last updated: December 10, 2024

Bayesian Statistics

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\require {colortbl}\) \(\let \LWRorigcolumncolor \columncolor \) \(\renewcommand {\columncolor }[2][named]{\LWRorigcolumncolor [#1]{#2}\LWRabsorbtwooptions }\) \(\let \LWRorigrowcolor \rowcolor \) \(\renewcommand {\rowcolor }[2][named]{\LWRorigrowcolor [#1]{#2}\LWRabsorbtwooptions }\) \(\let \LWRorigcellcolor \cellcolor \) \(\renewcommand {\cellcolor }[2][named]{\LWRorigcellcolor [#1]{#2}\LWRabsorbtwooptions }\) \(\require {mathtools}\) \(\newenvironment {crampedsubarray}[1]{}{}\) \(\newcommand {\smashoperator }[2][]{#2\limits }\) \(\newcommand {\SwapAboveDisplaySkip }{}\) \(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\) \(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\) \(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\) \(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\) \(\let \LWRorigshoveleft \shoveleft \) \(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\) \(\let \LWRorigshoveright \shoveright \) \(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\) \(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\) \(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\) \(\renewcommand {\intertext }[2][]{\text {#2}\notag \\}\) \(\newenvironment {fleqn}[1][]{}{}\) \(\newenvironment {ceqn}{}{}\) \(\newenvironment {darray}[2][c]{\begin {array}[#1]{#2}}{\end {array}}\) \(\newcommand {\dmulticolumn }[3]{#3}\) \(\newcommand {\LWRnrnostar }[1][0.5ex]{\\[#1]}\) \(\newcommand {\nr }{\ifstar \LWRnrnostar \LWRnrnostar }\) \(\newcommand {\mrel }[1]{\begin {aligned}#1\end {aligned}}\) \(\newcommand {\underrel }[2]{\underset {#2}{#1}}\) \(\newcommand {\medmath }[1]{#1}\) \(\newcommand {\medop }[1]{#1}\) \(\newcommand {\medint }[1]{#1}\) \(\newcommand {\medintcorr }[1]{#1}\) \(\newcommand {\mfrac }[2]{\frac {#1}{#2}}\) \(\newcommand {\mbinom }[2]{\binom {#1}{#2}}\) \(\newenvironment {mmatrix}{\begin {matrix}}{\end {matrix}}\) \(\newcommand {\displaybreak }[1][]{}\) \( \def \offsyl {(\oslash )} \def \msconly {(\Delta )} \) \( \DeclareMathOperator {\var }{var} \DeclareMathOperator {\cov }{cov} \DeclareMathOperator {\Bin }{Bin} \DeclareMathOperator {\Geo }{Geometric} \DeclareMathOperator {\Beta }{Beta} \DeclareMathOperator {\Unif }{Uniform} \DeclareMathOperator {\Gam }{Gamma} \DeclareMathOperator {\Normal }{N} \DeclareMathOperator {\Exp }{Exp} \DeclareMathOperator {\Cauchy }{Cauchy} \DeclareMathOperator {\Bern }{Bernoulli} \DeclareMathOperator {\Poisson }{Poisson} \DeclareMathOperator {\Weibull }{Weibull} \DeclareMathOperator {\IGam }{IGamma} \DeclareMathOperator {\NGam }{NGamma} \DeclareMathOperator {\ChiSquared }{ChiSquared} \DeclareMathOperator {\Pareto }{Pareto} \DeclareMathOperator {\NBin }{NegBin} \DeclareMathOperator {\Studentt }{Student-t} \DeclareMathOperator *{\argmax }{arg\,max} \DeclareMathOperator *{\argmin }{arg\,min} \) \( \def \to {\rightarrow } \def \iff {\Leftrightarrow } \def \ra {\Rightarrow } \def \sw {\subseteq } \def \mc {\mathcal } \def \mb {\mathbb } \def \sc {\setminus } \def \wt {\widetilde } \def \v {\textbf } \def \E {\mb {E}} \def \P {\mb {P}} \def \R {\mb {R}} \def \C {\mb {C}} \def \N {\mb {N}} \def \Q {\mb {Q}} \def \Z {\mb {Z}} \def \B {\mb {B}} \def \~{\sim } \def \-{\,;\,} \def \qed {$\blacksquare $} \CustomizeMathJax {\def \1{\unicode {x1D7D9}}} \def \cadlag {c\`{a}dl\`{a}g} \def \p {\partial } \def \l {\left } \def \r {\right } \def \Om {\Omega } \def \om {\omega } \def \eps {\epsilon } \def \de {\delta } \def \ov {\overline } \def \sr {\stackrel } \def \Lp {\mc {L}^p} \def \Lq {\mc {L}^p} \def \Lone {\mc {L}^1} \def \Ltwo {\mc {L}^2} \def \toae {\sr {\rm a.e.}{\to }} \def \toas {\sr {\rm a.s.}{\to }} \def \top {\sr {\mb {\P }}{\to }} \def \tod {\sr {\rm d}{\to }} \def \toLp {\sr {\Lp }{\to }} \def \toLq {\sr {\Lq }{\to }} \def \eqae {\sr {\rm a.e.}{=}} \def \eqas {\sr {\rm a.s.}{=}} \def \eqd {\sr {\rm d}{=}} \def \approxd {\sr {\rm d}{\approx }} \def \Sa {(S1)\xspace } \def \Sb {(S2)\xspace } \def \Sc {(S3)\xspace } \)

