last updated: September 19, 2024

Stochastic Processes and Financial Mathematics
(part two)

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\DeclareMathOperator {\var }{var}\) \(\DeclareMathOperator {\cov }{cov}\) \(\DeclareMathOperator {\indeg }{deg_{in}}\) \(\DeclareMathOperator {\outdeg }{deg_{out}}\) \(\newcommand {\nN }{n \in \mathbb {N}}\) \(\newcommand {\Br }{{\cal B}(\R )}\) \(\newcommand {\F }{{\cal F}}\) \(\newcommand {\ds }{\displaystyle }\) \(\newcommand {\st }{\stackrel {d}{=}}\) \(\newcommand {\uc }{\stackrel {uc}{\rightarrow }}\) \(\newcommand {\la }{\langle }\) \(\newcommand {\ra }{\rangle }\) \(\newcommand {\li }{\liminf _{n \rightarrow \infty }}\) \(\newcommand {\ls }{\limsup _{n \rightarrow \infty }}\) \(\newcommand {\limn }{\lim _{n \rightarrow \infty }}\) \(\def \ra {\Rightarrow }\) \(\def \to {\rightarrow }\) \(\def \iff {\Leftrightarrow }\) \(\def \sw {\subseteq }\) \(\def \wt {\widetilde }\) \(\def \mc {\mathcal }\) \(\def \mb {\mathbb }\) \(\def \sc {\setminus }\) \(\def \v {\textbf }\) \(\def \p {\partial }\) \(\def \E {\mb {E}}\) \(\def \P {\mb {P}}\) \(\def \R {\mb {R}}\) \(\def \C {\mb {C}}\) \(\def \N {\mb {N}}\) \(\def \Q {\mb {Q}}\) \(\def \Z {\mb {Z}}\) \(\def \B {\mb {B}}\) \(\def \~{\sim }\) \(\def \-{\,;\,}\) \(\def \|{\,|\,}\) \(\def \qed {$\blacksquare $}\) \(\def \1{\unicode {x1D7D9}}\) \(\def \cadlag {c\`{a}dl\`{a}g}\) \(\def \p {\partial }\) \(\def \l {\left }\) \(\def \r {\right }\) \(\def \F {\mc {F}}\) \(\def \G {\mc {G}}\) \(\def \H {\mc {H}}\) \(\def \Om {\Omega }\) \(\def \om {\omega }\) \(\def \Vega {\mc {V}}\)

15.5 The Black-Scholes formula

In principle, Theorem 15.3.1 tells us the arbitrage free price, under the Black-Scholes model, of any contingent claim (such that \(\E ^\Q [\Phi (S_T)]\) exists). In many cases the only way to evaluate (15.13) is with numerics. However, in some cases it is possible to derive an explicit formulae.

In this section, we find explicit formulae for the case of European call options. The result is often referred to as the Black-Scholes formula.

We begin from the formula given to us by Theorem 15.3.1: the price of the contingent claim \(\Phi (S_T)\) at time \(0\) is

\begin{equation} \label {eq:call_rnv} F(t,S_t)=e^{-r(T-t)}\E ^\Q \l [\Phi (S_T)\|\mc {F}_t\r ]. \end{equation}

Here, since we take expectation in the risk-neutral world \(\Q \), the stock price process \(S_t\) has dynamics

\[dS_t=rS_t\,dt+\sigma S_t\,dB_t.\]

From (13.10) we have

\begin{align} S_T &=S_t\exp \l ((r-\tfrac 12\sigma ^2)(T-t)+\sigma (B_T-B_t)\r )\label {eq:gbm_tT}\\ &=S_te^Z\label {eq:gbm_Z} \end{align} where \(Z\sim N\l [(r-\tfrac 12\sigma ^2)(T-t),\sigma ^2(T-t)\r ]=N[u,v^2]\) is independent of \(\mc {F}_t\). Here, we use \(u\) and \(v\) to keep our notation manageable.

Before we attempt to price a call option, let us work through a simpler case.

  • Example 15.5.1 We look to find the price, at time \(t\in [0,T]\), of the contingent claim \(\Phi (S_T)=2S_T+1\). From (15.19), the price is

    \[e^{-r(T-t)}\E ^\Q \l [2S_T+1\|\mc {F}_t\r ].\]

    Using (15.21) we obtain

    \begin{align*} e^{-r(T-t)}\E ^\Q \l [2S_T+1\|\mc {F}_t\r ] &=e^{-r(T-t)}\E ^\Q \l [2S_te^Z+1\|\mc {F}_t\r ]\\ &=e^{-r(T-t)}\l (2S_t\E ^\Q \l [e^Z\|\mc {F}_t\r ]+1\r )\\ &=e^{-r(T-t)}\l (2S_t\E ^\Q \l [e^Z\r ]+1\r )\\ &=e^{-r(T-t)}\l (2S_te^{(r-\tfrac 12\sigma ^2)(T-t)+\frac 12\sigma ^2(T-t)}+1\r )\\ &=e^{-r(T-t)}\l (2S_te^{r(T-t)}+1\r )\\ &=2S_t + e^{-r(T-t)} \end{align*} Here, we use that \(S_t\) is \(\mc {F}_t\) measurable, and that \(Z\) is independent of \(\mc {F}_t\). We use (11.2) to calculate \(\E [e^Z]\).

