last updated: October 16, 2024

Stochastic Processes and Financial Mathematics
(part one)

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\DeclareMathOperator {\var }{var}\) \(\DeclareMathOperator {\cov }{cov}\) \(\def \ra {\Rightarrow }\) \(\def \to {\rightarrow }\) \(\def \iff {\Leftrightarrow }\) \(\def \sw {\subseteq }\) \(\def \wt {\widetilde }\) \(\def \mc {\mathcal }\) \(\def \mb {\mathbb }\) \(\def \sc {\setminus }\) \(\def \v {\textbf }\) \(\def \p {\partial }\) \(\def \E {\mb {E}}\) \(\def \P {\mb {P}}\) \(\def \R {\mb {R}}\) \(\def \C {\mb {C}}\) \(\def \N {\mb {N}}\) \(\def \Q {\mb {Q}}\) \(\def \Z {\mb {Z}}\) \(\def \B {\mb {B}}\) \(\def \~{\sim }\) \(\def \-{\,;\,}\) \(\def \|{\,|\,}\) \(\def \qed {$\blacksquare $}\) \(\def \1{\unicode {x1D7D9}}\) \(\def \cadlag {c\`{a}dl\`{a}g}\) \(\def \p {\partial }\) \(\def \l {\left }\) \(\def \r {\right }\) \(\def \F {\mc {F}}\) \(\def \G {\mc {G}}\) \(\def \H {\mc {H}}\) \(\def \Om {\Omega }\) \(\def \om {\omega }\)

4.5 Exercises on Chapter 4

On stochastic processes
  • 4.1 Let \(S_n=\sum _{i=1}^n X_i\) be the symmetric random walk from Section 4.1 and let \(Z_n=e^{S_n}\). Show that \((Z_n)\) is a submartingale and that

    \[M_n=\l (\frac {2}{e+\frac {1}{e}}\r )^nZ_n\]

    is a martingale.

  • 4.2 Let \(S_n=\sum _{i=1}^n X_i\) be the asymmetric random walk from Section 4.1, where \(\P [X_i=1]=p\), \(\P [X_i=-1]=q\) and with \(p>q\) and \(p+q=1\). Show that \((S_n)\) is a submartingale and that

    \[M_n=\l (\frac {q}{p}\r )^{S_n}\]

    is a martingale.

  • 4.3 Let \((X_i)\) be a sequence of identically distributed random variables with common distribution

    \[X_i= \begin {cases} a & \text { with probability }p_a\\ -b & \text { with probability }p_b=1-p_a. \end {cases} \]

    where \(0\leq a,b\). Let \(S_n=\sum _{i=1}^n X_i\). Under what conditions on \(a,b,p_a,p_b\) is \((S_n)\) a martingale?

  • 4.4 Let \(S_n=\sum _{i=1}^n X_i\) be the symmetric random walk from Section 4.1. Show that \(S_n^2\) is a submartingale and that \(M_n=S_n^2-n\) is a martingale.

  • 4.5 Let \((X_i)\) be an i.i.d. sequence of random variables such that \(\P [X_i=1]=\P [X_i=-1]=\frac 12\). Define a stochastic process \(S_n\) by setting \(S_0=1\) and

    \[S_{n+1}= \begin {cases} S_n+X_{n+1} & \text { if }S_n>0,\\ 1 & \text { if }S_n=0. \end {cases} \]

    That is, \(S_n\) behaves like a symmetric random walk but, whenever it becomes zero, on the next time step it is ‘reflected’ back to \(1\). Let

    \[L_n=\sum _{i=0}^{n-1}\1\{S_i=0\}\]

    be the number of time steps, before time \(n\), at which \(S_n\) is zero. Show that

    \[\E [S_{n+1}\|\mc {F}_n]=S_n+\1\{S_n=0\}\]

    and hence show that \(S_n-L_n\) is a martingale.

  • 4.6 Consider an urn that may contain balls of three colours: red, blue and green. Initially the urn contains one ball of each colour. Then, at each step of time \(n=1,2,\ldots \) we draw a ball from the urn. We place the drawn ball back into the urn and add an additional ball of the same colour.

    Let \((M_n)\) be the proportion of balls that are red. Show that \((M_n)\) is a martingale.

  • 4.7 Let \(S_n=\sum _{i=1}^n X_i\) be the symmetric random walk from Section 4.1. State, with proof, which of the following processes are martingales:

    \begin{equation*} \text {(i) }S_n^2+n \hspace {3pc}\text {(ii) }S_n^2+S_n-n \hspace {3pc}\text {(iii) }\frac {S_n}{n} \end{equation*}

    Which of the above are submartingales?

Challenge questions
  • 4.8 Let \((S_n)\) be the symmetric random walk from Section 4.1. Prove that there is no deterministic function \(f:\N \to \R \) such that \(S_n^3-f(n)\) is a martingale.