last updated: October 16, 2024

Stochastic Processes and Financial Mathematics
(part one)

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\DeclareMathOperator {\var }{var}\) \(\DeclareMathOperator {\cov }{cov}\) \(\def \ra {\Rightarrow }\) \(\def \to {\rightarrow }\) \(\def \iff {\Leftrightarrow }\) \(\def \sw {\subseteq }\) \(\def \wt {\widetilde }\) \(\def \mc {\mathcal }\) \(\def \mb {\mathbb }\) \(\def \sc {\setminus }\) \(\def \v {\textbf }\) \(\def \p {\partial }\) \(\def \E {\mb {E}}\) \(\def \P {\mb {P}}\) \(\def \R {\mb {R}}\) \(\def \C {\mb {C}}\) \(\def \N {\mb {N}}\) \(\def \Q {\mb {Q}}\) \(\def \Z {\mb {Z}}\) \(\def \B {\mb {B}}\) \(\def \~{\sim }\) \(\def \-{\,;\,}\) \(\def \|{\,|\,}\) \(\def \qed {$\blacksquare $}\) \(\def \1{\unicode {x1D7D9}}\) \(\def \cadlag {c\`{a}dl\`{a}g}\) \(\def \p {\partial }\) \(\def \l {\left }\) \(\def \r {\right }\) \(\def \F {\mc {F}}\) \(\def \G {\mc {G}}\) \(\def \H {\mc {H}}\) \(\def \Om {\Omega }\) \(\def \om {\omega }\)

3.4 Exercises on Chapter 3

On conditional expectation and martingales
  • 3.1 Let \((X_n)\) be a sequence of independent identically distributed random variables, such that \(\P [X_i=1]=\frac 12\) and \(\P [X_i=-1]=\frac 12\). Let

    \[S_n=\sum \limits _{i=1}^nX_i.\]

    Use the properties of conditional expectation to find \(\E [S_2\|\sigma (X_1)]\) and \(\E [S_2^2\|\sigma (X_1)]\) in terms of \(X_1\), \(X_2\) and their expected values.

  • 3.2 Let \((X_n)\) be a sequence of independent random variables such that \(\P [X_n=2]=\frac 13\) and \(\P [X_n=-1]=\frac 23\). Set \(\mc {F}_n=\sigma (X_i\-i\leq n)\). Show that \(S_n=\sum _{i=1}^nX_i\) is an \(\mc {F}_n\) martingale.

  • 3.3 Check that Examples 3.3.8 and 3.3.9 are martingales.

  • 3.4 Let \((M_t)\) be a stochastic process that is both and submartingale and a supermartingale. Show that \((M_t)\) is a martingale.

  • 3.5

    • (a) Let \((M_n)\) be an \(\mc {F}_n\) martingale. Show that, for all \(0\leq n\leq m\), \(\E [M_m\|\mc {F}_n]=M_n\).

    • (b) Guess and state (without proof) the analogous result to (a) for submartingales.

  • 3.6 Let \((M_n)\) be a \(\mc {F}_n\) martingale and suppose \(M_n\in L^2\) for all \(n\). Show that

    \begin{equation} \label {eq:doob_decomp_pre} \E [M_{n+1}^2|\mc {F}_n]=M_n^2+\E [(M_{n+1}-M_n)^2|\mc {F}_n] \end{equation}

    and deduce that \((M_n^2)\) is a submartingale.

  • 3.7 Let \(X_0,X_1,\ldots \) be a sequence of \(L^1\) random variables. Let \(\mc {F}_n\) be their generated filtration and suppose that \(\E [X_{n+1}|\mc {F}_n]=aX_n+bX_{n-1}\) for all \(n\in \N \), where \(a,b>0\) and \(a+b=1\).

    Find a value of \(\alpha \in \R \) (in terms of \(a,b\)) for which \(S_n=\alpha X_n+X_{n-1}\) is an \(\mc {F}_n\) martingale.

Challenge questions
  • 3.8 In the setting of 3.1, show that \(\E [X_1\|\sigma (S_n)]=\frac {S_n}{n}\).