last updated: December 10, 2024

Bayesian Statistics

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\require {colortbl}\) \(\let \LWRorigcolumncolor \columncolor \) \(\renewcommand {\columncolor }[2][named]{\LWRorigcolumncolor [#1]{#2}\LWRabsorbtwooptions }\) \(\let \LWRorigrowcolor \rowcolor \) \(\renewcommand {\rowcolor }[2][named]{\LWRorigrowcolor [#1]{#2}\LWRabsorbtwooptions }\) \(\let \LWRorigcellcolor \cellcolor \) \(\renewcommand {\cellcolor }[2][named]{\LWRorigcellcolor [#1]{#2}\LWRabsorbtwooptions }\) \(\require {mathtools}\) \(\newenvironment {crampedsubarray}[1]{}{}\) \(\newcommand {\smashoperator }[2][]{#2\limits }\) \(\newcommand {\SwapAboveDisplaySkip }{}\) \(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\) \(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\) \(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\) \(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\) \(\let \LWRorigshoveleft \shoveleft \) \(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\) \(\let \LWRorigshoveright \shoveright \) \(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\) \(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\) \(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\) \(\renewcommand {\intertext }[2][]{\text {#2}\notag \\}\) \(\newenvironment {fleqn}[1][]{}{}\) \(\newenvironment {ceqn}{}{}\) \(\newenvironment {darray}[2][c]{\begin {array}[#1]{#2}}{\end {array}}\) \(\newcommand {\dmulticolumn }[3]{#3}\) \(\newcommand {\LWRnrnostar }[1][0.5ex]{\\[#1]}\) \(\newcommand {\nr }{\ifstar \LWRnrnostar \LWRnrnostar }\) \(\newcommand {\mrel }[1]{\begin {aligned}#1\end {aligned}}\) \(\newcommand {\underrel }[2]{\underset {#2}{#1}}\) \(\newcommand {\medmath }[1]{#1}\) \(\newcommand {\medop }[1]{#1}\) \(\newcommand {\medint }[1]{#1}\) \(\newcommand {\medintcorr }[1]{#1}\) \(\newcommand {\mfrac }[2]{\frac {#1}{#2}}\) \(\newcommand {\mbinom }[2]{\binom {#1}{#2}}\) \(\newenvironment {mmatrix}{\begin {matrix}}{\end {matrix}}\) \(\newcommand {\displaybreak }[1][]{}\) \( \def \offsyl {(\oslash )} \def \msconly {(\Delta )} \) \( \DeclareMathOperator {\var }{var} \DeclareMathOperator {\cov }{cov} \DeclareMathOperator {\Bin }{Bin} \DeclareMathOperator {\Geo }{Geometric} \DeclareMathOperator {\Beta }{Beta} \DeclareMathOperator {\Unif }{Uniform} \DeclareMathOperator {\Gam }{Gamma} \DeclareMathOperator {\Normal }{N} \DeclareMathOperator {\Exp }{Exp} \DeclareMathOperator {\Cauchy }{Cauchy} \DeclareMathOperator {\Bern }{Bernoulli} \DeclareMathOperator {\Poisson }{Poisson} \DeclareMathOperator {\Weibull }{Weibull} \DeclareMathOperator {\IGam }{IGamma} \DeclareMathOperator {\NGam }{NGamma} \DeclareMathOperator {\ChiSquared }{ChiSquared} \DeclareMathOperator {\Pareto }{Pareto} \DeclareMathOperator {\NBin }{NegBin} \DeclareMathOperator {\Studentt }{Student-t} \DeclareMathOperator *{\argmax }{arg\,max} \DeclareMathOperator *{\argmin }{arg\,min} \) \( \def \to {\rightarrow } \def \iff {\Leftrightarrow } \def \ra {\Rightarrow } \def \sw {\subseteq } \def \mc {\mathcal } \def \mb {\mathbb } \def \sc {\setminus } \def \wt {\widetilde } \def \v {\textbf } \def \E {\mb {E}} \def \P {\mb {P}} \def \R {\mb {R}} \def \C {\mb {C}} \def \N {\mb {N}} \def \Q {\mb {Q}} \def \Z {\mb {Z}} \def \B {\mb {B}} \def \~{\sim } \def \-{\,;\,} \def \qed {$\blacksquare $} \CustomizeMathJax {\def \1{\unicode {x1D7D9}}} \def \cadlag {c\`{a}dl\`{a}g} \def \p {\partial } \def \l {\left } \def \r {\right } \def \Om {\Omega } \def \om {\omega } \def \eps {\epsilon } \def \de {\delta } \def \ov {\overline } \def \sr {\stackrel } \def \Lp {\mc {L}^p} \def \Lq {\mc {L}^p} \def \Lone {\mc {L}^1} \def \Ltwo {\mc {L}^2} \def \toae {\sr {\rm a.e.}{\to }} \def \toas {\sr {\rm a.s.}{\to }} \def \top {\sr {\mb {\P }}{\to }} \def \tod {\sr {\rm d}{\to }} \def \toLp {\sr {\Lp }{\to }} \def \toLq {\sr {\Lq }{\to }} \def \eqae {\sr {\rm a.e.}{=}} \def \eqas {\sr {\rm a.s.}{=}} \def \eqd {\sr {\rm d}{=}} \def \approxd {\sr {\rm d}{\approx }} \def \Sa {(S1)\xspace } \def \Sb {(S2)\xspace } \def \Sc {(S3)\xspace } \)

