Probability with Measure
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\DeclareMathOperator {\var }{var}\)
\(\DeclareMathOperator {\cov }{cov}\)
\(\newcommand {\nN }{n \in \mathbb {N}}\)
\(\newcommand {\Br }{{\cal B}(\R )}\)
\(\newcommand {\F }{{\cal F}}\)
\(\newcommand {\ds }{\displaystyle }\)
\(\newcommand {\st }{\stackrel {d}{=}}\)
\(\newcommand {\uc }{\stackrel {uc}{\rightarrow }}\)
\(\newcommand {\la }{\langle }\)
\(\newcommand {\ra }{\rangle }\)
\(\newcommand {\li }{\liminf _{n \rightarrow \infty }}\)
\(\newcommand {\ls }{\limsup _{n \rightarrow \infty }}\)
\(\newcommand {\limn }{\lim _{n \rightarrow \infty }}\)
\(\def \to {\rightarrow }\)
\(\def \iff {\Leftrightarrow }\)
\(\def \ra {\Rightarrow }\)
\(\def \sw {\subseteq }\)
\(\def \mc {\mathcal }\)
\(\def \mb {\mathbb }\)
\(\def \sc {\setminus }\)
\(\def \v {\textbf }\)
\(\def \E {\mb {E}}\)
\(\def \P {\mb {P}}\)
\(\def \R {\mb {R}}\)
\(\def \C {\mb {C}}\)
\(\def \N {\mb {N}}\)
\(\def \Q {\mb {Q}}\)
\(\def \Z {\mb {Z}}\)
\(\def \B {\mb {B}}\)
\(\def \~{\sim }\)
\(\def \-{\,;\,}\)
\(\def \qed {$\blacksquare $}\)
\(\def \1{\unicode {x1D7D9}}\)
\(\def \cadlag {c\`{a}dl\`{a}g}\)
\(\def \p {\partial }\)
\(\def \l {\left }\)
\(\def \r {\right }\)
\(\def \Om {\Omega }\)
\(\def \om {\omega }\)
\(\def \eps {\epsilon }\)
\(\def \de {\delta }\)
\(\def \ov {\overline }\)
\(\def \sr {\stackrel }\)
\(\def \Lp {\mc {L}^p}\)
\(\def \Lq {\mc {L}^q}\)
\(\def \Lone {\mc {L}^1}\)
\(\def \Ltwo {\mc {L}^2}\)
\(\def \toae {\sr {\rm a.e.}{\to }}\)
\(\def \toas {\sr {\rm a.s.}{\to }}\)
\(\def \top {\sr {\mb {\P }}{\to }}\)
\(\def \tod {\sr {\rm d}{\to }}\)
\(\def \toLp {\sr {\Lp }{\to }}\)
\(\def \toLq {\sr {\Lq }{\to }}\)
\(\def \eqae {\sr {\rm a.e.}{=}}\)
\(\def \eqas {\sr {\rm a.s.}{=}}\)
\(\def \eqd {\sr {\rm d}{=}}\)
\(\def \Sa {(S1)}\)
\(\def \Sb {(S2)}\)
\(\def \Sc {(S3)}\)
\(\def \Scp {(S3')}\)
\(\def \Ma {(M1)}\)
\(\def \Mb {(M2)}\)
\(\def \La {(L1)}\)
\(\def \Lb {(L2)}\)
\(\def \Lc {(L3)}\)
\(\def \Ld {(L4)}\)
\(\def \Le {(L5)}\)
6.4 Exercises on Chapter 6 \((\Delta )\)
-
6.1 Let \(X_n\) have a Poisson distribution with mean \(n\lambda >0\). Show that \(\E [e^{tX_n}]=e^{n\lambda (e^t-1)}\). Hence construct a Chernoff bound for
\(\P [X_n>n\lambda ^2]\), where \(n\in \N \).
-
6.2 Let \((E_n)_{n\in \N }\) be a sequence of events and let \(X_n=\sum _{i=1}^n \1_{E_i}\). Suppose \(\sum _{i=1}^\infty \P [E_i]=\infty \) and that \(\P [E_i
\cap E_j]\leq \P [E_i]\P [E_j]\) for all \(i\neq j\). Show that \(\P [X_n\geq 1]\to 1\) as \(n\to \infty \).
-
6.3 In each case, determine whether the two quantities given satisfy an equality of the form \(a\leq b\), \(b\leq a\), or if no such inequality holds in general.
-
(a) \(\E [X^{4}]\) and \(\E [X]^{4}\), where \(X\) is a random variable.
-
(b) \(\E [X^{1/4}]\) and \(\E [X]^{1/4}\), where \(X\) is a non-negative random variable.
-
(c) \(\E [e^X]\) and \(e^{\E [X]}\), where \(X\) is a bounded random variable.
-
(d) \(\E [\cos (X)]\) and \(\cos (\E [X])\), where \(X\) is a random variable.
-
6.4 Let \(\{x_1,\ldots ,x_n\}\sw (0,\infty )\). The mean average of these values is \(\frac {x_1+\ldots x_n}{n}\), which is more precisely known as the
arithmetic mean. In some situations it is advantageous to instead use the geometric mean, \(\sqrt [n]{x_1x_2\ldots x_n}\).
By applying Jensen’s inequality to a random variable with the discrete uniform distribution on \(\{x_1,\ldots ,x_m\}\) and the function \(g(x)=-\log x\), deduce that
\[\sqrt [n]{x_1x_2\ldots x_n} \leq \frac {x_1+\ldots x_n}{n}.\]
This equation is known as the AM-GM inequality.
-
6.5 Let \(1\leq p\leq q\) and let \(X\) be a random variable. Use Jensen’s inequality to show that if \(\E [|X|^q]<\infty \) then \(\E [|X|^p]<\infty \).
Challenge questions
-
6.6 Let \(X\) be a non-negative random variable with \(\E [X^2]\in (0,\infty )\). Show that \(\E [X]>0\) and that
\[\P [X=0]\leq \min \l \{\frac {\E [X^2]}{\E [X]^2}-1,\;1-\frac {\E [X]^2}{\E [X^2]}\r \}.\]