    Note that the price obtained corresponds to the hedging strategy of, at time \(0\), owning two units of stock, plus \(e^{-rT}\) cash. The value of this portfolio at time \(t\) is then \(2S_t+e^{rt}e^{-rT}=2S_t+e^{-r(T-t)}\).

Using the (15.19) in combination with either (15.20) or (15.21) is usually the best way to compute explicit pricing formulae. See exercises 15.2-15.5 for more examples in the same style.

We’ll give one more example in these notes. Consider the case of a call option with strike price \(K\) and exercise date \(T\). This case is not easy, and it will involve some hefty calculations because of the \(\max \) present in the contingent claim:

\[\Phi (S_T)=\max (S_T-K,0).\]

We are now looking to evaluate

\begin{align*} F(t,S_t) &=e^{-r(T-t)}\E ^\Q [\Phi (S_T)\|\mc {F}_t] \\ &=e^{-r(T-t)}\E ^\Q [\Phi (S_te^Z)\|\mc {F}_t], \end{align*} where we use (15.21). Writing \(s=S_t\in m\mc {F}_n\) and using the probability density function of \(Z\) gives us

\begin{align} F(t,s) &=e^{-r(T-t)}\int _{-\infty }^\infty \Phi (se^z)f_Z(z)\,dz\notag \\ &=e^{-r(T-t)}\l (0+\int _{\log (K/s)}^\infty (se^z-K)f_Z(z)\,dz\r )\notag \\ &=e^{-r(T-t)}\int _{\log (K/s)}^\infty (se^z-K)\frac {1}{\sqrt {2\pi }v}e^{-\frac {(z-u)^2}{2v^2}}\,dz\notag \\ &=\,\stackrel {\mc {A}}{\overbrace {e^{-r(T-t)}\int _{\log (K/s)}^\infty se^z\frac {1}{\sqrt {2\pi }v}e^{-\frac {(z-u)^2}{2v^2}}\,dz}} -\stackrel {\mc {B}}{\overbrace {e^{-r(T-t)}\int _{\log (K/s)}^\infty K\frac {1}{\sqrt {2\pi }v}e^{-\frac {(z-u)^2}{2v^2}}\,dz}}\label {eq:bs_form_pre} \end{align} Here, to deduce the second line, we split the integral into the cases \(se^Z< K\) and \(se^Z\geq K\). In the first case, \(\Phi (se^Z)=\max (se^Z-K,0)=0\).

The strategy now is to treat \(\mc {A}\) and \(\mc {B}\) separately. We plan to re-write each of \(\mc {A}\) and \(\mc {B}\) in terms of \(\mc {N}(z)=\frac {1}{\sqrt {2\pi }}\int _{-\infty }^z e^{-x^2}\,dx\), the cumulative distribution function of the \(N(0,1)\) distribution.

Let’s look at the the \(\mc {B}\) term first. Setting \(y=-z\), we have

\begin{align*} \mc {B} &=\frac {K}{\sqrt {2\pi } v} e^{-r(T-t)}\int _{-\log (K/s)}^{-\infty } e^{-\frac {(-y-u)^2}{2v^2}}(-1)\,dy\\ &=\frac {K}{\sqrt {2\pi } v} e^{-r(T-t)}\int ^{\log (s/K)}_{-\infty }e^{-\frac {(y+u)^2}{2v^2}}\,dy \end{align*} and setting \(x-\frac {y+u}{v}\) we have

\begin{align*} \mc {B} &=\frac {K}{\sqrt {2\pi } v} e^{-r(T-t)}\int ^{\frac {1}{v}\l (\log (s/K)+u\r )}_{-\infty }e^{-\frac {x^2}{2}}v\,dx\\ &=Ke^{-r(T-t)}\int ^{\frac {1}{v}\l (\log (s/K)+u\r )}_{-\infty }\frac {1}{\sqrt {2\pi }}e^{-\frac {x^2}{2}}\,dx\\ &=Ke^{-r(T-t)}\,\mc {N}\l [\frac {1}{v}\l \{\log \l (\frac {s}{K}\r )+u\r \}\r ]. \end{align*}

