last updated: September 19, 2024

Stochastic Processes and Financial Mathematics
(part one)

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\DeclareMathOperator {\var }{var}\) \(\DeclareMathOperator {\cov }{cov}\) \(\def \ra {\Rightarrow }\) \(\def \to {\rightarrow }\) \(\def \iff {\Leftrightarrow }\) \(\def \sw {\subseteq }\) \(\def \wt {\widetilde }\) \(\def \mc {\mathcal }\) \(\def \mb {\mathbb }\) \(\def \sc {\setminus }\) \(\def \v {\textbf }\) \(\def \p {\partial }\) \(\def \E {\mb {E}}\) \(\def \P {\mb {P}}\) \(\def \R {\mb {R}}\) \(\def \C {\mb {C}}\) \(\def \N {\mb {N}}\) \(\def \Q {\mb {Q}}\) \(\def \Z {\mb {Z}}\) \(\def \B {\mb {B}}\) \(\def \~{\sim }\) \(\def \-{\,;\,}\) \(\def \|{\,|\,}\) \(\def \qed {$\blacksquare $}\) \(\def \1{\unicode {x1D7D9}}\) \(\def \cadlag {c\`{a}dl\`{a}g}\) \(\def \p {\partial }\) \(\def \l {\left }\) \(\def \r {\right }\) \(\def \F {\mc {F}}\) \(\def \G {\mc {G}}\) \(\def \H {\mc {H}}\) \(\def \Om {\Omega }\) \(\def \om {\omega }\)

1.5 Exercises on Chapter 1

On the one-period market

All these questions refer to the market defined in Section 1.2 and use notation \(u,d,p_u,p_d,r,s\) from that section.

  • 1.1 Suppose that our portfolio at time \(0\) has \(10\) units of cash and \(5\) units of stock. What is the value of this portfolio at time \(1\)?

  • 1.2 Suppose that \(0<d<1+r<u\). Our portfolio at time \(0\) has \(x\geq 0\) units of cash and \(y\geq 0\) units of stock, but we will have a debt to pay at time \(1\) of \(K>0\) units of cash.

    • (a) Assuming that we don’t buy or sell anything at time \(0\), under what conditions on \(x,y,K\) can we be certain of paying off our debt?

    • (b) Suppose that do allow ourselves to trade cash and stocks at time \(0\). What strategy gives us the best chance of being able to pay off our debt?

  • 1.3

    • (a) Suppose that \(0<1+r<d<u\). Find a trading strategy that results in an arbitrage.

    • (b) Suppose instead that \(0<d<u<1+r\). Find a trading strategy that results in an arbitrage.

Revision of probability and analysis
  • 1.4 Let \(Y\) be an exponential random variable with parameter \(\lambda >0\). That is, the probability density function of \(Y\) is

    \[ f_X(x)= \begin {cases} \lambda e^{-\lambda x} & \text { for }x>0\\ 0 & \text { otherwise.}\\ \end {cases} \]

    Calculate \(\E [X]\) and \(\E [X^2]\). Hence, show that \(\var (X)=\frac {1}{\lambda ^2}\).

  • 1.5 Let \((X_n)\) be a sequence of independent random variables such that

    \[ \P [X_n=x]= \begin {cases} \frac {1}{n} & \text { if }x=n^2\\ 1-\frac {1}{n}& \text { if }x=0. \end {cases} \]

    Show that \(\P [|X_n|>0]\to 0\) and \(\E [X_n]\to \infty \), as \(n\to \infty \).

  • 1.6 Let \(X\) be a normal random variable with mean \(\mu \) and variance \(\sigma ^2>0\). By calculating \(\P [Y\leq y]\) (or otherwise) show that \(Y=\frac {X-\mu }{\sigma }\) is a normal random variable with mean \(0\) and variance \(1\).

  • 1.7 For which values of \(p\in (0,\infty )\) is \(\int _1^\infty x^{-p}\,dx\) finite?

  • 1.8 Which of the following sequences converge as \(n\to \infty \)? What do they converge too?

    \begin{align*} e^{-n} \quad \quad \quad \sin \l (\frac {n\pi }{2}\r ) \quad \quad \quad \frac {\cos (n\pi )}{n} \quad \quad \quad \sum \limits _{i=1}^n 2^{-i} \quad \quad \quad \sum \limits _{i=1}^n\frac {1}{i}. \end{align*} Give brief reasons for your answers.

  • 1.9 Let \((x_n)\) be a sequence of real numbers such that \(\lim _{n\to \infty } x_n=0\). Show that \((x_n)\) has a subsequence \((x_{n_r})\) such that \(\sum _{r=1}^\infty |x_{n_r}|<\infty \).