4.7 Exercises on Chapter 4

You can find formulae for named distributions in Appendix A.

  • 4.1

    • (a) \(\color {blue}\star \) Consider the Bayesian model \((X,\Theta )\) with model family \(M_\theta \sim \Normal (\theta ,2^2)^{\otimes 3}\) and prior \(\Theta \sim \Normal (0,1)\).

      • (i) Use Lemma 4.2.2 to find the posterior distribution given the data \(x=(3.88,\ 2.34,\ 7.86)\), which satisfies \(\sum _1^3 x_i=14.08\).

      • (ii) Write down the probability density functions of the sampling and predictive distributions given by this model for a single data point. Give your answers in the form \(\int _\R f_{\Normal (\cdot ,\cdot )}(\cdot )f_{\Normal (\cdot ,\cdot )}(\cdot )\,d(\cdot )\).

    • (b) Inside the files 2_dist_sketching.ipynb and 2_dist_sketching.Rmd, below the part corresponding to Exercise 3.1, you will find code for sketching the sampling p.d.f. of the Bayesian model \((X,\Theta )\) from Example 3.2.3, with model family \(M_\theta \sim \Exp (\lambda )\) and prior \(\Lambda \sim \Gamma (2,60)\). Modify the code given to sketch the sampling and predictive distributions from (a), on the same graph.

  • 4.2 \(\color {blue}\star \,\star \) Let \(\alpha ,\beta >0\). Let \((X,\Theta )\) be a discrete Bayesian model with model family \(M_\theta \sim \Geo (\theta )^{\otimes n}\) and parameter \(\theta \in [0,1]\). Suppose that the prior is \(\Theta \sim \Beta (\alpha ,\beta )\) and let \(x=(x_1,\ldots ,x_n)\) where \(x_i\in \{0,1,\ldots ,\}\). Show that the posterior is

    \[\Theta |_{\{X=x\}}\sim \Beta \l (\alpha +n,\, \beta +\sum _{i=1}^n x_i\r ).\]

  • 4.3 \(\color {blue}\star \,\star \) Let \(\alpha ,\beta >0\). Let \((X,\Theta )\) be a discrete Bayesian model with model family \(M_\theta \sim \Poisson (\theta )^{\otimes n}\) and parameter \(\theta \in (0,\infty )\). Suppose that the prior is \(\Theta \sim \Gam (\alpha ,\beta )\) and let \(x=(x_1,\ldots ,x_n)\) where \(x_i\in \{0,1,\ldots ,\}\). Show that the posterior is

    \[\Theta |_{\{X=x\}}\sim \Gam \l (\alpha +\sum _{i=1}^n x_i,\, \beta +n\r ).\]