0.2 Outline of the course

Bayesian learning is the process of using data to update statistical models. The key principle is that

\begin{equation} \label {eq:bayes_key_idea_intro} (\text {a model})|_{\{\text {model $=$ the data we observed}\}}\eqd (\text {a better model}). \end{equation}

where \(|_{\{\ldots \}}\) denotes conditioning, in the sense of conditional probability. The process of finding the right hand side, given all the inputs on the left hand side, is known as a Bayesian update. Performing one or more such updates in succession is known as Bayesian learning.

We begin our course with an introduction to conditional probability in Chapter 1. We introduce Bayesian statistical models in Chapters 2 (for discrete data) and 3 (for continuous data). These models are similar to those that you will already be familiar with, with the modification that we treat the parameters of the model as random variables. The operation in (0.1) acts to ‘update’ these parameters, to make the model better fit the data. In Chapter 8 we introduce a computational framework in which the operation (0.1) can be computed numerically, in full generality.

Bayesian learning is the oldest form of statistical learning and is often traced back to work of Laplace (1749-1827), but its modern treatment is very different to its history. Before the advent of modern computers the general methods in Chapter 8 were not available, and it was (consequently) not possible to perform Bayesian updates except in simple situations. This led to a period of several decades where statisticians developed approximation theorems, and that theory gave birth to most of the non-Bayesian statistical methods that are still widely used today – for example, maximum likelihood estimators, \(p\)-values, confidence intervals, \(t\)-tests and so on. Because these methods depend on approximation theorems, their results can be hard to interpret and their accuracy depends upon complicated conditions that are difficult to check. For example, it is very common to see \(p\)-values and confidence intervals misinterpreted, or to see misunderstandings of the output of well-known statistical tests.

The Bayesian framework avoids most of these difficulties by working directly with conditional probabilities. It has been growing in popularity ever since computers became widely available and may, in time, supplant older methods entirely. The only trade off is that, except for some special cases, it requires complex numerical methods to implement.

Returning to our own course; in Chapter 4 we study the cases in which Bayesian updates can be performed without the aid of computers. We will use such cases mainly as a way to better understand how Bayesian models behave. We then study the choice of ‘prior’ in Chapter 5. This provides a framework for incorporating pre-existing beliefs, known as priors, into statistical analysis. These beliefs may come in a convenient mathematical form, or may need to be elicited from subject experts with (perhaps) little understanding of statistics. We study the related framework of statistical testing in Chapter 7.

We discuss the relationship between Bayesian inference and other statistical methods in Chapter 6. Broadly, we build up a picture which shows that many branches of statistics can be viewed as simplifications of Bayesian methods. In that sense, Bayesian methods are the most natural form of statistical inference.