Probability with Measure
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\DeclareMathOperator {\var }{var}\)
\(\DeclareMathOperator {\cov }{cov}\)
\(\newcommand {\nN }{n \in \mathbb {N}}\)
\(\newcommand {\Br }{{\cal B}(\R )}\)
\(\newcommand {\F }{{\cal F}}\)
\(\newcommand {\ds }{\displaystyle }\)
\(\newcommand {\st }{\stackrel {d}{=}}\)
\(\newcommand {\uc }{\stackrel {uc}{\rightarrow }}\)
\(\newcommand {\la }{\langle }\)
\(\newcommand {\ra }{\rangle }\)
\(\newcommand {\li }{\liminf _{n \rightarrow \infty }}\)
\(\newcommand {\ls }{\limsup _{n \rightarrow \infty }}\)
\(\newcommand {\limn }{\lim _{n \rightarrow \infty }}\)
\(\def \to {\rightarrow }\)
\(\def \iff {\Leftrightarrow }\)
\(\def \ra {\Rightarrow }\)
\(\def \sw {\subseteq }\)
\(\def \mc {\mathcal }\)
\(\def \mb {\mathbb }\)
\(\def \sc {\setminus }\)
\(\def \v {\textbf }\)
\(\def \E {\mb {E}}\)
\(\def \P {\mb {P}}\)
\(\def \R {\mb {R}}\)
\(\def \C {\mb {C}}\)
\(\def \N {\mb {N}}\)
\(\def \Q {\mb {Q}}\)
\(\def \Z {\mb {Z}}\)
\(\def \B {\mb {B}}\)
\(\def \~{\sim }\)
\(\def \-{\,;\,}\)
\(\def \qed {$\blacksquare $}\)
\(\def \1{\unicode {x1D7D9}}\)
\(\def \cadlag {c\`{a}dl\`{a}g}\)
\(\def \p {\partial }\)
\(\def \l {\left }\)
\(\def \r {\right }\)
\(\def \Om {\Omega }\)
\(\def \om {\omega }\)
\(\def \eps {\epsilon }\)
\(\def \de {\delta }\)
\(\def \ov {\overline }\)
\(\def \sr {\stackrel }\)
\(\def \Lp {\mc {L}^p}\)
\(\def \Lq {\mc {L}^q}\)
\(\def \Lone {\mc {L}^1}\)
\(\def \Ltwo {\mc {L}^2}\)
\(\def \toae {\sr {\rm a.e.}{\to }}\)
\(\def \toas {\sr {\rm a.s.}{\to }}\)
\(\def \top {\sr {\mb {\P }}{\to }}\)
\(\def \tod {\sr {\rm d}{\to }}\)
\(\def \toLp {\sr {\Lp }{\to }}\)
\(\def \toLq {\sr {\Lq }{\to }}\)
\(\def \eqae {\sr {\rm a.e.}{=}}\)
\(\def \eqas {\sr {\rm a.s.}{=}}\)
\(\def \eqd {\sr {\rm d}{=}}\)
\(\def \Sa {(S1)}\)
\(\def \Sb {(S2)}\)
\(\def \Sc {(S3)}\)
\(\def \Scp {(S3')}\)
\(\def \Ma {(M1)}\)
\(\def \Mb {(M2)}\)
\(\def \La {(L1)}\)
\(\def \Lb {(L2)}\)
\(\def \Lc {(L3)}\)
\(\def \Ld {(L4)}\)
\(\def \Le {(L5)}\)
4.4 Integration as a measure
In Lemma 4.1.4 we saw that integrals of simple functions gave us a way of constructing measures. We’ll now carry that property over to
integrals of non-negative functions. In this case the upgrade to non-negative measurable functions provides the final version of the property. Other properties, such as monotonicity and linearity, will receive one
more upgrade in Section 4.5. We continue to work over a general measure space \((S,\Sigma ,m)\).
-
Let \(f:S\to [0,\infty )\) be measurable. Then \(\nu :\Sigma \to [0,\infty
]\) by
\[\nu (A)=\int _A f\,dm\]
is a measure.
Proof: We check the two properties in Definition 3.1.1. We have \(\nu (\emptyset )=\int _\emptyset f\,dm =\int _S \1_{\emptyset } f\,dm\). Since \(\1_{\emptyset }=0\) this gives \(\nu
(\emptyset )=\int _S 0\,dm\). The zero function is a simple function \(0=0\1_S\), and (4.3) gives that it
has integral zero. Thus \(\nu (\emptyset )=0\).
We need to show that \(\nu \) is countably additive. Let \((E_n)_{n\in \N }\) be pairwise disjoint subsets of \(S\) and let \(E=\bigcup _{n=1}^\infty E_n\). Set \(F_n=\bigcup _{i=1}^n E_i\). Then
\(F_n\sw F_{n+1}\) and hence \(\1_{F_n}\leq \1_{F_{n+1}}\), so \(\1_{F_n}f\leq \1_{F_{n+1}}f\). Also, \(\bigcup _{n=1}^\infty F_n=\bigcup _{n=1}^\infty E_n\), so \(\1_{F_n}\to \1_{E}\)
pointwise. Hence \(\1_{F_n}f\to \1_{E}f\) pointwise so by Theorem 4.3.1 we have
\(\seteqnumber{0}{4.}{13}\)
\begin{equation}
\label {eq:int_as_meas_M2_pre} \int _S \1_{F_n}f\,dm \to \int _S \1_{E}f\,dm.
\end{equation}
The right hand side of the above is equal to \(\int _E f\,dm=\nu (E)\). By Lemma 4.3.2 the left hand side is equal to
\[\int _S\sum _{i=1}^n \1_{E_i}f\,dm = \sum _{i=1}^n\int _S\1_{E_i}f\,dm=\sum _{i=1}^n\int _{E_i} f\,dm = \sum _{i=1}^n\nu (E_i).\]
Putting these into (4.14) gives that \(\lim _n \sum _{i=1}^n \nu (E_i) = \nu (\bigcup
_{i=1}^\infty E_i)\), as required. ∎
-
The Gaussian measure on \(\R \) is obtained by taking \(f=\phi \) where \(\phi :\R \to \R \) is given by \(\phi
(x) = \frac {1}{\sqrt {2\pi }}e^{-x^2/2}\) and taking \(m\) as Lebesgue measure. We note an explicit connection with probability theory:
\[I_A(\phi )=\int _A \frac {1}{2\pi }e^{-x^2/2}\,d\lambda (x)\]
which you should recognize as equal to \(\P [Z\in A]\) where \(Z\sim N(0,1)\). Thus \(A\mapsto \int _A \phi \,d\lambda \) is the law of a standard normal random variable. Normal random variables are
often known as Gaussian random variables.