2 < ∞, by the second Borel-Cantelli lemma we have P[Xn = n i.o.] = 0. Since

Xn is either equal to n2 or 0, this means that P[Xn = 0 e.v.] = 1. Thus Xn
a.s.→ 0.

(b) We have

E[|Xn − 0|] = E[Xn] = n
1

n
+ 0

(
1− 1

n

)
= 1

which does not tend to zero, so Xn does not converge to 0 in L1. Since
∑

1
n

= ∞ and the Xn are
independent, by the second Borel-Cantelli lemma we have P[Xn = n i.o.] = 1. Thus Xn does not
convergence almost surely to 0.

(c) We have

E[|Xn − 0|] = E[Xn] = n2 1

n2
+ 0

(
1− 1

n2

)
= 1

which does not tend to zero, so Xn does not converge to 0 in L1. Since
∑

1
n2 < ∞, by the second

Borel-Cantelli lemma we have P[Xn = n2 i.o.] = 0. Since Xn is either equal to n2 or 0, this means
that P[Xn = 0 e.v.] = 1. Thus Xn

a.s.→ 0.
(d) We have

E[|Xn − 0|] = E[Xn] =
√
n
1

n
+ 0

(
1− 1

n

)
=

1√
n

→ 0

so Xn
L1

→ 0. Since
∑

1
n

= ∞ and the Xn are independent, by the second Borel-Cantelli lemma we
have P[Xn =

√
n i.o.] = 1. Thus Xn does not convergence almost surely to 0.

(e) In cases (a), (c) and (d) this follows from Lemma 7.2.1. For case (b), since Xn only takes the values
0 and n we have that {|Xn − 0| > a} = {Xn = n} whenever a < n, in which case P[|Xn − 0| > a] =

P[Xn = n] = 1
n
→ 0 as n → ∞. Thus Xn

P→ 0.
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7.5 Let us first show that Xn
P→ 0. Given any ε > 0 and c > 0 we can find m ∈ N such that 1

2mc
< ε. The key

point is that for n > 2m the length of the interval An is less than or equal to 1
2m

, and since our probability
measure is Lebesgue measure this gives E[1An ] ≤ 1

2m
. Hence, for all n > 2m, by Markov’s inequality

P[|Xn − 0| > c] = P[1An > c] ≤ E[1An ]

c
<

1

2mc
< ε.

On the other hand (Xn) cannot converge to 0 almost surely since given any n ∈ N, we can find m > n so
that Am and An are disjoint, in which case for any ω ∈ Ω we have Xn(ω)−Xm(ω) = 1An(ω)− 1Am(ω) is
equal to either 1− 0 or 0− 1. In either case, |Xn(ω)−Xm(ω)| = 1. Since n was arbitrary and m ≥ n, this
means Xn(ω) cannot converge (to anything) as n → ∞. In particular, there is no almost sure convergence
to zero.
The best way to think about this question is to rewrite it in terms of probability. Lebesgue measure on [0, 1]
is the distribution of a uniform random variable U . Then Xn = 1An is equal to 1 if that uniform random
variable falls into An, and zero otherwise. Fix some sampled value for U , and then think about how the
sequence Xn will behave.

7.6 (a) We need to show that X and Y have the same distribution (i.e. they have the same distribution
functions FX(x) = FY (x)).
If x ∈ R is such that P[X = x] = 0 then we have both P[Xn ≤ x] → P[X ≤ x] and P[Xn ≤ x] →
P[Y ≤ x], so by uniqueness of limits for real sequences we have P[X ≤ x] = P[Y ≤ x].
By exercise 5.5 there are at most countably many x ∈ R such that P[X = x] > 0. Therefore, for all
but a countable set of x ∈ R, we have FX(x) = FY (x). From Lemma 5.2.1 we have that both FX and
FY are right continuous. Hence, in fact, FX(x) = FY (y) at all x ∈ R.

(b) By definition of convergence in probability, for any a > 0, for any ε > 0 there exists N ∈ N such that,
for all n ≥ N ,

P[|Xn −X| > a] < ε and P[|Xn − Y | > a] < ε.

By the triangle inequality we have

P[|X − Y | > 2a] = P[|X −Xn +Xn − Y | > 2a] ≤ P[|X −Xn|+ |Xn − Y | > 2a]. (B.3)

If |X−Xn|+ |Xn−Y | > 2a then |X−Xn| > a or |Xn−Y | > a (or possibly both). Hence, continuing
(B.3),

P[|X − Y | > 2a] ≤ P[|Xn −X| > a] + P[|Xn − Y | > a] ≤ 2ε.