For the \(\mc {A}\) term, we have an extra factor \(e^{z}\). To handle this factor we will have to complete the square inside the exponential term before we make the \(x\) substitution (i.e. the same technique as in exercise 11.5). Again setting \(y=-z\) we have

\begin{align*} \mc {A} &=\frac {s}{\sqrt {2\pi } v}e^{-r(T-t)}\int _{-\log (K/s)}^{-\infty } e^{-y}e^{-\frac {(-y-u)^2}{2v^2}}(-1)\,dy\\ &=\frac {s}{\sqrt {2\pi } v}e^{-r(T-t)}\int ^{\log (s/K)}_{-\infty } e^{-y}e^{-\frac {(y+u)^2}{2v^2}}\,dy\\ &=\frac {s}{\sqrt {2\pi } v}e^{-r(T-t)}\int ^{\log (s/K)}_{-\infty } \exp \l (\frac {-1}{2v^2}\l [y^2+(2u+2v^2)y+u^2\r ]\r )\,dy\\ &=\frac {s}{\sqrt {2\pi } v}e^{-r(T-t)}\int ^{\log (s/K)}_{-\infty } \exp \l (\frac {-1}{2v^2}\l [\l (y+(u+v^2)\r )^2-(u+v^2)^2+u^2\r ]\r )\,dy\\ &=\frac {s}{\sqrt {2\pi } v}e^{-r(T-t)+\frac {(u+v^2)^2-u^2}{2v^2}}\int ^{\log (s/K)}_{-\infty }\exp \l (-\frac {(y+(u+v^2)^2)}{2v^2}\r )\,dy \end{align*} Noting that \(r(T-t)=u+\frac 12v^2\), it is easily seen that \(-r(T-t)+\frac {(u+v^2)^2-u^2}{2v^2}=0\), so the first exponential term is simply equal to \(1\). Setting \(x=\frac {y+(u+v^2)}{2v^2}\) we obtain

\begin{align*} \mc {A} &=\frac {s}{\sqrt {2\pi } v}\int _{-\infty }^{\frac {1}{v}\l (\log (s/K)+u+v^2\r )}\exp \l (-\frac {x^2}{2}\r )v\,dx\\ &=s\int _{-\infty }^{\frac {1}{v}\l (\log (s/K)+u+v^2\r )}\frac {1}{\sqrt {2\pi }}\exp \l (-\frac {x^2}{2}\r )\,dx\\ &=s\,\mc {N}\l [\frac {1}{v}\l \{\log \l (\frac {s}{K}\r )+u+v^2\r \}\r ]. \end{align*}

Substituting back in for \(u\) and \(v\), and recalling that we use the shorthand \(s=S_t\), we obtain the following formula for price, at time \(t\in [0,T]\), of a European call option with strike price \(K\) and exercise date \(T\).

\begin{equation} \label {eq:bs_formula} F(t,S_t)= S_t\,\mc {N}[d_1]-Ke^{-r(T-t)}\,\mc {N}[d_2] \end{equation}

where

last updated: September 19, 2024

Stochastic Processes and Financial Mathematics
(part two)

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\DeclareMathOperator {\var }{var}\) \(\DeclareMathOperator {\cov }{cov}\) \(\DeclareMathOperator {\indeg }{deg_{in}}\) \(\DeclareMathOperator {\outdeg }{deg_{out}}\) \(\newcommand {\nN }{n \in \mathbb {N}}\) \(\newcommand {\Br }{{\cal B}(\R )}\) \(\newcommand {\F }{{\cal F}}\) \(\newcommand {\ds }{\displaystyle }\) \(\newcommand {\st }{\stackrel {d}{=}}\) \(\newcommand {\uc }{\stackrel {uc}{\rightarrow }}\) \(\newcommand {\la }{\langle }\) \(\newcommand {\ra }{\rangle }\) \(\newcommand {\li }{\liminf _{n \rightarrow \infty }}\) \(\newcommand {\ls }{\limsup _{n \rightarrow \infty }}\) \(\newcommand {\limn }{\lim _{n \rightarrow \infty }}\) \(\def \ra {\Rightarrow }\) \(\def \to {\rightarrow }\) \(\def \iff {\Leftrightarrow }\) \(\def \sw {\subseteq }\) \(\def \wt {\widetilde }\) \(\def \mc {\mathcal }\) \(\def \mb {\mathbb }\) \(\def \sc {\setminus }\) \(\def \v {\textbf }\) \(\def \p {\partial }\) \(\def \E {\mb {E}}\) \(\def \P {\mb {P}}\) \(\def \R {\mb {R}}\) \(\def \C {\mb {C}}\) \(\def \N {\mb {N}}\) \(\def \Q {\mb {Q}}\) \(\def \Z {\mb {Z}}\) \(\def \B {\mb {B}}\) \(\def \~{\sim }\) \(\def \-{\,;\,}\) \(\def \|{\,|\,}\) \(\def \qed {$\blacksquare $}\) \(\def \1{\unicode {x1D7D9}}\) \(\def \cadlag {c\`{a}dl\`{a}g}\) \(\def \p {\partial }\) \(\def \l {\left }\) \(\def \r {\right }\) \(\def \F {\mc {F}}\) \(\def \G {\mc {G}}\) \(\def \H {\mc {H}}\) \(\def \Om {\Omega }\) \(\def \om {\omega }\) \(\def \Vega {\mc {V}}\)

