Bayesian Statistics
\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {colortbl}\)
\(\let \LWRorigcolumncolor \columncolor \)
\(\renewcommand {\columncolor }[2][named]{\LWRorigcolumncolor [#1]{#2}\LWRabsorbtwooptions }\)
\(\let \LWRorigrowcolor \rowcolor \)
\(\renewcommand {\rowcolor }[2][named]{\LWRorigrowcolor [#1]{#2}\LWRabsorbtwooptions }\)
\(\let \LWRorigcellcolor \cellcolor \)
\(\renewcommand {\cellcolor }[2][named]{\LWRorigcellcolor [#1]{#2}\LWRabsorbtwooptions }\)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\renewcommand {\intertext }[2][]{\text {#2}\notag \\}\)
\(\newenvironment {fleqn}[1][]{}{}\)
\(\newenvironment {ceqn}{}{}\)
\(\newenvironment {darray}[2][c]{\begin {array}[#1]{#2}}{\end {array}}\)
\(\newcommand {\dmulticolumn }[3]{#3}\)
\(\newcommand {\LWRnrnostar }[1][0.5ex]{\\[#1]}\)
\(\newcommand {\nr }{\ifstar \LWRnrnostar \LWRnrnostar }\)
\(\newcommand {\mrel }[1]{\begin {aligned}#1\end {aligned}}\)
\(\newcommand {\underrel }[2]{\underset {#2}{#1}}\)
\(\newcommand {\medmath }[1]{#1}\)
\(\newcommand {\medop }[1]{#1}\)
\(\newcommand {\medint }[1]{#1}\)
\(\newcommand {\medintcorr }[1]{#1}\)
\(\newcommand {\mfrac }[2]{\frac {#1}{#2}}\)
\(\newcommand {\mbinom }[2]{\binom {#1}{#2}}\)
\(\newenvironment {mmatrix}{\begin {matrix}}{\end {matrix}}\)
\(\newcommand {\displaybreak }[1][]{}\)
\( \def \offsyl {(\oslash )} \def \msconly {(\Delta )} \)
\( \DeclareMathOperator {\var }{var} \DeclareMathOperator {\cov }{cov} \DeclareMathOperator {\Bin }{Bin} \DeclareMathOperator {\Geo }{Geometric} \DeclareMathOperator {\Beta
}{Beta} \DeclareMathOperator {\Unif }{Uniform} \DeclareMathOperator {\Gam }{Gamma} \DeclareMathOperator {\Normal }{N} \DeclareMathOperator {\Exp }{Exp} \DeclareMathOperator
{\Cauchy }{Cauchy} \DeclareMathOperator {\Bern }{Bernoulli} \DeclareMathOperator {\Poisson }{Poisson} \DeclareMathOperator {\Weibull }{Weibull} \DeclareMathOperator {\IGam
}{IGamma} \DeclareMathOperator {\NGam }{NGamma} \DeclareMathOperator {\ChiSquared }{ChiSquared} \DeclareMathOperator {\Pareto }{Pareto} \DeclareMathOperator {\NBin }{NegBin}
\DeclareMathOperator {\Studentt }{Student-t} \DeclareMathOperator *{\argmax }{arg\,max} \DeclareMathOperator *{\argmin }{arg\,min} \)
\( \def \to {\rightarrow } \def \iff {\Leftrightarrow } \def \ra {\Rightarrow } \def \sw {\subseteq } \def \mc {\mathcal } \def \mb {\mathbb } \def \sc {\setminus } \def \wt
{\widetilde } \def \v {\textbf } \def \E {\mb {E}} \def \P {\mb {P}} \def \R {\mb {R}} \def \C {\mb {C}} \def \N {\mb {N}} \def \Q {\mb {Q}} \def \Z {\mb {Z}} \def \B {\mb {B}}
\def \~{\sim } \def \-{\,;\,} \def \qed {$\blacksquare $} \CustomizeMathJax {\def \1{\unicode {x1D7D9}}} \def \cadlag {c\`{a}dl\`{a}g} \def \p {\partial } \def \l
{\left } \def \r {\right } \def \Om {\Omega } \def \om {\omega } \def \eps {\epsilon } \def \de {\delta } \def \ov {\overline } \def \sr {\stackrel } \def \Lp {\mc {L}^p} \def
\Lq {\mc {L}^p} \def \Lone {\mc {L}^1} \def \Ltwo {\mc {L}^2} \def \toae {\sr {\rm a.e.}{\to }} \def \toas {\sr {\rm a.s.}{\to }} \def \top {\sr {\mb {\P }}{\to }} \def \tod {\sr
{\rm d}{\to }} \def \toLp {\sr {\Lp }{\to }} \def \toLq {\sr {\Lq }{\to }} \def \eqae {\sr {\rm a.e.}{=}} \def \eqas {\sr {\rm a.s.}{=}} \def \eqd {\sr {\rm d}{=}} \def \approxd
{\sr {\rm d}{\approx }} \def \Sa {(S1)\xspace } \def \Sb {(S2)\xspace } \def \Sc {(S3)\xspace } \)
7.3 Point estimates
If, for some reason, it is necessary to give a point estimate \(\theta _0\) for the unknown parameter \(\theta \), then we can obtain one in various different ways from the posterior \(\Theta |_{\{X=x\}}\).
Common choices are:
-
1. The mean \(\theta _0=\E [\Theta |_{\{X=x\}}]\).
-
2. The median \(\theta _0\) such that \(\P [\Theta |_{\{X=x\}}\leq \theta _0]=\P [\Theta |_{\{X=x\}}\geq \theta _0]=\frac 12\).
-
3. The mode \(\theta _0=\argmax _{\theta \in \Pi } L_{\Theta |_{\{X=x\}}}(\theta )\).
When doing so, we should be wary that \(\theta _0\) contains much less information than the full posterior distribution \(\Theta |_{\{X=x\}}\). If \(\Theta \) is close to \(\theta _0\) with high probability
then we can hope it provides a reasonable approximation, but there is no guarantee in any case, and we should plot the distribution of \(\Theta |_{\{X=x\}}\) (and, ideally, the corresponding sampling
distributions) to assess this.
Note that some or all of these point estimates may fail to be well defined, dependent upon the distribution of \(X\). For example the Cauchy distributions does not have a well-defined mean. Formulae for means and
variances are listed on the reference sheets in Appendix A; modes can usually be obtained (for continuous distribution) via differentiation; medians
are usually obtained either via symmetry or numerically.
-
In Example 7.2.2 the mean, median and mode of \(\Theta |_{\{X=x\}}\sim \Normal (0,1.5^2)\) are all equal to zero, due to the symmetry of the normal
distribution. In Example 7.2.3, in which \(\Theta |_{\{X=x\}}\sim \Gam (3,4)\), they are
All of these are reasonable point estimates for \(\Gam (0,1.5^2)\). The distribution of \(\Gam (0,1.5^2)\) spreads out across a range of parameters, and we should make this clear in our analysis, perhaps by
giving an HPD interval alongside the point estimate.
Lastly, consider if we had obtained a posterior distribution with the p.d.f. from Exercise 1.1:
There is no reasonable way to summarize this distribution with a point estimate. In a case like this we should decline to give a point estimate, even if we are asked for one.