  • 4.4 \(\color {blue}\star \,\star \) Let \(\mu \in \R \) and \(\alpha ,\beta >0\). Let \((X,T)\) be a discrete Bayesian model with model family \(M_\theta \sim \Normal (\mu ,\frac {1}{\tau })^{\otimes n}\) and parameter \(\tau \in (0,\infty )\). Suppose that the prior is \(T\sim \Gam (\alpha ,\beta )\) and let \(x=(x_1,\ldots ,x_n)\) where \(x_i\in (0,\infty )\). Show that the posterior is

    \[T|_{\{X=x\}}\sim \Gam \l (\alpha +\frac {n}{2},\, \beta +\frac 12\sum _{i=1}^n(x_i-\mu )^2\r ).\]

  • 4.5 \(\color {blue}\star \) Using the model from Exercise 4.4, with \(\mu =0\) and prior \(\Gam (2,2)\), use a computer package of your choice to produce a graph of the prior and posterior density functions, given the data

    \[x=(0.22,\ -0.17,\ 1.22,\ -0.13,\ 0.05,\ 0.79,\ -0.45,\ -0.30,\ 0.09,\ -0.16).\]

    This data satisfies \(\sum _1^{10} x_i^2=2.53\). Then, draw a second graph of the sampling and predictive density functions for a single data point.

  • 4.6 Let \(u\in \R \). Let \((X,\Theta )\) be a continuous Bayesian model with model family \(M_{\theta }\sim \Normal (\theta ,2^2)^{\otimes 10}\) and parameter \(\theta \in \R \). Suppose that the prior is \(\Theta \sim \Normal (0,2^2)\), and that we have data

    \[x=(5.29,\ 1.20,\ 2.94,\ 6.72,\ 5.60,\ -2.93,\ 2.85,\ -0.45,\ -0.31,\ 1.23).\]

    This data satisfies \(\sum _1^{10} x_i= 133.19\).

    • (a) \(\color {blue}\star \) Use Lemma 4.2.2 to find the posterior distribution \(\Theta |_{\{X=x\}}\).

    • (b) \(\color {blue}\star \) Using a computer package of your choice, implement the Bayesian update given by Lemma 4.2.2 with \(n=1\), and use it to perform \(10\) Bayesian update steps, one for each \(x_i\), on the model \((X',\Theta )\) with model family \(M_{\theta }\sim \Normal (\theta ,2)\). Write down the resulting posterior distribution.

    • (c) \(\color {blue}\star \,\star \) What do you notice? Investigate this as you vary the data and prior parameters. Would the same thing happen with the other families of conjugate pairs in this chapter?

  • 4.7 \(\color {blue}\star \,\star \) Let \(a,b,k>0\). Let \((X,\Theta )\) be a discrete Bayesian model with model family \(M_\theta \sim \Weibull (k,\theta )^{\otimes n}\) and parameter \(\theta \in (0,\infty )\). Suppose that the prior is \(\Theta \sim \Gam (a,b)\) and let \(x=(x_1,\ldots ,x_n)\) where \(x_i\in \{0,1,\ldots ,\}\). Show that the posterior is

    \[\Theta |_{\{X=x\}}\sim \Gam \l (a+n,\, b+\sum _{i=1}^nx_i^k\r ).\]

  • 4.8 \(\color {blue}\star \) Match each of Lemmas 4.1.5, 4.1.6, 4.2.1, 4.5.2 and Exercises 4.2, 4.3, 4.4, 4.7 to their corresponding rows on the reference sheet of conjugate pairs given in Appendix A

  • 4.9 \(\color {blue}\star \) Recall the relation \(\propto \) from Definition 4.1.1. Let \(f,g,h\) be functions with the same domain. Explain briefly why (a) \(f\propto f\); (b) if \(f\propto g\) then \(g\propto f\); (c) if \(f\propto g\) and \(g\propto h\) then \(f\propto h\).

    \(\offsyl \) Remark: These three properties are the definition of an equivalence relation.