15.6 Exercises on Chapter 15

All questions refer to the Black-Scholes model, and use the the same notation as in the rest of this chapter.

On the Black Scholes model
  • 15.1 Let \(c\in \R \) be a deterministic constant. Show that the functions \(f(t,s)=cs\) and \(g(t,s)=ce^{rt}\) are both solutions of the Black-Scholes PDE (15.10).

  • 15.2 Consider the contingent claim \(\Phi (S_T)=K\). Use the risk neutral valuation formula (15.13) to show that its price, at time \(t\), is \(Ke^{-r(T-t)}\).

  • 15.3

    • (a) Find the price, at time \(t\), of the contingent claim \(\Phi (S_T)=\log (S_T)\). Show that at time \(t=0\) this gives a price of

      \[e^{-rT}\l (\log S_0+(r-\tfrac 12\sigma ^2)T\r ).\]

    • (b) An excitable mathematician suggests the following hedging strategy:

      “At time \(0\), I will buy \(\log S_0\) units of stock. Then I’ll wait until time \(T\). The stock will be worth \(S_T\) then so then I will have \(\log (S_T)\) worth in stock. This means that at time \(0\) the arbitrage free price of the contingent claim \(\log (S_T)\) is actually \(\log S_0\), and therefore the formula in part (a) can’t be true.”

      Where is the flaw in this argument?

  • 15.4 Let \(\beta \geq 2\).

    • (a) Calculate \(dY_t\) where \(Y_t=S_t^\beta \), in the risk neutral world \(\Q \). Hence, show that \(Y_t\) is a geometric Brownian motion and find its parameters.

    • (b) Show that the arbitrage free price, at time \(t\), of the contingent claim \(\Phi (S_T)=S_T^\beta \) is given by

      \[S_t^\beta \exp \l \{-r(T-t)(1-\beta ) -\tfrac 12\sigma ^2\beta (T-t)(1-\beta )\r \}.\]

  • 15.5 Let \(0<\alpha <\beta \) and \(K>0\) be deterministic constants. A binary option is a contract with contingent claim

    \[\Phi (S_T)= \begin {cases} K & \text { if }S_T\in [\alpha ,\beta ]\\ 0 & \text { otherwise}. \end {cases} \]

    Find an explicit formula (in terms of the cumulative distribution function of the \(N(0,1)\) distribution) for the value of this contingent claim at time \(t\in [0,T]\).

  • 15.6 Find a deterministic process \(F_t\) such that \(\frac {S_t}{F_t}\) is a martingale under \(\P \).

  • 15.7 Given a contingent claim \(\Phi (S_T)\), let \(\Pi _t(\Phi )\) denote the price of this contingent claim at time \(t\in [0,T]\). Let \(\Phi _1(S_T)\) and \(\Phi _2(S_T)\) be two contingent claims, with exercise date \(T\), and let \(\alpha ,\beta \in \R \) be deterministic constants. Show that

    \[\Pi _t(\alpha \Phi _1+\beta \Phi _2)=\alpha \Pi _t(\Phi _1)+\beta \Pi _t(\Phi _2)\]

    for all \(t\in [0,T]\).

Challenge Questions
  • 15.8 Our excitable mathematician from exercise 15.3 is back. In response to 15.4, they say

    The situation in exercise 15.4, is equivalent to a ‘new’ Black-Scholes model in which the stock asset is not \(S_t\), but \(Y_t\). Since, by part (a) of 15.4, \(Y_t\) follows a geometric Brownian motion, this new model is actually just our usual Black-Scholes model but with different parameters. In this new model, we can hedge a single unit of the new ‘\(Y_t\)’ stock by simply buying a single unit of the new stock. So, the arbitrage free price of a single unit of the new stock will be \(Y_t=S_t^\beta \) and the answer claimed in 15.4(b) is wrong.

    Where is the flaw in this argument?

Copyright Nic Freeman, Sheffield University, last updated September 19, 2024