last updated: October 16, 2024

Stochastic Processes and Financial Mathematics
(part one)

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\DeclareMathOperator {\var }{var}\) \(\DeclareMathOperator {\cov }{cov}\) \(\def \ra {\Rightarrow }\) \(\def \to {\rightarrow }\) \(\def \iff {\Leftrightarrow }\) \(\def \sw {\subseteq }\) \(\def \wt {\widetilde }\) \(\def \mc {\mathcal }\) \(\def \mb {\mathbb }\) \(\def \sc {\setminus }\) \(\def \v {\textbf }\) \(\def \p {\partial }\) \(\def \E {\mb {E}}\) \(\def \P {\mb {P}}\) \(\def \R {\mb {R}}\) \(\def \C {\mb {C}}\) \(\def \N {\mb {N}}\) \(\def \Q {\mb {Q}}\) \(\def \Z {\mb {Z}}\) \(\def \B {\mb {B}}\) \(\def \~{\sim }\) \(\def \-{\,;\,}\) \(\def \|{\,|\,}\) \(\def \qed {$\blacksquare $}\) \(\def \1{\unicode {x1D7D9}}\) \(\def \cadlag {c\`{a}dl\`{a}g}\) \(\def \p {\partial }\) \(\def \l {\left }\) \(\def \r {\right }\) \(\def \F {\mc {F}}\) \(\def \G {\mc {G}}\) \(\def \H {\mc {H}}\) \(\def \Om {\Omega }\) \(\def \om {\omega }\)

2.5 Exercises on Chapter 2

On probability spaces
  • 2.1 Consider the experiment of throwing two dice, then recording the uppermost faces of both dice. Write down a suitable sample space \(\Omega \) and suggest an appropriate \(\sigma \)-field \(\mc {F}\).

  • 2.2 Let \(\Omega =\{1,2,3\}\). Let

    \begin{align*} \mc {F}&=\{\emptyset , \{1\}, \{2,3\}, \{1,2,3\}\},\\ \mc {F}'&=\{\emptyset , \{2\}, \{1,3\}, \{1,2,3\}\}. \end{align*}

    • (a) Show that \(\mc {F}\) and \(\mc {F}'\) are both \(\sigma \)-fields.

    • (b) Show that \(\mc {F}\cup \mc {F}'\) is not a \(\sigma \)-field, but that \(\mc {F}\cap \mc {F}'\) is a \(\sigma \)-field.

  • 2.3 Let \(\Omega =\{H,T\}^\N \) be the probability space from Section 2.3, corresponding to an infinite sequence of independent fair coin tosses \((X_n)_{n=1}^\infty \).

    • (a) Fix \(m\in \N \). Show that the probability that that random sequence \(X_1,X_2,\ldots ,\) contains precisely \(m\) heads is zero.

    • (b) Deduce that, almost surely, the sequence \(X_1,X_2,\ldots \) contains infinitely many heads and infinitely many tails.

  • 2.4 Let \(\Omega =\{1,2,3,4,5,6\}\), corresponding to one roll of a die. In each of the following cases describe, in words, the information contained within the given \(\sigma \)-field.

    • (a) \(\F _1=\big \{\emptyset ,\{1,2,3,4,5\},\{6\},\Omega \big \}\).

    • (b) \(\F _2=\sigma \big (\{1\},\{2\},\{3\},\{4,5,6\}\big )\).

    • (c) \(\F _3=\big \{\emptyset ,\{1,2\},\{3,4\},\{5,6\}, \{1,2,3,4\}, \{3,4,5,6\}, \{1,2,5,6\}, \Omega \big \}\).

On random variables
  • 2.5 Let \(\Omega =\{1,2,3,4,5\}\) and set

    \begin{align*} \G _1&=\sigma \big (\{1,5\},\{2,4\},\{3\}\big )\\ \G _2&=\big \{\emptyset ,\{1,2\},\{3,4,5\},\Omega \big \}. \end{align*}

    • (a) Define \(X_1:\Omega \to \R \) by \(X_1(\omega )=(\omega -3)^2\). Show that \(X_1\in m\G _1\) and \(X_1\notin m\G _2\).

    • (b) Give an example of a function \(X_2:\Omega \to \R \) such that \(X_2\in m\G _2\) and \(X_2\notin m\G _1\).

  • 2.6 Let \(\Omega =\{HH,HT,TH,TT\}\), representing two coin tosses. Define \(X\) to be the total number of heads shown. Write down all the events in \(\sigma (X)\).

  • 2.7 Let \(X\) be a random variable. Explain why \(\frac {X}{X^2+1}\) and \(\sin (X)\) are also random variables.

  • 2.8 Let \(X\) be a random variable with the probability density function \(f:\R \to \R \) given by

    \[f(x)= \begin {cases} 2x^{-3} & \text { if }x\in [1,\infty ),\\ 0 & \text { otherwise.} \end {cases} \]

    Show that \(X\in L^1\) but \(X\notin L^2\).

  • 2.9 Let \(1\leq p\leq q<\infty \).

    • (a) Generalize (2.7) to show that \(\E [|X|^p]\leq \E [|X|^q]+1\).

    • (b) Deduce that if \(X\in L^q\) then \(X\in L^p\).

  • 2.10 Let \(a>0\) and let \(X\) be a random variable such that \(X\geq 0\). Show that \(\P [X\geq a]\leq \frac {1}{a}\E [X].\)

Challenge questions
  • 2.11 Show that if \(\P [X\geq 0]=1\) and \(\E [X]=0\) then \(\P [X=0]=1\).