Since this is true for any ε > 0 and any a > 0, we have P[X = Y ] = 1.
7.7 Without loss of generality (as in the argument given for the general case) we may assume that E(Xn) = 0

for all n ∈ N. If this is not the case, we consider Xn − µ in place of Xn.
The proof proceeds in exactly the same way as when the random variables are independent, but needs the
following extra calculation:

var(Xn) =
1

n2
E

[(
n∑

i=1

Xi

)2]

=
1

n2

n∑
i=1

n∑
j=1

E[XiXj ]

=
1

n2

n∑
i=1

E[X2
i ]

=
σ2

n
.

7.8 (a) Write
min(1, X) = min(1, X)1{X<a} + min(1, X)1{X≥a}

and take expectations, giving

E[min(1, X)] = E[min(1, X)1{X<a}] + E[min(1, X)1{X≥a}]

≤ E[a] + E[1{X≥a}]

= a+ P[X ≥ a].

To deduce the second line of the above we use monotonicity of E.

130



©Nic Freeman, University of Sheffield, 2025.

(b) (⇐) : Suppose that E[min(1, Xn)] → 0. For a ∈ (0, 1] we have

P[Xn ≥ a] = P[min(1, Xn) ≥ a] ≤ 1

a
E[min(1, Xn)]

which tends to zero as n → ∞. Here we use Markov’s inequality.
For a ≥ 1 we have P[Xn ≥ a] ≤ P[Xn ≥ 1] → 0, where the convergence comes from what we have
already proved for a = 1.
(⇒) : Suppose that Xn

P→ 0. Let a ∈ (0, 1]. Then P[Xn ≥ a] → 0.
From part (a) we have

0 ≤ E[min(1, Xn)] ≤ a+ P[Xn ≥ a].

Let ε > 0. Choose a = ε
2

and let N ∈ N be large enough that P[Xn ≥ a] ≤ ε
2

for all n ≥ N. Then
0 ≤ E[min(1, Xn)] ≤ ε

2
+ ε

2
= ε for all n ≥ N . Hence E[min(1, Xn)] → 0.

7.9 (a) Write

φ(u) =
1√
2π

∫
R
eiuye−

1
2
y2

dy

=
1√
2π

∫
R

cos(uy)e−
1
2
y2

dy + i
1√
2π

∫
R

sin(uy)e−
1
2
y2

dy.

As | cos(uy)ye−
1
2
u2

| ≤ |y|e−
1
2
y2

and | sin(uy)ye−
1
2
u2

| ≤ |y|e−
1
2
y2

and y → |y|e−
1
2
y2

is in L1
R, we may

apply Problem 4.17 to real and imaginary parts, to deduce that u → φ(u) is differentiable and its
derivative at u ∈ R is

φ′(u) =
i√
2π

∫
R
eiuyye−

1
2
y2

dy.

Now integrate by parts to find that

φ′(u) =
i√
2π

[
−eiuye−

1
2
y2
]∞
−∞

− 1√
2π

∫ ∞

−∞
ueiuye−

1
2
y2

dy

= −uφ(u).

So we have the ordinary differential equation dφ(u)

du
= −uφ(u) with initial condition, ΦY (0) = 1 and

the result follows by using the standard separation of variables technique.

(b) First suppose that we have established the case for Y ∼ N(0, 1) i.e. we know that φY (u) = e−
1
2
u2

for
all u ∈ R. Then since X = µ+ σY , we have

φX(u) = E(eiu(µ+σY ))

= eiuµE(ei(uσ)Y ) = eiµu−
1
2
σ2u2

,
.

7.10 In this case µ = p and σ =
√

p(1− p) and so we can write

Sn − np√
np(1− p)

d→ N(0, 1)

The random variable Sn is the sum of n i.i.d. Bernoulli random variables and so is binomial with mean np
and variance np(1− p). Hence for large n it is approximately equal to N(np, np(1− p)) in distribution. If
we take p = 1

n
this allows us to approximate normal random variables with binomial random variables.

7.11 We will apply the AM-GM inequality from Exercise 6.4 to x1 = x2 = . . . = xn = 1 + x
n

and xn+1 = 1,
where x ≥ −n (so that xi ≥ 0). This gives(

1 +
x

n

) n
n+1 ≤

n(1 + x
n
) + 1

n+ 1
= 1 +

x

n+ 1
.

