last updated: October 16, 2024

Stochastic Processes and Financial Mathematics
(part one)

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\DeclareMathOperator {\var }{var}\) \(\DeclareMathOperator {\cov }{cov}\) \(\def \ra {\Rightarrow }\) \(\def \to {\rightarrow }\) \(\def \iff {\Leftrightarrow }\) \(\def \sw {\subseteq }\) \(\def \wt {\widetilde }\) \(\def \mc {\mathcal }\) \(\def \mb {\mathbb }\) \(\def \sc {\setminus }\) \(\def \v {\textbf }\) \(\def \p {\partial }\) \(\def \E {\mb {E}}\) \(\def \P {\mb {P}}\) \(\def \R {\mb {R}}\) \(\def \C {\mb {C}}\) \(\def \N {\mb {N}}\) \(\def \Q {\mb {Q}}\) \(\def \Z {\mb {Z}}\) \(\def \B {\mb {B}}\) \(\def \~{\sim }\) \(\def \-{\,;\,}\) \(\def \|{\,|\,}\) \(\def \qed {$\blacksquare $}\) \(\def \1{\unicode {x1D7D9}}\) \(\def \cadlag {c\`{a}dl\`{a}g}\) \(\def \p {\partial }\) \(\def \l {\left }\) \(\def \r {\right }\) \(\def \F {\mc {F}}\) \(\def \G {\mc {G}}\) \(\def \H {\mc {H}}\) \(\def \Om {\Omega }\) \(\def \om {\omega }\)

6.3 Exercises on Chapter 6

On convergence of random variables
  • 6.1 Let \((X_n)\) be a sequence of independent random variables such that

    \[ X_n= \begin {cases} 2^{-n} & \text { with probability }\frac {1}{2}\\ 0 & \text { with probability }\frac {1}{2}.\\ \end {cases} \]

    Show that \(X_n\to 0\) in \(L^1\) and almost surely. Deduce that also \(X_n\to 0\) in probability and in distribution.

  • 6.2 Let \(X_n,X\) be random variables.

    • (a) Suppose that \(X_n\stackrel {L^1}{\to } X\) as \(n\to \infty \). Show that \(\E [X_n]\to \E [X]\).

    • (b) Give an example where \(\E [X_n]\to \E [X]\) but \(X_n\) does not converge to \(X\) in \(L^1\).

  • 6.3 Let \(U\) be a random variable such that \(\P [U=0]=\P [U=1]=\P [U=2]=\frac 13\). Let \(X_n\) and \(X\) be given by

    \[ X_n= \begin {cases} 1+\frac {1}{n} & \text { if }U=0\\ 1-\frac {1}{n} & \text { if }U=1\\ 0 & \text { if }U=2, \end {cases} \quad \quad \quad \quad X= \begin {cases} 1 & \text { if }U\in \{0,1\}\\ 0 & \text { if }U=2. \end {cases} \]

    Show that \(X_n\to X\) both almost surely and in \(L^1\). Deduce that also \(X_n\to X\) in probability and in distribution.

  • 6.4 Let \(X_1\) be a random variable with distribution given by \(\P [X_1=1]=\P [X_1=0]=\frac 12\). Set \(X_n=X_1\) for all \(n\geq 2\). Set \(Y=1-X_1\). Show that \(X_n\to Y\) in distribution, but not in probability.

  • 6.5 Let \((X_n)\) be the sequence of random variables from 6.1. Define \(Y_n=X_1+X_2+\ldots +X_n\).

    • (a) Show that, for all \(\omega \in \Omega \), the sequence \(Y_n(\omega )\) is increasing and bounded.

    • (b) Deduce that there exists a random variable \(Y\) such that \(Y_n\stackrel {a.s.}{\to }Y\).

    • (c) Write down the distribution of \(Y_1,Y_2\) and \(Y_3\).

    • (d) Suggest why we might guess that \(Y\) has a uniform distribution on \([0,1]\).

    • (e) Prove that \(Y_n\) has a uniform distribution on \(\{k2^{-n}\-k=0,1,\ldots ,2^n-1\}\).

    • (f) Prove that \(Y\) has a uniform distribution on \([0,1]\).

On the monotone convergence theorem
  • 6.6 Let \(Y_n\) be a sequence of random variables such that \(Y_{n+1}\leq Y_n\leq 0\), almost surely, for all \(n\). Show that there exists a random variable \(Y\) such that \(Y_n\stackrel {a.s.}{\to }Y\) and \(\E [Y_n]\to \E [Y]\).

  • 6.7 Let \(X\) be a random variable such that \(X\geq 0\) and \(\P [X<\infty ]=1\). Define

    \[ X_n= \begin {cases} X & \text { if }X\leq n\\ 0 & \text {otherwise.} \end {cases} \]

    Equivalently, \(X_n=X\1\{X\leq n\}\). Show that \(\E [X_n]\to \E [X]\) as \(n\to \infty \).

  • 6.8 Let \((X_n)\) be a sequence of random variables.

    • (a) Explain briefly why \(\E \big [\sum _{i=1}^n X_i\big ]=\sum _{i=1}^n \E [X_i]\) follows from the linearity of \(\E \), for \(n\in \N \). Explain briefly why linearity alone does not allow us to deduce the same equation with \(n=\infty \).

    • (b) Suppose that \(X_n\geq 0\) almost surely, for all \(n\). Show that

      \begin{equation} \label {eq:mct_fubini} \E \l [\sum _{i=1}^\infty X_i\r ]=\sum _{i=1}^\infty \E [X_i]. \end{equation}

    • (c) Suppose, instead, that the \(X_i\) are independent and that \(\P [X_i=1]=\P [X_i=-1]=\frac 12\). Explain briefly why (6.1) fails to hold, in this case.

Challenge questions
  • 6.6 Let \((X_n)\) be a sequence of random variables, and let \(X\) and \(Y\) be random variables.

    • (a) Show that if \(X_n\stackrel {d}{\to }X\) and \(X_n\stackrel {d}{\to }Y\) then \(X\) and \(Y\) have the same distribution.

    • (b) Show that if \(X_n\stackrel {\P }{\to }X\) and \(X_n\stackrel {\P }{\to }Y\) then \(X=Y\) almost surely.

  • 6.7 Let \((X_n)\) be a sequence of independent random variables such that \(\P [X_n=1]=\P [X_n=0]=\frac 12\). Show that \((X_n)\) does not converge in probability and deduce that \((X_n)\) also does not converge in \(L^1\), or almost surely. Does \(X_n\) converge in distribution?