Raising both sides to the power of n+ 1 we obtain that fn(x) ≤ fn+1(x), for x ≥ −n and n ∈ N.
The sequence fn(x) = (1+ x

n
)n is thus a sequence of continuous functions that satisfies fn(x) ≤ fn+1(x) for

all x ≥ −n. The pointwise limit is f(x) = ex. Hence Dini’s theorem (applied to the sequence (fn))n ≥ M)
gives that the convergence is uniform on all intervals [−M,M ] where M ∈ (0,∞).
Note: we don’t have uniform convergence on R. We have to work around this difficulty by restricting to an
interval [−M,M ] instead.
Uniform convergence implies that fn(xn) → f(x) whenever xn → n. In the notation of Lemma 7.5.2, if we
set xn = y + αn then we have xn → y. Choosing M = supn |xn|, which is finite because the convergent
sequence (xn) is bounded, we obtain that fn(y + αn) → f(y), that is (1 + y+αn

n
)n → ey, as required.
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7.12 (a) For the deterministic random variable X = c, the only discontinuity of its distribution function is
at the value c, where it jumps from 0 to 1. Therefore, from Xn

d→ c we have that for all ε > 0,
P[Xn ≤ c− ε] → P[c < c− ε] = 0 and P[Xn ≤ c+ ε] → P[c ≤ c+ ε] = 1, as n → ∞. From the second
statement we may deduce that P[Xn ≥ c+ ε] → 0 for all ε > 0. We thus have

P[|Xn − c| ≥ ε]] = P[Xn ≤ c− ε] + P[Xn ≥ c+ ε] → 0

as n → ∞, which is to say that Xn
P→ c.

(b) Let (Xn) be a sequence of independent random variables such that Xn
P→ X. We will argue by

contradiction: suppose that X is not almost equal to a constant. There there exists c ∈ R and ε, δ > 0
such that P[X ≤ c− ε] ≥ δ and P[X ≥ c+ ε] ≥ δ.
By Lemma 7.2.4 there is a subsequence (Yn) of (Xn) such that Yn

a.s.→ X. By Lemma 7.2.1 we have
that Yn

P→ X.
Since Yn

P→ X, there exists N ∈ N such that for all n ≥ N we have P[|Yn − X| ≥ ε/2] ≤ δ/2. For
n ≥ N we thus have P[Yn ≤ c− ε/2] ≥ δ/2 and P[Yn ≥ c+ ε/2] ≥ δ/2. Hence also∑

n

P[Yn ≤ c− ε/2] = ∞ and
∑
n

P[Yn ≥ c+ ε/2] = ∞.

The (Xn) are independent, hence so are the elements of the subsequence (Yn). From the second
Borel-Cantelli lemma we obtain that

P[Yn ≤ c− ε/2 infinitely often, and Yn ≥ c+ ε/2 infinitely often] = 1.

However, this contradicts the fact that Yn
a.s→ X.

We have therefore reached a contradiction, so in fact there exists some c ∈ R such that P[X = c] = 1.
7.13 (a) We first show that complete convergence implies almost sure convergence. This part does not require

independence. Let Aε = {|Xn −X| ≤ ε e.v.} and note that A1/m is a decreasing sequence of sets (as
m ∈ N increases), and that ⋂

m∈N

A1/m =
⋂
ε>0

Aε = {Xn → X}.

If Xn converges completely to X then, by the first Borel-Cantelli lemma, P[|Xn−X| ≥ ε i.o.] = 0 which
implies that P[A1/m] = 1 for all m ∈ N. Since (A1/m) is decreasing we obtain that P[∩m∈NA1/m] = 1,
and hence P[Xn → X] = 1, so we have almost sure convergence.
Let us now show that if the (Xn) are independent then almost sure convergence implies complete
convergence. By part (b) of exercise 7.12 X we have that Xn

a.s.→ X = c where c ∈ R is deterministic.
For any ε > 0, the sequence of events En(ε) = {|Xn − c| ≥ ε} are independent. The fact that Xn

a.s.→ c
means that P[En(ε) i.o.] = 0. Hence by the second Borel-Cantelli lemma (here we use independence)
we must have

∑
n P[En(ε)] < ∞, as required.

(b) Let U be a uniform random variable on [0, 1] and define

Xn =

{
1 if U ≤ 1

n

0 otherwise.

Then P[Xn → 0] = P[U > 0] = 1, so Xn
a.s.→ 0.

For ε ∈ (0, 1] we have P[|Xn − 0| ≥ ε] = P[Xn = 1] = 1
n

, so
∑

n P[|Xn − 0| ≥ ε] = ∞, hence Xn does
not converge completely to 0.
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